四环素类污染物毒性的微观机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是生命的物质基础,它与各种形式的生命活动紧密联系在一起,机体中的每一个细胞和所有重要组成部分都有蛋白质参与。细胞是生物有机体进行新陈代谢活动的基本单位,外环境中的有害因子,如物理性因子(电离辐射、噪声、紫外线等)、化学性因子和生物性因子(细菌、病毒等)等,通过不同途径(如呼吸道、消化道、皮肤及伤口等)作用于机体,能诱发机体结构与功能发生改变,而这些改变无不反映细胞结构与功能的变化。细胞结构与功能的改变是机体受到外源性有害物质作用所致损伤的基础。
     四环素类药物在畜牧业和水产养殖业中有广泛应用。由于生物利用率较低,50-80%的四环素类药物未经代谢而进入环境成为污染物。残留在土壤、地表水、地下水、甚至饮用水等环境以及动物源食品(如蛋、奶、肉等)中的四环素类污染物能经由食物链或以饮食方式进入人体,对人类健康形成威胁。四环素类药物残留的污染问题及其毒性已引起了世界范围内的关注,并已有大量相关报道,但国内外已有的研究成果还不能彻底阐释环境中药物残留对生态及人类健康的内在作用机制。本论文在已报道的相关研究成果的基础上,以四环素类污染物致机体毒性的作用靶点功能蛋白质和细胞为对象,研究了常见四环素类污染物(土霉素OTC、四环素TC和金霉素CTC, TCs)毒性的微观机制,得到以下研究结果:
     1OTC和TC与血清白蛋白相互作用的机理研究
     血清白蛋白是各种内源性和外源性化合物在血液中运输的载体。本文在利用公式校正荧光内滤效应的基础上研究了OTC和TC与血清白蛋白(BSA和HSA)的相互作用。分子探针的研究结果表明,OTC和TC与位于血清白蛋白子域ⅢA的位点Ⅱ结合。计算得到的△H°矿和△S°分别为负值和正值,说明OTC和TC与血清白蛋白非共价结合的主要作用力为静电作用力。利用分子模拟方法进一步确定OTC和TC的结合位置为位于位点Ⅱ的正电荷氨基酸残基(对于BSA为ARG433或ARG436,对于HSA为ARG410或LYS414)。紫外可见吸收光谱、同步荧光光谱和圆二色谱的实验结果表明,结合的OTC和TC导致血清白蛋白的二级结构和色氨酸残基微环境发生改变。相关研究结果已分别发表在Biomacromolecules和Journal of Agricultural and Food Chemistry上。
     2TCs与其毒性相关的功能蛋白酶的作用机理研究
     已有研究结果表明,TCs能使过氧化氢酶、溶菌酶和胰蛋白酶等功能蛋白酶的活性下降。本文利用光谱学技术结合分子对接研究了TCs毒性的微观机制。实验结果表明:(1)OTC以一个结合位点通过范德华力和氢键作用力与过氧化氢酶作用形成复合物。结合的OTC使过氧化氢酶的二级结构和色氨酸残基微环境发生改变,使过氧化氢酶活性受到抑制;(2) OTC、TC和CTC以一个结合位点与位于溶菌酶表面裂缝的活性中心中的两个关键氨基酸残基(Glu35或Asp52)作用,竞争性抑制溶菌酶活性,结合强度的顺序为:CTC>TC>OTC。分子对接和热力学分析的结果均表明,静电作用力在TCs与溶菌酶的作用过程中占主导地位。结合的TCs使溶菌酶的二级结构和色氨酸残基的微环境发生改变。(3)OTC、TC和CTC均能以一个结合位点与胰蛋白酶通过范德华力和氢键作用力作用形成复合物,结合强度的顺序为:TC>OTC>CTC。结合的TCs能抑制胰蛋白酶活性,抑制程度大小顺序为:CTC>OTC>TC。分子对接和胰蛋白酶活性实验的结果均表明OTC和TC与胰蛋白酶的S1结合口袋结合,竞争性抑制酶活性;由于在CTC苯环上的氯原子阻碍苯环进入S1结合口袋,CTC与胰蛋白酶的非酶活性中心位点结合,非竞争性抑制胰蛋白酶活性。结合的TCs使胰蛋白酶的二级结构和色氨酸残基的微环境发生改变,但不同的结合位置使CTC对胰蛋白酶二级结构的影响与OTC和TC相反。相关工作已分别发表在Science of The Total Environment, Chemosphere和PLoS ONE上。
     3TCs对人血红细胞毒性的作用机理研究
     常见的TCs (OTC和TC)均能进入红细胞,本文考察了其对红细胞毒性的微观作用机理。研究结果表明:(1)OTC能引起红细胞抗氧化防御体系功能下降,导致红细胞氧化应激,导致以下毒性效应:使红细胞的形态发生变化,并进一步导致红细胞溶血(OTC浓度大于8×10-5mol L-1)。在低浓度下(≤4×10-5mol L-1), OTC能使红细胞ATP酶活性增强;随浓度进一步增大,OTC能抑制ATP酶活性,影响细胞功能;(2)利用流式细胞术探索性建立反映红细胞抗氧化性的指标(谷胱甘肽和活性氧)的检测方法,并考察了TC对其含量的影响。结果表明,TC能导致红细胞谷胱甘肽含量减少,从而使细胞抗氧化防御体系功能降低,导致细胞氧化/抗氧化平衡稳态被破坏,进而使ROS浓度升高,造成氧化应激,能引起细胞结构和功能的损伤;(3)OTC和TC均以一个作用位点与血红蛋白通过范德华力和氢键作用力结合形成复合物。同步荧光实验和分子对接均表明,OTC和TC在血红蛋白上的结合位置为四个亚基之间的中央空穴。结合的OTC和TC能改变血红蛋白的结构和酪氨酸残基的微环境。部分研究结果已经在Journal of Hazardous Materials上发表。
     本论文对TCs致机体毒性的微观机制进行了探索性研究,取得了具有创新性的研究成果,有利于深入认识TCs的毒性;论文建立的研究TCs毒性作用机理的新方法可为其他环境污染物的毒性评价提供方法学的参考和技术支持。
Protein is the material base for life, being involved in every cell and all important part of body and closely linked to various forms of life activities. The cell is the basic unit of the metabolic activity of biological organism. The harmful factors in the external environment, such as physical (ionizing radiation, noise, ultraviolet, etc.), chemical and biological (bacteria, viruses, etc.) ones, can act on the body through various means (such as respiratory tract, digestive tract, skin and wound), inducing changes in body structure and function, all reflecting those in cell structure and function. So the changes in cell structure and function are the basis for the injuries to the body induced by exogenous harmful substances.
     Tetracyclines are widely used in animal husbandry and aquaculture. Because of their low bioavailability,50-80%of the applied dose enters the environment without metabolism, becomes a pollutant. The tetracycline residues in the environment such as soil, surface water, groundwater, even drinking water, and animal food (egg, milk, meat, etc.) can enter human bodies by food chain or diet, being potentially harmful. The pollution of tetracycline residues and their toxicity has attracted worldwide attention. There have been many related reports, but the existing research results can not completely explain the inner mechanism of the residues in the environment to ecology and human health. In this thesis, on the basis of the existing related research results, with the targets of the tetracyclines induced toxicity (functional proteins and cell) as the object, we investigated the micromechanism of the toxicity of the common tetracyclines (oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC)) and obtained the following findings:
     1The interaction mechanism of OTC and TC with serum albumins
     Serum albumins are the carrier of a wide variety of endogenous and exogenous compounds in blood. We studied the interaction of OTC and TC with serum albumins based on the elimination of inner filter effect with the correction equation. The site marker competition experiments revealed that OTC and TC bind to site Ⅱ (subdomain ⅢA) of serum albumins, mainly with electrostatic interaction indicated by the calculated negative ΔH°and positive ΔS°. The molecular modeling methods were applied to further define that the binding site for OTC and TC was the positively charged amino acid residues in site II (ARG433or ARG436for BSA, ARG410and LYS414for HSA). The UV-visible absorption, synchronous fluorescence and circular dichroism results showed that the bound OTC and TC can change the secondary structure and the microenvironment of the tryptophan residues of BSA and HSA. The research results were published on Biomacromolecules and Journal of Agricultural and Food Chemistry.
