海水重金属单一及复合污染对双壳类金属硫蛋白的影响和非生物因子的干扰
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属具有亲脂性、难降解性和高富集性,容易在海洋生物体内积累,通过食物链进行放大,海水中微量浓度的重金属即可引起生物机体的氧化应激和氧化损伤甚至导致生物死亡。因此,寻找能够快速、准确监测海洋环境中重金属污染水平的方法,对于及时掌握海水污染程度及生态风险性评价十分必要。
     运用生物标志物法监测海水重金属污染,能够反映海水中多重金属对生物的混合效应,灵敏度高且专一性较强。海洋双壳类金属硫蛋白(MTs)即是重金属毒性监测中常用的一类生物标志物。但是,相同重金属对不同物种MTs的诱导规律存在较大差异,即使同一物种其不同组织MTs对重金属暴露的响应程度也不相同,显示在重金属生物监测方面应选择适宜的生物种类和组织类型。定量监测海水重金属污染水平则需要获得重金属浓度—MTs诱导量及暴露时间—MTs诱导量的响应关系方程。另外,由于海水温度、pH值、盐度等因子的波动会对生物产生直接或间接的干扰,影响其体内MTs的水平,造成海域现场监测结果的不准确性。
     本研究以中国沿海海域常见的双壳类生物——菲律宾蛤仔(Ruditapes philippinarum)为实验对象,分别选用含单一重金属离子Cu2+、Zn2+、Cd2+、Hg2+的人工海水对蛤仔进行暴露培养,通过测定重金属在鳃和内脏中的总含量及可溶性含量变化,分析其在蛤仔组织中的富集规律;根据蛤仔鳃和内脏中MTs的水平随暴露浓度和时间的变化,选择适用于指示单一重金属污染的组织类型,并确定指示重金属污染的最佳浓度范围和暴露时间。研究结果表明:蛤仔内脏比鳃更容易蓄积海水中的Cu2+、Zn2+、Cd2+、Hg2+,50μg/LCu2+、100μg/LZn2+、50μg/L Cd2+、5μg/LHg2+分别暴露5d后蛤仔鳃对4种重金属的BCF值分别为53.6、280.8、20.6、282.8,内脏的BCF值分别为676.8、268.1、47.4、565.6。进入鳃和内脏中的Cu2+和Cd2+主要以游离态形式存在,而Zn2+、Hg2+暴露下,亚细胞组分中的Zn、Hg主要以不溶形式存在。组织内富集金属Cu、Cd、Hg与相应组织中MTs含量之间的关系呈幂函数关系或负指数关系,而Zn的蓄积与MTs之间的关系可以用直线方程表征。蛤仔内脏MTs对Cu2+暴露更为敏感,而鳃MTs则更适合指示海水Zn2+、Cd2+或Hg2+等重金属污染水平。
     在研究重金属单一暴露的基础上,分别将上述重金属离子2种或4种混合,研究复合污染下蛤仔MTs的响应规律,并与单一金属暴露相比较,探讨2种或4种重金属对蛤仔MTs的联合诱导效应机制。结果表明:双重金属和四重金属联合与对照组相比均能显著诱导蛤仔鳃和内脏MTs的合成。(Cu2+-Zn2+)联合暴露5d,蛤仔鳃和内脏MTs含量随混合金属浓度升高表现出先升高后降低的趋势,随着(Cu2+-zn2+)混合浓度的增大,其对鳃MTs的联合诱导表现为协同—相加—拮抗效应,对内脏MTs则表现为协同—拮抗效应。较低浓度(Cd2+-Hg2+)联合暴露响对MTs的诱导能力远远大于高浓度组,随着(Cd2+-Hg2+)混合浓度的增大,其对鳃MTs的联合诱导表现为协同—相加—拮抗效应,对内脏MTs则表现为协同—拮抗效应。在4种重金属离子联合暴露下,重金属浓度较低时,对鳃MTs联合诱导效应表现为相加作用,随着浓度增大则转变为拮抗作用,而对内脏MTs的联合诱导均表现为拮抗作用。
     研究非生物因子对蛤仔MTs的干扰程度,对复合污染下蛤仔MTs的响应值随海水温度、盐度、pH值的变化趋势进行了初步探索,辨析这些因子的干扰作用并采取适宜方法对测定结果加以校正,以便于在消除非生物因子影响的前提下进行重金属综合污染水平评价。结果表明:上述非生物因子中温度、盐度变化对MTs的响应值影响较大,pH值的影响相对较小。①在蛤仔适宜生长的海水温度范围(5~20℃)内,无论是低浓度还是高浓度重金属污染区,鳃、内脏的MTs含量均随温度升高而增加,同等污染水平在20℃时对MTs的诱导量最高。高、低浓度污染区的鳃MTs含量以及高浓度污染区的内脏MTs含量,与温度之间呈现显著正相关性,可直接采用内插法,将MTs含量实测值转换为15℃时的校正值。②蛤仔MTs对重金属暴露的响应值受盐度影响呈“阶梯”状变化。如果以盐度30时的测定值作为基准值,以下情况无需进行校正:重污染区、盐度为20-35时,鳃MTs含量;盐度在20~35范围内时,低污染、重污染区内脏MTs含量。其他盐度范围下,所测定的鳃或内脏MTs均需采用内插法进行校正。③蛤仔MTs对重金属的响应受海水pH值的影响较小。以pH8.0的测定值作为基准,如果采用鳃MTs含量指示重金属综合污染水平,在海水pH为7.5~9.0(低污染区)和pH7.5-8.0(重污染区)的测定值无需校正;如果采用内脏MTs含量指示重金属综合污染水平,在海水pH为8.0~8.5(低污染区、重污染区)时的测定值无需校正。其他pH范围下所测定的鳃或内脏MTs均以pH8.0为准,需采用内插法进行校正。
Heavy metals are highly lipophilic, hard to degrade, bioaccumulative. Amplifying through the food chain, trace metals can cause oxidative stress and oxidative damage in organisms, even result in death. Therefore, it is necessary to research suitable methods for monitoring heavy metal pollution in seawater and ecological risk assessment. Biomarkers have high sensitivity and specificity, they can monitor mixed effect of heavy metals in the seawater. Metallothioneins (MTs) of marine bivalves are common biomarkers which are used in monitoring heavy metal toxicity. However, MTs in different species, even in different tissues of the same species, respond differently to the same pollution. To quantify heavy metal pollution, the dose-or time-effect relationships between heavy metal concentrations and MTs contents need to be obtained. Furthermore, the MTs inductions by metals can be influenced by variations of the temperature, salinity, pH value and so on, which can cause inaccuracy of field monitoring.
     Ruditapes philippinarum are exposed in artificial seawater containing single heavy metal ion Cu2+, Zn2+, Cd2+or Hg2+. The aims of this part is to study the rules of metal enrichment, through determining the total/soluble component of heavy metal in gills and visceral mass; finding the suitable tissue for monitoring single-metal pollution and confirming the concentration range of each metal and exposure time. The experiments indicate that visceral mass can easier accumulate metals than gills. BCF5of gills are53.6,280.8.20.6,282.8after exposed in50μg/L Cu2+,100μg/L Zn2+,50μg/L Cd2+and5μg/L Hg2+, respectively, while BCF5of gills are676.8,268.1,47.4,565.6.Cu2+and Cd2+in gills and visceral mass are mainly in free form, in clams exposed to Zn2+or Hg2+, subcellular fraction C1contained higher Zn or Hg percentage. It is confirmed by the power function or negative exponential relationship between the levels of MTs and the contents of Cu, Cd or Hg in all tissues (gills and visceral mass), while Zn and MTs is in the positive and significant relationship. The MTs of visceral mass are more sensitive to Cu2+exposure, while for monitoring metal ions Zn2+, Cd2+or Hg2+, MTs of gills are more suitable.
     To better understand the effects of metals in MTs response in Ruditapes philippinarum, these clams are exposed to polymetallic mixtures (Cu2+-Zn2+, Cd2+-Hg2+or Cu2+-Zn2+-Cd2+-Hg2+). The interactions between these metals and induction mechanism of MTs by polymetallic mixtures are discussed. The results show that the MTs in all clams exposed to a mixture of2or4metals are found significantly increase, which compared to control group (p<0.01or p<0.05). During exposed to Cu2+-Zn2+for5days, MTs levels in gills and visceral mass show increase at first, then decreased. The inductive effect of Cu2+-Zn2+compound is showed synergism-addition-antagonism on MTs in gills and synergism-antagonism in visceral mass with the increase concentrations of Cu2+and Zn2+. The inducibility of MTs by Cd2+-Hg2+in lower concentrations is larger than other groups. The inductive effect of Cd2+-Hg2+compound is showed synergism-addition-antagonism on MTs in gills and synergism-antagonism in visceral mass with the increase concentrations of Cd2+and Hg2+. When exposed to polymetallic mixtures(Cu2+-Zn2+-Cd2+-Hg2+), the inductive effect of Cu2+-Zn2+-Cd2+-Hg2+compound is showed addition-antagonism on MTs in gills and antagonism in visceral mass with the increase concentrations of these four metals.