     2The interaction mechanism of tetracyclines with the functional enzymes related to tetracyclines toxicity
     It have been reported that tetracyclines can result in the decrease of the activity of catalase, lysozyme and trypsin. We investigated the micromechanism of the toxicity of tetracyclines by multispectroscopic techniques and molecular modeling method. The experimental results indicated that:(1) OTC can interact with catalase to form a complex mainly by van der Waals'interactions and hydrogen bonds with one binding site. The binding of OTC can result in change of the secondary structure and the microenvironment of the tryptophan residues of catalase. The activity of catalase was also inhibited for the bound OTC.(2) All the three tetracyclines OTC, TC and CTC can bind into lysozyme cleft and interact with the key active-site residues Glu35or Asp52with one binding site, with the affinity order:CTC>TC>OTC, resulting in competitive inhibition of lysozyme activity. Both the spectroscopic technique and the molecular modeling method revealed that tetracyclines interact with lysozyme mainly through electrostatic forces. The binding of tetracyclines can cause the secondary structure and the microenvironment of the tryptophan residues of lysozyme.(3) All the three tetracyclines (OTC, TC and CTC) can interact with trypsin with one binding site to form tetracyclines-trypsin complex, mainly through van der Waals'interactions and hydrogen bonds with the affinity order:TC>OTC>CTC. The bound tetracyclines can result in inhibition of trypsin activity with the inhibition order:CTC>OTC>TC. Both the molecular docking study and the trypsin activity experiment revealed that OTC and TC bound into S1binding pocket, competitively inhibiting the enzyme activity, and CTC was a non-competitive inhibitor which bound to a non-active site of trypsin, different from TC and OTC due to the Cl atom on the benzene ring of CTC which hinders CTC entering into the S1binding pocket. The secondary structure and the microenvironment of the tryptophan residues of trypsin were also changed because of the bound tetracyclines. However, the effect of CTC on the secondary structure content of trypsin was contrary to those of TC and OTC. The related research results were published on Science of the Total Environment, Chemosphere and PLoS ONE.
     3The toxic interaction mechanism of tetracyclines with human red blood cells
     The common tetracyclines OTC and TC can enter red blood cells (RBCs). We studied the micromechanism of the toxicity of tetracyclines to RBCs. The experimental results revealed that:(1) OTC can reduce the antioxidant capacity of RBCs and induce oxidative stress, causing the following toxic effects:OTC can change the morphology of RBCs and further resulting in hemolysis (OTC concentration higher than8×10-5mol L-1). At low OTC dose, the ATPase activity increased. However, at higher dose, OTC can inhibit the activity of ATPase, affecting cell function.(2) Utilizing the flow cytometry, we established the detection methods for the indicators of antioxidant activity of RBCs (glutathione and reactive oxygen species (ROS)) and investigated the impact of TC on their content in RBCs. The experimental results indicated that TC can result in the reduction of glutathione content in RBCs to reduce the function of the antioxidant defense system of RBCs. The cellular oxidative/antioxidant balance was destroyed, so the ROS concentration in RBCs increased, causing oxidative stress which can lead to the damage of cellular structure and function.(3) OTC and TC can interact with hemoglobin with one binding site to form complex, mainly through van der Waals and hydrogen bond interactions. Both the synchronous fluorescence experiment and the molecular modeling study revealed that OTC and TC bind into hemoglobin central cavity. The bound OTC and TC can change the secondary structure and the microenvironment of the tyrosine residues of hemoglobin. A part of the research results were published on Journal of Hazardous Materials.
     The thesis makes exploratory research on the micromechanism of the toxicity of tetracyclines and obtains innovative research results, which is conducive to in-depth understanding of the toxicity of tetracyclines. The established new methods for the research on the toxic mechanism of tetracyclines can provide the methodological reference and technical support for the toxicity evaluation of other pollutants.
引文
1. Hanson, M. L.; Knapp, C. W.; Graham, D. W., Field assessment of oxytetracycline exposure to the freshwater macrophytes Egeria densa Planch. and Ceratophyllum demersum L. Environmental Pollution 2006,141, (3),434-442.
    2. Kong, W. D.; Zhu, Y. G.; Liang, Y. C.; Zhang, J.; Smith, F. A.; Yang, M., Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ Pollut 2007,147, (1),187-93.
    3. Brillantes, S.; Tanasomwang, V.; Thongrod, S.; Dachanantawitaya, N., Oxytetracycline residues in giant freshwater prawn (Macrobrachium rosenbergii). J Agric Food Chem 2001, 49, (10),4995-9.
    4. Kurittu, J.; Lonnberg, S.; Virta, M.; Karp, M., A group-specific microbiological test for the detection of tetracycline residues in raw milk. J Agric Food Client 2000,48, (8),3372-7.
    5. Moats, W. A., Determination of tetracycline antibiotics in beef and pork tissues using ion-paired liquid chromatography. J Agric Food Chem 2000,48, (6),2244-8.
    6. Pena, A.; Lino, C. M.; Alonso, R.; Barcelo, D., Determination of tetracycline antibiotic residues in edible swine tissues by liquid chromatography with spectrofluorometric detection and confirmation by mass spectrometry. J Agric Food Chem 2007,55, (13),4973-9.
    7. Virolainen, N. E.; Pikkemaat, M. G.; Elferink, J. W.; Karp, M. T., Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria. J Agric Food Chem 2008,56, (23),11065-70.
    8. Kulshrestha, P.; Sukumar, N.; Murray, J. S.; Giese, R. F.; Wood, T. D., Computational prediction of antibody binding sites on tetracycline antibiotics:electrostatic potentials and average local ionization energies on molecular surfaces. J Phys Chem A 2009,113, (4),756-66.
    9. Chopra, I.; Roberts, M., Tetracycline antibiotics:mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001,65, (2),232-60; second page, table of contents.
    10. Rigos, G.; Nengas, I.; Alexis, M.; Troisi, G. M., Potential drug (oxytetracycline and oxolinic acid) pollution from Mediterranean sparid fish farms. Aquat Toxicol 2004,69, (3),281-8.
    11. Ferreira, C. S.; Nunes, B. A.; Henriques-Almeida, J. M.; Guilhermino, L., Acute toxicity of oxytetracycline and florfenicol to the microalgae Tetraselmis chuii and to the crustacean Artemia parthenogenetica. Ecotoxicol Environ Saf 2007,67, (3),452-8.
    12. Ji, L.; Chen, W.; Duan, L.; Zhu, D., Mechanisms for strong adsorption of tetracycline to carbon nanotubes:a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol 2009,43, (7),2322-7.
    13. Halling-Sorensen, B.; Nors Nielsen, S.; Lanzky, P. F.; Ingerslev, F.; Holten Lutzhoft, H. C.; Jorgensen, S. E., Occurrence, fate and effects of pharmaceutical substances in the environment--a review. Chemosphere 1998,36, (2),357-93.
    14. Jorgensen, S. E.; Halling-Sorensen, B., Drugs in the environment. Chemosphere 2000,40, (7), 691-9.
    15.蒋斌,四环素类药物的研究进展.亚洲社会药学2009,4,(4),214-8.