     The abiotic factors have certain influences on MTs induction by heavy metals in clams. The temperature, salinity and pH value of seawater are common abiotic factors. The present study is designed to examine the interference degree of these factors on MTs induction by polymetallic mixtures and put forward the effective methods to eliminate the unfavorable effects when applying MTs to monitoring heavy metals pollution in seawater. The results indicate that temperature and salinity affect MTs contents in gills and visceral mass notably, while the influences of pH value are relatively minor.①Under the optimal growth temperature5~20℃, there are linear relationship between MTs contents in gills and visceral mass and exposure temperatures (except MTs in visceral mass of clams exposed in lower concentrations of metals). The interpolation method is used to convert actual values of MTs to standard values based on the MTs contents determined at15℃.②Stepped changes are found for MTs with salinity fluctuation. Based on the standard value determined at30ppt salinity, the values of MTs in gills at HPA with salinity range20-35ppt and MTs in visceral mass at LPA or HPA with salinity range20-35ppt don't need to be adjusted. The MTs contents determined at other salinity ranges need correction by interpolation method.③The impacts on MTs by pH value are relatively minor. Based on the standard value measured at pH8.0, the MTs contents in gills of the clams living at pH7.5-9.0(LPA) or pH7.5-8.0(HPA) don't need correction, and also for MTs contents in visceral mass at8.0-8.5(LPA, HPA).
引文
[1]Pohl C, Croot P L, Hennings U, et al. Synoptic transects on the distribution of trace elements (Hg, Pb, Cd, Cu, Ni, Zn, Co, Mn, Fe, and Al) in surface waters of the Northern-and Southern East Atlantic[J]. Journal of Marine Systems,2011,84(1-2):28-41.
    [2]孟紫强.生态毒理学原理与方法[M].北京:科学出版社,2006,130-131.
    [3]贺亮,范必威.海洋环境中的重金属及其对海洋生物的影响[J].广州化学,2006,31(3):63-69.
    [4]赵素达.海洋重金属污染及其对海藻的毒害作用[J].青岛教育学院学报,1999,(1):40-42.
    [5]Wang W X, Ke C. Dominance of dietary intake of cadmium and zinc by two marine predatory gastropods [J]. Aquatic Toxicology,2002,56(3):153-165.
    [6]毕春娟,陈振楼,许世远,等.长江口潮滩大型底栖动物对重金属的累积特征[J].应用生态学报,2006,17(2):309-314.
    [7]刘莉.海水中重金属污染物的氧化还原转化[J].大连海运学院学报,1993,19(1):100-102.
    [8]惠秀娟.环境毒理学[M].北京:化学工业出版社,2003:13-14.
    [9]柳敏海,陈波,罗海忠,等.五种重金属对早繁鮸鱼胚胎和仔鱼的毒性效应[J].海洋渔业,2007,29(1):57-62.
    [10]柳学周,徐永江,兰功刚.几种重金属离子对半滑舌鳎胚胎发育和仔稚鱼的毒性效应[J].海洋水产研究,2006,27(2):33-42.
    [11]Jiang X D, Wang G Z, Li S J, et al. Heavy metal exposure reduces hatching success of Acartia pacifica resting eggs in the sediment[J]. Journal of Environmental Sciences,2007, 19(6):733-737.
    [12]Jing G, Li Y, Xie L P, et al. Metal accumulation and enzyme activities in gills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2006,144(2):184-190.
    [13]Panfoli 1, Burlando B, Viarengo A. Effects of heavy metals on phospholipase C in gill and digestive gland of the marine mussel Mytilus galloprovincialis Lam[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2000,127(3): 391-397.
    [14]Chang M, Wang W N, Wang A L, et al. Effects of cadmium on respiratory burst, intracellular Ca2+ and DNA damage in the white shrimp Litopenaeus vannamei[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2009,149(4):581-586.
    [15]Sokolova I M, Ringwood A H, Habinck E. Subcellular distribution of cadmium and its effect on mitochondrial function and enzyme activity in oysters Crassostrea virginica[C]. Marine Environmental Research,2006,62(supplement 1):S97.
    [16]陈荣,柴敏娟.Hg2+、Cd2+对鱼类嗅觉的毒性及Ca2+的解毒作用[J].厦门大学学报(自然科学版),2001,40(3):726-734.
    [17]柴敏娟,鲁波.重金属混合液对罗非鱼嗅觉的毒性[J].福建水产,1996,(3):1-5.
    [18]Martins J, Soares M L, Saker M L, et al. Phototactic behavior in Daphnia magna Straus as an indicator of toxicants in the aquatic environment[J]. Ecotoxicology and Environmental Safety, 2007,67(3):417-422.
    [19]孙建华.水体富营养化及外界条件对隆线溞趋光性的影响[D].重庆:西南大学,2008.
    [20]刘洪伟,印明昊,张峰.重金属污染对水生动物免疫毒性的研究进展[J].中国水产,2005,(1):76-79.
    [21]况琪军,夏宜王(?),惠阳.重金属对藻类的致毒效应[J].1996,20(3):277-283.