    16.吴楠;乔敏,土壤环境中四环素类抗生素残留及抗性基因污染的研究进展.生态毒理学报2010,5,(5),618-27.
    17.张银志;阮起郡;孙秀兰,高效液相色谱法检测鸡蛋中3种四环素类抗生素.安徽农业群学2008,36,(2),404-5.
    18.贺德春;许振成;吴根义;丘锦荣;秦国建,四环素类抗生素的环境行为研究进展.动物医学进展2011,32,(4),98-102.
    19.陈桂秀;吴银宝,兽药土霉素的环境行为研究进展.动物医学进展2011,32,(5),102-7.
    20.刘雨霞;鲍艳宇,土壤中四环素类抗生素污染研究进展.环境污染与防治2011,33,(8),81-6.
    21.陈杖榴;杨桂香;孙永学;黄显会;曾振灵,兽药和饲料添加剂残留的毒性与生态毒理研究进展.广东饲料2001,10,(1),24-6.
    22.刘吉强;诸葛玉平;杨鹤;顾继光,兽药抗生素的残留状况与环境行为.土壤通报2008,39,(5),1198-203.
    23.陈杖榴;杨桂香;孙永学;黄显会;曾振,兽药残留的毒性与生态毒理研究进展.华南农业大学学报2001,22,(1),88-91.
    24.刘智宏;叶妮;郭文林;黄耀凌;张纯萍;郭筱华;黄齐宜,四环素类药物多残留酶联免疫检测方法.中国农业科学2009,42,(1),318-23.
    25.李瑞萍;张艺;黄应平,环境样品中四环素类抗生素的检测技术.化学进展2008,20,(12).2075-82.
    26.俞道进;曾振灵;陈杖榴,四环素类抗生素残留对水生态环境影响的研究进展.中国兽医学报2004,(5),515-7.
    27. Boxall, A. B., The environmental side effects of medication. EMBO Rep 2004,5, (12),1110-6.
    28.崔馨;乔显亮;韩成伟;王震,生菜对土霉素的吸收及其植物毒性.农业环境科学学报2008,27,(3),1038-42.
    29.侯延民,亲水有机溶剂气浮浮选分离/富集环境水中四环索类抗生索残留研究.江苏大学博士学位论文2009.
    30.张浩;罗义;周启星,四环素类抗生索生态毒性研究进展.农业环境科学学报2008,27,(2),407-413.
    31. Neumann, H.; Viehmann, P., Stable aqueous solutions of antibiotics of the tetracycline group with improved tissue tolerance. Arzneimittelforschung 1959,9,711-3.
    32. P'An, S. Y.; Reilly, J. C.; Halley, T. V.; Richard, G. H.; Pekich, A. M.; Pollets, H. A., The pharmacology of terramycin. J Pharmacol Exp Ther 1950,99, (2),234-44.
    33. P'An, S. Y.; Scaduto, L.; Cullen, M., Pharmacology of terramycin in experimental animals. Ann N Y Acad Sci 1950,53, (2),238-44.
    34. Schoenbach, E. B.; Bryer, M. S.; Long, P. H., The pharmacology of terramycin in animals and man with reference to its clinical trial. Ann N YAcad Sci 1950,53, (2),245-52.
    35. Umezawa, H.; Kondo, S., Index of antibiotics from actinomycetes. University of Tokyo Press 1967,490.
    36. National Toxicology Program technical report series. National Toxicology Program (U.S.); National Institutes of Health (U.S.) 1987, NTP-TR-315.
    37. National Technical Information Service (Springfield, VA 22161). PB83-182469.
    38. National Technical Information Service (Springfield, VA 22161). PB83-151027.
    39. Boucher, D.; Delost, P., Post-natal development of the female mouse after treatment of the pregnant mother and progeny with tetracyclines. C R Seances Soc Biol Fil 1967,161, (2), 300-5.
    40. Goldenthal, E. I., A compilation of LD50 values in newborn and adult animals. Toxicol Appl Pharmacol 1971,18, (1),185-207.
    41. GNRIDX Gendai no Rinsho (Tokyo, Japan).1968,2,26.
    42. Gray, J. E.; Purmalis, A.; Mulvihill, W. J., Further toxicologic studies of lincomycin. Toxicology and Applied Pharmacology 1966,9, (3),445-54.
    43. Maffii, G.; Mainardi, L., Pharmacological study of a new antibiotic:tetracycline. Farmaco Sci 1955,10, (4),197-210.
    44. Tubaro, E.; Barletta, M.; Banci, F., Some Pharmacological Aspects of a New Water-Soluble Tetracycline. J Pharm Pharmacol 1964,16,33-7.
    45. Deb, C.; Ray, A.; Bagchi, P.; Chatterjee, S., Comparative nephrotoxic effects of ampicillin and tetracycline in rat. Indian Journal of Pharmacology 1986,18, (2),110-2.
    46. Noble, J. F.; Kanegis, L. A.; Hallesy, D. W., Short-term toxicity and observations on certain aspects of the pharmacology of a unique tetracycline--minocycline. Toxicol Appl Pharmacol 1967,11, (1),128-49.
    47. Balashev, V. N.; Polosova, R. G., Experimental effect of tetracycline on the protein makeup of the lymph and blood serum. Antibiotiki 1981,26, (5),374-8.
    48. McColl, J. D.; Globus, M.; Robinson, S., Effect of Some Therapeutic Agents on the Developing Rat Fetus. Toxicol Appl Pharmacol 1965,7,409-17.
    49. Steiner, G.; Bradford, W.; Craig, J. M., Tetracycline-induced abortion in the rat. Lab Invest 1965,14, (8),1456-63.
    50. Halme, J.; Aer, J., Effect of tetracycline on synthesis of collagen and incorporation of 45-calcium into bone in foetal and pregnant rats. Biochem Pharmacol 1968,17, (8), 1479-84.
    51. Bevelander, G.; Cohlan, S. Q., The effect on the rat fetus of transplacentally acquired tetracycline. Biol Neonat 1962,4,365-70.
    52. Dubin, N. H.; Parmley, T. H.; Ghodgaonkar, R. B.; King, T. M., Comparative effects of intrauterine instillation of analogues of quinacrine and tetracycline on uterine morphology in the rat. Contraception 1984,29, (6),553-9.
    53. IYKEDH Iyakuhin Kenkyu. Study of Medical Supplies.1972,3,75.
    54.吴亦帆;吴亚兰;黄芒莉;熊玮;何嘉琅,盐酸四环素遗传毒性的研究.中国医院药学杂志1983,3,(5),5-8.
    55. Boucher, D., Abortive properties of tetracyclines in mice. Hormone treatments. Arch Sci Physiol (Paris) 1969,23, (4),481-516.
    56. KSRNAM Kiso to Rinsho. Clinical Report. Yubunsha Co., Ltd.1970,4,516.
    57. Cunningham, R. W.; Hines, L. R.; Stokey, E. H.; Vessey, R. E.; Yuda, N. N., Pharmacology of Tetracycline. Antibiotics Annual 1953-54,63-9.
    58. Tubaro, E.; Banci, F., Influence of the Modifications of the Carboxamido Group on the Physico-Chemical, Pharmacological and Clinical Behavior of Tetracycline. Boll Chim Farm 1963,102,660-87.
    59. Tubaro, E.; Banci, F., The Pharmacology of Chlormethylenecylenecycline, a New Chlortetracycline. Arzneimittelforschung 1964,14,95-100.
    60. Gallo, U.; Santamaria, L., Research progress in organic-biological and medicinal chemistry. Italy:Societa Editoriale Farmaceutica 1970,2,278.
    61. Harned, B. K.; Cunningham, R. W.; et al., The pharmacology of duomycin. Ann N Y Acad Sci 1948,51, (Art.2),182-210.
    62. Bryer, M. S.; Schoenbach, E. B.; et al., Treatment of experimental infections with aureomycin. Ann N YAcad Sci 1948,51, (Art.2),254-66.
    63. Fannelli, G. M.; Halliday, S. L., Relative Toxicity of Chlortetracycline and Sodium Benzoate after Oral Administration to Rats. Arch Int Pharmacodyn Ther 1963,144,120-5.
    64. Gnanasoundari, M.; Pari, L., Impact of naringenin on oxytetracycline-mediated oxidative damage in kidney of rats. Ren Fail 2006,28, (7),599-605.
    65. Yin, H. Q.; Kim, M.; Kim, J. H.; Kong, G.; Lee, M. O.; Kang, K. S.; Yoon, B. I.; Kim, H. L.; Lee, B. H., Hepatic gene expression profiling and lipid homeostasis in mice exposed to steatogenic drug, tetracycline. Toxicol Sci 2006,94, (1),206-16.
    66.高利宏;敖林;胡冉;刘晋祎;黄明辉;杨梦苏;曹佳,四环素致BALB/c小鼠肝脏毒性的基因表达谱研究.第三军医大学学报2006,28,(6),494-498.
    67. Farombi, E. O.; Ugwuezunmba, M. C.; Ezewadu, T. T.; Oyeyemi, M. O.; Ekor, M., Tetracycline-induced reproductive toxicity in male rats:effects of vitamin C and N-acetylcysteine. Exp Toxicol Pathol 2008,60, (1),77-85.
    68.孟文娜;刘舒婷;王晓蓉;高士祥,土霉素对日本锦鲫肝脏抗氧化防御系统的影响.农业环境科学学报2010,29,(5),833-8.
    69.肖亮,土霉素对异育银鲫毒性和残留研究.华中农业大学硕士学位论文2008.
    70.郑闽泉;袁定清,常用渔药对黑脊倒刺鱼巴的急性毒性试验.水利渔业2004,24,(4),38-40.
    71.曲甍甍;孙立伟;陈鋆;厉以强;陈源高;孔志明,兽药添加剂阿散酸和土霉索的毒理学研究.农业环境群学学报2004,23,(2),240-2.
    72. Lunden, T.; Miettinen, S.; Lonnstrom, L. G.; Lilius, E. M.; Bylund, G., Influence of oxytetracycline and oxolinic acid on the immune response of rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology 1998,8, (3),217-230.
    73. Gagne, F.; Blaise, C.; Fournier, M.; Hansen, P. D., Effects of selected pharmaceutical products on phagocytic activity in Elliptio complanata mussels. Comp Biochem Physiol C Toxicol Pharmacol 2006,143, (2),179-86.
    74. Wollenberger, L.; Halling-Sorensen, B.; Kusk, K. O., Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 2000,40, (7),723-30.
    75.王慧珠;罗义;徐文青;周启星;汤保华;王嫒媛,四环索和金霉素对水生生物的生态毒性效应.农业环境科学学报2008,27,(4),1536-9.
    76. Park, S.; Choi, K., Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology 2008,17, (6),526-538.
    77. Babin, M.; Boleas, S.; Tarazona, J. V., In vitro toxicity of antimicrobials on RTG-2 and RTL-W1 fish cell lines. Environ Toxicol Pharmacol 2005,20, (1),125-34.
    78.曲甍甍;徐韵;陈海刚;李兆利;孙立伟;徐迪今;孔志明;杉浦则夫,三种兽药添加剂对土壤赤子爱胜蚓的毒理学研究.应用生态学报2005,16,(6),1108-11.
    79.于振洋;张晶;张洪昌;尹大强,盐酸四环素对秀丽线虫(C.elegans)的急性与多代毒性研究生态毒理学报2010,5,(3),320-6.
    80.王燕;王鹭松;李芳柏;龙源武,兽药土霉素残留对土壤微生物功能的影响.中国土壤学会第十一届全国会员代表大会暨第七届海峡两岸与壤肥料学术交流研讨会论文集2008.
    81.王婧;丁武;边秀芳,牛奶中土霉素对青海弧菌和费氏弧菌的毒性作用测定.中国奶学2011,(20),60-4.
    82.唐礼庆;何成达;王惠民,两种四环素类抗生素厌氧生物毒性试验研究.四川环境2007,26,(3),11-4.
    83.吴琼;靳野;郑海学;刘湘涛,氯霉素和四环素阻碍细菌蛋白分泌研究进展.中国生物工程杂志2010,30,(7),97-100.
    84. Backhaus, T.; Grimme, L. H., The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri. Chemosphere 1999,38, (14),3291-301.
    85. Kong, W. D.; Zhu, Y. G.; Fu, B. J.; Marschner, P.; He, J. Z., The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ Pollut 2006,143, (1),129-37.
    86. Boleas, S.; Alonso, C.; Pro, J.; Fernandez, C.; Carbonell, G.; Tarazona, J. V., Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS.3) and influence of manure co-addition. J Hazard Mater 2005,122, (3),233-41.
    87. Yang, Q.; Zhang, J.; Zhu, K.; Zhang, H., Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil. J Environ Sci (China) 2009,21, (7),954-9.
    88. Wei, X.; Wu, S. C.; Nie, X. P.; Yediler, A.; Wong, M. H., The effects of residual tetracycline on soil enzymatic activities and plant growth. J Environ Sci Health B 2009,44, (5),461-71.
    89. Thiele-Bruhn, S., Microbial inhibition by pharmaceutical antibiotics in different soils-Dose-response relations determined with the iron(III) reduction test. Environmental Toxicology and Chemistry 2005,24, (4),869-876.
    90.张劲强;梁岩;董元华;黄铭洪,差向异构对四环素类药物的发光菌毒性研究.毒理学杂志2006,20,(5),279-81.
    91. Halling-Sorensen, B., Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Archives of Environmental Contamination and Toxicology 2001,40, (4),451-460.
    92.解晓瑜;张永清;李兆君;梁永超;姚建华;张树清,士霉索对小麦毒性效应的品种间差异.生态毒理学报2009,4,(4),577-83.
    93.安婧;周启星;刘维涛,土霉素对小麦种子发芽与幼苗生长发育的生态毒性.环境科学2009,30,(10),3022-7.
    94.金彩霞;刘军军;陈秋颖;周庆祥,兽药污染土壤对小麦和白菜根伸长抑制的毒性效应.农业环境科学学报2009,28,(7),1358-62.
    95. Xie, X.; Zhou, Q.; Bao, Q.; He, Z.; Bao, Y., Genotoxicity of tetracycline as an emerging pollutant on root meristem cells of wheat (Triticum aestivum L.). Environ Toxicol 2010.
    96.鲍艳宇;周启星;谢秀杰,四环素类抗生素对小麦种子芽与根伸长的影响.中国环境科学2008,28,(6),566-70.
    97.林琳;安婧;周启星,土壤四环素污染对小白菜幼苗生长发育的生态毒性.环境学2011,32,(8),2430-5.
    98.焦少俊;窦艳艳;陈良燕;浦海清;郑寿荣;尹大强,四环素对苦草(Vallisneria natans)生长及细胞超微结构的影响.环境化学2008,27,(3),335-8.
    99. Bradel, B. G; Preil, W.; Jeske, H., Remission of the free-branching pattern of Euphorbia pulcherrima by tetracycline treatment. Journal of Phytopathology-Phytopathologische Zeitschrift 2000,148, (11-12),587-590.
    100.魏瑞成;裴燕;政晓丽;朱旭博;陈明;王冉,金霉素和其代谢物胁迫对小白菜幼苗生长和抗氧化酶活性及累积效应的影响.草业学报2011,20,(5),102-110.
    101. Batchelder, A. R., Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems. Journal of Environment Quality 1982,11, (4),675-8.
    102.姜蕾;陈书怡;尹大强,四环素对铜绿微囊藻光合作用和抗氧化酶活性的影响.生态与农村环劈学报2010,26,(6),564-7.
    103. Lutzhoft, H. H.; Halling-Sorensen, B.; Jorgensen, S. E., Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Contain Toxicol 1999,36, (1),1-6.
    104. Halling-Sorensen, B., Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 2000,40, (7),731-9.
    105.王梦禅;钟文英;陈建秋,盐酸金霉素及其光降解产物对淡水藻生长的影响.安徽农业科学2011,39,(7),4155-57,61.
    106. Hu, Y. J.; Liu, Y.; Xiao, X. H., Investigation of the Interaction between Berberine and Human Serum Albumin. Biomacromolecules 2009,10, (3).517-521.
    107. Tian, J.; Liu, J.; Hu, Z.; Chen, X., Interaction of wogonin with bovine serum albumin. Bioorg Med Chem 2005,13, (12),4124-9.
    108. Xiang, G.; Tong, C.; Lin, H., Nitroaniline isomers interaction with bovine serum albumin and toxicological implications. J Fluoresc 2007,17, (5),512-21.
    109. Huang, B. X.; Kim, H. Y.; Dass, C., Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. J Am Soc Mass Spectrum 2004, 15, (8),1237-47.
    110. D'Eon J, C.; Simpson, A. J.; Kumar, R.; Baer, A. J.; Mabury, S. A., Determining the molecular interactions of perfluorinated carboxylic acids with human sera and isolated human serum albumin using nuclear magnetic resonance spectroscopy. Environ Toxicol Chem 2010,29, (8),1678-88.
    111. Zhang, Y. Z.; Zhou, B.; Zhang, X. P.; Huang, P.; Li, C. H.; Liu, Y., Interaction of malachite green with bovine serum albumin:determination of the binding mechanism and binding site by spectroscopic methods. J Hazard Mater 2009,163, (2-3),1345-52.
    112. Guo, Y.; Yue, Q.; Gao, B., Probing the molecular mechanism of C.I. Acid red 73 binding to human serum albumin. Environ Toxicol Pharmacol 2010,30, (1),45-51.
    113. De Jonge, H. R., Toxicity of tetracyclines in rat-small-intestinal epithelium and liver. Biochem Pharmacol 1973,22, (21),2659-77.
    114. Wang, W.; Lin, H.; Xue, C.; Khalid, J., Elimination of chloramphenicol, sulphamethoxazole and oxytetracycline in shrimp, Penaeus chinensis following medicated-feed treatment. Environ Int 2004,30, (3),367-73.
    115. Qu, M. M.; Sun, L. W.; Chen, J.; Li, Y. Q.; Chen, Y. G.; Kong, Z. M., Toxicological characters of arsanilic acid and oxytetracycline. Journal of Agro-Environment Science 2004,23, (2),240-242.
    116. Khan, M. A.; Muzammil, S.; Musarrat, J., Differential binding of tetracyclines with serum albumin and induced structural alterations in drug-bound protein. International Journal of Biological Macromolecules 2002,30, (5),243-249.
    117. Ma, J. K.; Jun, H. W.; Luzzi, L. A., Tetracycline binding to bovine serum albumin studied by fluorescent techniques. J Pharm Sci 1973,62, (8),1261-4.
    118. Popov, P. G.; Vaptzarova, K. I.; Kossekova, G. P.; Nikolov, T. K., Fluorometric study of tetracycline--bovine serum albumin interaction. The tetracyclines--a new class of fluorescent probes. Biochem Pharmacol 1972,21, (17),2363-72.
    119. Bi, S.; Song, D.; Tian, Y.; Zhou, X.; Liu, Z.; Zhang, H., Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim Acta A Mol Biomol Spectrosc 2005, 61, (4), 629-36.
    120. Wu, L. L.; Chen, L.; Song, C; Liu, X. W.; Deng, H. P.; Gao, N. Y.; Gao, H. W., Potential enzyme toxicity of perfluorooctanoic acid. Amino Acids 2010, 38, (1), 113-20.
    121. Chen, F. F.; Tang, Y. N.; Wang, S. L.; Gao, H. W., Binding of brilliant red compound to lysozyme: insights into the enzyme toxicity of water-soluble aromatic chemicals. Amino Acids 2009,36, (3), 399-407.
    122. Wang, N.; Ye, L.; Yan, F. F.; Xu, R., Spectroscopic studies on the interaction of azelnidipine with bovine serum albumin. International Journal of Pharmaceutics 2008, 351, (1-2), 55-60.
    123. Shyamali, S. S.; Lillian, D. R.; Lawrence, L.; Esther, B., Fluorescence studies of native and modified neurophysins. Effects of peptides and pH. Biochemistry 1979,18, (6), 1026-1036.
    124. Qin, C; Xie, M. X.; Liu, Y., Characterization of the myricetin-human serum albumin complex by spectroscopic and molecular modeling approaches. Biomacromolecules 2007, 8, (7), 2182-9.
    125. Horrocks, W. D., Jr.; Snyder, A. P., Measurement of distance between fluorescent amino acid residues and metal ion binding sites. Quantitation of energy transfer between tryptophan and terbium(Ⅲ) or europium(Ⅲ) in thermolysin. Biochem Biophys Res Commun 1981,100, (1), 111-7.
    126. Yuan, T.; Weljie, A. M.; Vogel, H. J., Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding. Biochemistry 1998, 37, (9), 3187-95.
    127. Papadopoulou, A.; Green, R. J.; Frazier, R. A., Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J Agric Food Client 2005, 53, (1), 158-63.
    128. Soares, S.; Mateus, N.; Freitas, V., Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching. J Agric Food Chem 2007, 55, (16), 6726-35.
    129. Khan, S. N.; Islam, B.; Yennamalli, R.; Sultan, A.; Subbarao, N.; Khan, A. U., Interaction of mitoxantrone with human serum albumin: spectroscopic and molecular modeling studies. Eur J Pharm Sci 2008, 35, (5), 371-82.
    130. Jiao, S.; Zheng, S.; Yin, D.; Wang, L.; Chen, L., Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process. J Environ Sci (China) 2008, 20, (7), 806-13.
    131. Pan, X. R.; Liu, R. T.; Qin, P. F.; Wang, L.; Zhao, X. C, Spectroscopic Studies on the Interaction of Acid Yellow With Bovine Serum Albumin. Journal of Luminescence 2010, 130, (4), 611-617.
    132. Forster, T., Delocalized excitation and excitation transfer. Modern Quantum Chemistry, O. Sinanoglu (Ed.), Academic Press: New York 1965, 3, 93-137.
    133. Valeur, B.; Brochon, J. C, New Trends in Fluorescence Spectroscopy. Springer Press: Berlin, 2001; p 25.
    134. Liu, J.; Tian, J. N.; Zhang, J.; Hu, Z.; Chen, X., Interaction of magnolol with bovine serum albumin: a fluorescence-quenching study. Anal Bioanal Chem 2003, 376, (6), 864-7.
    135. Yang, Q.; Liang, J.; Han, H., Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques. J Phys Chem B 2009, 113, (30), 10454-8.
    136. Wang, F.; Huang, W.; Dai, Z. X., Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin. Journal of Molecular Structure 2008,875, (1-3), 509-514.
    137. Wu, T.; Wu, Q.; Guan, S.; Su, H.; Cai, Z., Binding of the environmental pollutant naphthol to bovine serum albumin. Biomacromolecules 2007,8, (6),1899-906.
    138. Wang, Y. Q.; Zhang, H. M.; Zhang, G. C.; Liu, S. X.; Zhou, Q. H.; Fei, Z. H.; Liu, Z. T., Studies of the interaction between paraquat and bovine hemoglobin. International Journal of Biological Macromolecules 2007,41, (3),243-250.
    139. Hu, Y. J.; Liu, Y.; Pi, Z. B.; Qu, S. S., Interaction of cromolyn sodium with human serum albumin:a fluorescence quenching study. Bioorg Med Chem 2005,13, (24),6609-14.
    140. Leis, D.; Barbosa, S.; Attwood, D.; Taboada, P.; Mosquera, V., Physicochemical study of the complexation of nortriptyline and human serum albumin. Langmuir 2002,18, (21), 8178-8185.
    141. Figueroa, R. A.; Leonard, A.; MacKay, A. A., Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol 2004,38, (2),476-83.
    142. Zhao, X. C.; Liu, R. T.; Chi, Z. X.; Teng, Y.; Qin, P. F., New Insights into the Behavior of Bovine Serum Albumin Adsorbed onto Carbon Nanotubes:Comprehensive Spectroscopic Studies. Journal of Physical Chemistry B 2010,114, (16),5625-5631.
    143. Beauchemin, R.; N'Soukpoe-Kossi, C. N.; Thomas, T. J.; Thomas, T.; Carpentier, R.; Tajmir-Riahi, H. A., Polyaminc analogues bind human serum albumin. Biomacromolecules 2007,8, (10),3177-83.
    144. Zhou, N.; Liang, Y. Z.; Wang, P.,18 beta-Glycyrrhetinic acid interaction with bovine serum albumin. Journal of Photochemistry and Photobiology a-Chemistry 2007,185, (2-3), 271-276.
    145. Bian, H. D.; Li, M.; Yu, Q.; Chen, Z. F.; Tian, J. N.; Liang, H., Study of the interaction of artemisinin with bovine serum albumin. International Journal of Biological Macromolecules 2006,39, (4-5),291-297.
    146. Halgren, T. A., Merck molecular force field. Ⅰ. Basis, form, scope, parametrization, and performance of MMFF94. Journal of Computational Chemistry 1998,17, (5-6),490-519.
    147. Lund, O.; Nielsen, M.; Lundegaard, C.; Worning, P., CPHmodels 2.0:X3M a Computer Program to Extract 3D Models. Abstract at the CASP5 conference 2002, A102.
    148. Morris, G. M.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J.; Goodsell, D. S., Automated docking using a Lamarckiau genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 1998,19, (14),1639-1662.
    149. Bikadi, Z.; Hazai, E., Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J Cheminform 2009,1,15.
    150. Solis, F. J.; Wets, R. J. B., Minimization by Random Search Techniques. Mathematics of Operations Research 1981,6, (1),19-30.
    151. Tsodikov, O. V.; Record, M. T.; Sergeev, Y. V., Novel computer program for fast exact calculation of accessible and molecular surface areas and average surface curvature. Journal of Computational Chemistry 2002,23, (6),600-609.
    152. Landau, M.; Mayrose, I.; Rosenberg, Y.; Glaser, F.; Martz, E.; Pupko, T.; Ben-Tal, N., ConSurf 2005:the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Research 2005,33, W299-W302.
    153. Glaser, F.; Pupko, T.; Paz, I.; Bell, R. E.; Bechor-Shental, D.; Martz, E.; Ben-Tal, N., ConSurf:Identification of Functional Regions in Proteins by Surface-Mapping of Phylogenetic Information. Bioinformatics 2003,19, (1),163-164.
    154. Martz, E., Protein Explorer:easy yet powerful macromolecular visualization. Trends in Biochemical Sciences 2002,27, (2),107-109.
    155. Cai, W. S.; Shao, X. G.; Maigret, B., Protein-ligand recognition using spherical harmonic molecular surfaces:towards a fast and efficient filter for large virtual throughput screening. Journal of Molecular Graphics & Modelling 2002,20, (4),313-328.
    156. Celiesiute, R.; Ziemys, A.; Kulys, J., Complexation of syringic acid esters with human serum albumin. Biologija 2004,3,27-31.
    157. Pari, L.; Gnanasoundari, M., Influence of naringenin on oxytetracychne mediated oxidative damage in rat liver. Basic & Clinical Pharmacology & Toxicology 2006,98, (5), 456-461.
    158. Lorenzo, C.; del Olmo Martinez, M. L.; Pastor, L.; Almaraz, A.; Belmonte, A.; Caro-Paton, A., Effects of oxytetracycline on the rat exocrine pancreas. Int J Pancreatol 1999,26, (3), 181-8.
    159. Montavon, P.; Kukic, K. R.; Bortlik, K., A simple method to measure effective catalase activities:optimization, validation, and application in green coffee. Anal Biochem 2007, 360, (2),207-15.
    160. Zhang, X.; Jin, J., Binding analysis of pazufloxacin mesilate to catalase using spectroscopic methods. Journal of Molecular Structure 2008,882, (1-3),96-100.
    161. Barynin, V. V.; Whittaker, M. M.; Antonyuk, S. V.; Lamzin, V. S.; Harrison, P. M.; Artymiuk, P. J.; Whittaker, J. W., Crystal structure of manganese catalase from Lactobacillus plantarum. Structure 2001,9, (8),725-38.
    162. Brown, J. M.; Grosso, M. A.; Terada, L. S.; Whitman, G. J.; Banerjee, A.; White, C. W.; Harken, A. H.; Repine, J. E., Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts. Proc Natl Acad Sci U S A 1989,86, (7),2516-20.
    163. Garcia-Molina, F.; Hiner, A. N.; Fenoll, L. G.; Rodriguez-Lopez, J. N.; Garcia-Ruiz, P. A.; Garcia-Canovas, F.; Tudela, J., Mushroom tyrosinase:catalase activity, inhibition, and suicide inactivation. JAgric Food Chem 2005,53, (9),3702-9.
    164. Nelson, T. J.; Backlund, P. S., Jr.; Yergey, A. L.; Alkon, D. L., Isolation of protein subpopulations undergoing protein-protein interactions. Mol Cell Proteomics 2002,1, (3), 253-9.
    165. Pible, O.; Guilbaud, P.; Pellequer, J. L.; Vidaud, C.; Quemeneur, E., Structural insights into protein-uranyl interaction:towards an in silico detection method. Biochimie 2006,88, (11),1631-8.
    166. Yang, J. T.; Wu, C. S.; Martinez, H. M., Calculation of protein conformation from circular dichroism. Methods Enzymol 1986,130,208-69.
    167. Ross, P. D.; Subramanian, S., Thermodynamics of protein association reactions:forces contributing to stability. Biochemistry 1981,20, (11),3096-102.
    168. Zhu, J. F.; Zhang, X.; Li, D. J.; Jin, J., Probing the binding of flavonoids to catalase by molecular spectroscopy. Journal of Molecular Structure 2007,843, (1-3),38-44.
    169. Liu, R.; Sun, F.; Zhang, L.; Zong, W.; Zhao, X.; Wang, L.; Wu, R.; Hao, X., Evaluation on the toxicity of nanoAg to bovine serum albumin. Sci Total Environ 2009,407, (13),4184-8.
    170. Vernaglia, B. A.; Huang, J.; Clark, E. D., Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme. Biomacromolecules 2004,5, (4),1362-1370.
    171. Duewel, H. S.; Daub, E.; Honek, J. F., Investigations of the interactions of saccharides with the lysozyme from bacteriophage lambda. Biochim Biophys Acta 1995,1247, (1),149-58.
    172. Paramaguru, G.; Kathiravan, A.; Selvaraj, S.; Venuvanalingam, P.; Renganathan, R., Interaction of anthraquinone dyes with lysozyme:evidences from spectroscopic and docking studies. J Hazard Mater 2010,175, (1-3),985-91.
    173. Croguennec, T.; Nau, F.; Molle, D.; Le Graet, Y.; Brule, G., Iron and citrate interactions with hen egg white lysozyme. Food Chemistry 2000,68, (1),29-35.
    174. Jiang, C. Q.; Wang, T., Study of the interactions between tetracycline analogues and lysozyme. Bioorganic & Medicinal Chemistry 2004,12, (9),2043-2047.
    175. Stewart, J. J. P., MOPAC2009. Stewart Computational Chemistry 2009, http://openmopac.net/
    176. Tang, J.; Luan, F.; Chen, X., Binding analysis of glycyrrhetinic acid to human serum albumin:fluorescence spectroscopy, FTIR, and molecular modeling. Bioorg Med Chem 2006,14, (9),3210-7.
    177. Zheng, L.; Ma, Y.; Zhang, G.; Yao, J.; Keita, B.; Nadjo, L., A multitechnique study of europium decatungstate and human serum albumin molecular interaction. Phys Chem Chem Phys 2010,12, (6),1299-304.
    178. Perutz, M. F., The first Sir Hans Krebs lecture. X-ray analysis, structure and function of enzymes. Eur J Biochem 1969,8, (4),445-66.
    179. Nielsen, J. E.; McCammon, J. A., On the evaluation and optimization of protein X-ray structures for pKa calculations. Protein Sci 2003,12, (2),313-26.
    180. Lauwereys, M.; Arbabi Ghahroudi, M.; Desmyter, A.; Kinne, J.; Holzer, W.; De Genst, E.; Wyns, L.; Muyldermans, S., Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. Embo J 1998,17, (13),3512-20.
    181. Ghosh, S., Interaction of trypsin with sodium dodecyl sulfate in aqueous medium:a conformational view. Colloids Surf B Biointerfaces 2008,66, (2),178-86.
    182. Hong, M. Z.; Yan, Q. W.; Qiu, H. Z., Fluorimetric study of interaction of benzidine with trypsin. Journal of Luminescence 2010,130, (5),781-786.
    183. Imamura, T.; Matsushita, K.; Travis, J.; Potempa, J., Inhibition of trypsin-like cysteine proteinases (gingipains) from Porphyromonas gingivalis by tetracycline and its analogues. Antimicrob Agents Chemother 2001,45, (10),2871-6.
    184. Tucker, P. C.; Webster, P. D., Effects of tetracycline on pancreatic protein synthesis and secretion in pigeons. Am J Dig Dis 1972,17, (8),675-82.
    185. Asha, K. K.; Sankar, T. V.; Viswanathan Nair, P. G., Effect of tetracycline on pancreas and liver function of adult male albino rats. J Pharm Pharmacol 2007,59, (9),1241-8.
    186. Hobusch, D.; Putzke, H. P., [Effect of oxytetracycline (OTC) on the secretion kinetics of the rat exocrine pancreas]. Exp Pathol (Jena) 1971,5, (5),298-307.
    187. Zhang, B.; Xing, Y. H.; Li, Z. W.; Zhou, H. Y.; Mu, Q. X.; Yan, B., Functionalized Carbon Nanotubes Specifically Bind to alpha-Chymotrypsin's Catalytic Site and Regulate Its Enzymatic Function. Nano Letters 2009,9, (6),2280-2284.
    188. Graf, L.; Jancso, A.; Szilagyi, L.; Hegyi, G.; Pinter, K.; Naray-Szabo, G.; Hepp, J.; Medzihradszky, K.; Rutter, W. J., Electrostatic complementarity within the substrate-binding pocket of trypsin. Proc Natl Acad Sci USA 1988,85, (14),4961-5.
    189. Ma, W.; Tang, C.; Lai, L., Specificity of trypsin and chymotrypsin:loop-motion-controlled dynamic correlation as a determinant. Biophys J 2005,89, (2),1183-93.
    190. Nilsson, M. T.; Krajewski, W. W.; Yellagunda, S.; Prabhumurthy, S.; Chamarahally, G. N.; Siddamadappa, C.; Srinivasa, B. R.; Yahiaoui, S.; Larhed, M.; Karlen, A.; Jones, T. A.; Mowbray, S. L., Structural basis for the inhibition of Mycobacterium tuberculosis glutamine synthetase by novel ATP-competitive inhibitors. J Mol Biol 2009,393, (2), 504-13.
    191. Manavalan, P.; Johnson, W. C. J., Sensitivity of circular dichroism to protein tertiary structure class. Nature 1983,305,831-832.
    192. Wennmalm, A.; Benthin, G.; Petersson, A. S., Dependence of the metabolism of nitric oxide (NO) in healthy human whole blood on the oxygenation of its red cell haemoglobin. Br J Pharmacol 1992,106, (3),507-8.
    193. D'Alessandro, A.; Righetti, P. G.; Zolla, L., The red blood cell proteome and interactome: an update. J Proteome Res 2009,9, (1),144-63.
    194. Selwyn, M. J.; Dawson, A. P.; Stockdale, M.; Gains, N., Chloride-hydroxide exchange across mitochondrial, erythrocyte and artificial lipid membranes mediated by trialkyl-and triphenyltin compounds. Eur JBiochem 1970,14, (1),120-6.
    195. Omoregie, E.; Oyebanji, S. M., Oxytetracycline-induced blood disorder in juvenile Nile tilapia Oreochromis niloticus (Trewavas). Journal of the World Aquaculture Society 2002, 33, (3),377-382.
    196. Jun, H. W.; Lee, B. H., Distribution of tetracycline in red blood cells.J Pharm Sci 1980,69, (4),455-7.
    197. Kornguth, M. L.; Kunin, C. M., Binding of antibiotics to the human intracellular erythrocyte proteins hemoglobin and carbonic anhydase. J Infect Dis 1976,133, (2), 185-93.
    198. Kornguth, M. L.; Kunin, C. M., Uptake of antibiotics by human erythrocytes. J Infect Dis 1976,133,(2),175-84.
    199. Watson, K. C., Pentration of human red cells by penicillin, chloramphenicol, and tetracycline. J Lab Clin Med 1958,51, (5),778-85.
    200. Shcharbin, D.; Pedziwiatr, E.; Blasiak, J.; Bryszewska, M., How to study dendriplexes Ⅱ: Transfection and cytotoxicity. Journal of Controlled Release 2010,141, (2),110-127.
    201. Lin, Y. S.; Haynes, C. L., Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity. Journal of the American Chemical Society 2010, 132,(13),4834-4842.
    202. Ben Othmen, L.; Mechri, A.; Fendri, C.; Bost, M.; Chazot, G.; Gaha, L.; Kerkeni, A., Altered antioxidant defense system in clinically stable patients with schizophrenia and their unaffected siblings. Prog Neuropsychopharmacol Biol Psychiatry 2008,32, (1),155-9.
    203. Herken, H.; Uz, E.; Ozyurt, H.; Sogut, S.; Virit, O.; Akyol, O., Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia. Mol Psychiatry 2001,6, (1),66-73.
    204. Mates, J. M.; Segura, J. M.; Perez-Gomez, C.; Rosado, R.; Olalla, L.; Blanca, M.; Sanchez-Jimenez, F. M., Antioxidant enzymatic activities in human blood cells after an allergic reaction to pollen or house dust mite. Blood Cells Mol Dis 1999, 25, (2), 103-9.
    205. Papaharalambus, C. A.; Griendling, K. K., Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Canliovasc Med 2007, 17, (2), 48-54.
    206. Wadsworth, R. M., Oxidative stress and the endothelium. Exp Physiol 2008, 93, (1), 155-7.
    207. Roversi, F. M.; Galdieri, L. C; Grego, B. H.; Souza, F. G.; Micheletti, C; Martins, A. M.; D'AImeida, V., Blood oxidative stress markers in Gaucher disease patients. Clin Chim Acta 2006, 364, (1-2), 316-20.
    208. Mecocci, P.; Polidori, M. C; Troiano, L.; Cherubini, A.; Cecchetti, R.; Pini, G.; Straatman, M.; Monti, D.; Stahl, W.; Sies, H.; Franceschi, C; Senin, U., Plasma antioxidants and longevity: a study on healthy centenarians. Free Radic Biol Med 2000, 28, (8), 1243-8.
    209. Hachul de Campos, H.; Brandao, L. C; D'AImeida, V.; Grego, B. H.; Bittencourt, L. R.; Tufik, S.; Baracat, E. C, Sleep disturbances, oxidative stress and cardiovascular risk parameters in postmenopausal women complaining of insomnia. Climacteric 2006, 9, (4), 312-9.
    210. Gokalp, O.: Uz, E.; Cicek, E.: Yilmaz, II. R.; Ozer, M. K.; Altunbas, A.; Ozcelik, N., Ameliorating role of caffeic acid phenethyl ester (CAPE) against isoniazid-induced oxidative damage in red blood cells. Mol Cell Biochem 2006, 290, (1-2), 55-9.
    211. Gao, N.; Li, L.; Shi, Z.; Zhang, X.; Jin, W., High-throughput determination of glutathione and reactive oxygen species in single cells based on fluorescence images in a microchannel. Electrophoresis 2007, 28, (21), 3966-75.
    212. Das, S.; Vasisht, S.; Das, S. N.; Srivastava, L. M., Correlation between total antioxidant status and lipid peroxidation in hypercholesterolemia. Current Science 2000, 78, (4), 486-487.
    213. Skaper, S. D.; Fabris, M.; Ferrari, V.; Dalle Carbonare, M.; Leon, A., Quercetin protects cutaneous tissue-associated cell types including sensory neurons from oxidative stress induced by glutathione depletion: cooperative effects of ascorbic acid. Free Radic Biol Med 1997, 22, (4), 669-78.
    214. Rother, R. P.; Bell, L.; Hillmen, P.; Gladwin, M. T., The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin - A novel mechanism of human disease. Jama-Journal of the American Medical Association 2005, 293, (13), 1653-1662.
    215. Hill, A.; Richards, S. J.; Hillmen, P., Recent developments in the understanding and management of paroxysmal nocturnal haemoglobinuria. British Journal of Haematology 2007, 137, (3), 181-192.
    216. Hillmen, P.; Young, N. S.; Schubert, J.; Brodsky, R. A.; Socie, G; Muus, P.; Roth, A.; Szer, J.; Elebute, M. O.; Nakamura, R.; Browne, P.; Risitano, A. M.; Hill, A.; Schrezenmeier, H.; Fu, C; Maciejewski, J.; Rollins, S. A.; Mojcik, C. F.; Rother, R. P.; Luzzatto, L., The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. New England Journal of Medicine 2006, 355, (12), 1233-1243.
    217. Territo, M. C; Tanaka, K. R., Hypophosphatemia in chronic alcoholism. Arch Intern Med 1974,134, (3), 445-7.
    218. Manrique-Moreno, M.; Suwalsky, M.; Villena, F.; Garidel, P., Effects of the nonsteroidal anti-inflammatory drug naproxen on human erythrocytes and on cell membrane molecular models. Biophys Client 2010, 147, (1-2), 53-8.
    219. Hammer, M.; Schweitzer, D.; Michel, B.; Thamm, E.; Kolb, A., Single scattering by red blood cells. Appl Opt 1998,37, (31),7410-8.
    220. Zhao, Y.; Sun, X.; Zhang, G.; Trewyn, B. G.; Slowing, II; Liu, V. S., Interaction of mesoporous silica nanoparticles with human red blood cell membranes:size and surface effects. ACSNano 2011,5, (2),1366-75.
    221. Cantley, L. C., Jr.; Resh, M. D.; Guidotti, G., Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature 1978,272, (5653),552-4.
    222. Skou, J. C.; Esmann, M., The Na,K-ATPase. JBioenerg Biomembr 1992,24, (3),249-61.
    223. Tang, T.; Li, Y., Protective effect of bicyclol against acute fatty liver induced by tetracycline in mice. Yao Xue Xue Bao 2008,43, (1),23-8.
    224.程时;丁海勤,谷胱甘肽及其抗氧化作用今日谈.生理科学进展2002,33,(1),85-90.
    225.刘振玉,谷胱甘肽的研究与应用.生命的化学1995,15,(1),19-21.
    226.郑云郎,谷胱甘肽的生物学功能.生物学通报1995,30,(5),22-4.
    227.高宁,过氧化物酶和谷胱甘肽的单细胞分析及DNA的单分子检测.山东大学博士学位论文2006.
    228.刘登义;王友保;张徐祥;司琴,污灌对小麦幼苗生长及活性氧代谢的影响.应用生态学报2002,13,(10),1319-22.
    229.孙悦,微流控芯片上单细胞分析的研究.浙江大学博士学位论文2006.
    230. Wang, Y. Q.; Zhang, H. M.; Zhou, Q. H.; Xu, H. L., A study of the binding of colloidal Fe3O4 with bovine hemoglobin using optical spectroscopy. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2009,337, (1-3),102-108.
    231. Mueser, T. C.; Rogers, P. H.; Arnone, A., Interface sliding as illustrated by the multiple quaternary structures of liganded hemoglobin. Biochemistry 2000,39, (50),15353-15364.
    232. Mandal, G.; Bhattacharya, S.; Ganguly, T., Investigations to reveal the nature of interactions between bovine hemoglobin and semiconductor zinc oxide nanoparticles by using various optical techniques. Chemical Physics Letters 2009,478, (4-6),271-276.
    233. Alpert, B.; Jameson, D. M.; Weber, G., Tryptophan emission from human hemoglobin and its isolated subunits. Photochem Photobiol 1980,31, (1),1-4.
    234. Haouz, A.; El Mohsni, S.; Zentz, C.; Merola, F.; Alpert, B., Heterogeneous motions within human apohemoglobin. Eur JBiochem 1999,264, (1),250-7.
    235. Klajnert, B.; Bryszewska, M., Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin. Bioelectrochemistry 2002,55, (1-2),33-5.
    236. Wang, Y. Q.; Zhang, H. M.; Zhou, Q. H., Studies on the interaction of caffeine with bovine hemoglobin. Eur J Med Chem 2009,44, (5),2100-5.
    237. Lu, J. Q.; Jin, F.; Sun, T. Q.; Zhou, X. W., Multi-spectroscopic study on interaction of bovine serum albumin with lomefloxacin-copper(II) complex. Int J Biol Macromol 2007, 40, (4),299-304.
    238. Shen, X. C.; Liou, X. Y.; Ye, L. P.; Liang, H.; Wang, Z. Y., Spectroscopic studies on the interaction between human hemoglobin and US quantum dots. Journal of Colloid and Interface Science 2007,311, (2),400-406.
    239. Melo, E. P.; Aires-Barros, M. R.; Costa, S. M.; Cabral, J. M., Thermal unfolding of proteins at high pH range studied by UV absorbance. J Biochem Biophys Methods 1997, 34, (1),45-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700