    [22]Nayar S, Goh B P L, Chou L M. Environmental impact of heavy metals from dredged and resuspended sediments on phytoplankton and bacteria assessed in in situ mesocosms[J]. Ecotoxicology and Environmental Safety.2004,59(3):349-369.
    [23]Miao A J, Wang W X. Cadmium toxicity to two marine phytoplankton under different nutrient conditions[J]. Aquatic Toxicology,2006,78(2):114-126.
    [24]李信书,唐学玺.亚心形扁藻超氧化物歧化酶活性对镉和铜的应答[J].海洋湖沼通报,2007,(3):75-80.
    [25]Macinnis-Ng C M O, Ralph P J. Towards a more ecologically relevant assessment of the impact of heavy metals on the photosynthesis of the seagrass, Zostera capricorni[J]. Marine Pollution Bulletin,2002,45(1-12):100-106.
    [26]吴瑜瑞,郑志宏.海洋重金属生物地球化学与海洋环境保护[J].海洋环境科学,1987,6(3):39-48.
    [27]Preston A, Jeffries D F, Dutton J W R, et al. British Isles coastal waters:The concentrations of selected heavy metals in sea water, suspended matter and biological indicators:A pilot survey [J]. Environmental Pollution (1970),1972,3(1):69-82.
    [28]Fowler S W. Critical review of selected heavy metal and chlorinated hydrocarbon concentrations in the marine environment [J]. Marine Environmental Research,1990, 29(1):1-64.
    [29]Tariq J, Jaffar M, Ashraf M, et al. Heavy metal concentrations in fish, shrimp, seaweed, sediment, and water from the Arabian Sea, Pakistan [J]. Marine Pollution Bulletin,1993, 26(11):644-647.
    [30]Lawson N M, Mason R P, Laporte J M. The fate and transport of mercury, methylmercury, and other trace metals in Chesapeake Bay tributaries [J]. Water Research,2001, 35(2):501-515.
    [31]Seng C E, Lim P E, Ang T T. Heavy metal concentrations in coastal seawater and sediments off Prai Industrial Estate, Penang, Malaysia [J]. Marine Pollution Bulletin,1987, 18(11):611-612.
    [32]Beiras R, Bellas J, Fernandez N, et al. Assessment of coastal marine pollution in Galicia (NW Iberian Peninsula); metal concentrations in seawater, sediments and mussels(Mytilus galloprovincialis) versus embryo-larval bioassays using Paracentrotus lividus and Ciona intestinalis[J]. Marine Environmental Research,2003,56(4):531-553.
    [33]Bu-Olayan A H, Al-Hassan R, Thomas B V, et al. Impact of trace metals and nutrients levels on phytoplankton from the Kuwait Coast[J]. Environment lnternational,2001,26(4): 199-203.
    [34]Rumolo P, Manta D S, Sprovieri M, et al. Heavy metals in benthic foraminifera from the highly polluted sediments of the Naples harbour (Southern Tyrrhenian Sea, Italy)[J]. Science of the Total Environment,2009,407(21):5795-5802.
    [35]Saad M A H and Hassan E M. Heavy metals in the Rosetta estuary of the Nile and the adjoiningMediterranean waters:evidence of removal of dissolved heavy metalsfrom waters as a result of possible binding to suspended matter [J]. Hydrobiologia,2002, 469(1-3):131-147.
    [36]Hamed M A, Emara A M. Marine molluscs as biomonitors for heavy metal levels in the Gulf of Suez, Red Sea [J]. Journal of Marine Systems,2006,60(3-4):220-234.
    [37]崔毅,陈碧鹃,宋云利,等.胶州湾海水、海洋生物体中重金属含量的研究[J].应用生态学报,1997,8(6):650-654.
    [38]刘晶.大连市近岸渤海海域水质现状与趋势评价[J].环境科学研究,2001,14(6):24-26.
    [39]于淑芳,申小冉,吕家珑.渤海天津近海海域重金属年际变化分析[J].西北农业学报,2009,18(6):352-355.
    [40]周静,杨东,彭子成,等.西沙海域海水中溶解态重金属的含量及其影响因子[J].中国科学技术大学学报,2007,37(8):1036-1042.
    [41]Zhang W, Yu L, Hutchinson S M, et al. China's Yangtze Estuary:I. Geomorphic influence on heavy metal accumulation in intertidal sediments[J]. Geomorphology,2001,41 (2,3):195-205.
    [42]Wang L, Wang N B, Li Q B, et al. Distribution of dissolved metals in seawater of Jinzhou Bay, China[J]. Environmental Toxicology and Chemistry,2008,27(1):43-48.
    [43]张玉凤,王立军,霍传林,等.锦州湾表层沉积物重金属污染状况评价[J].海洋环境科学,2008,27(2):178-181.
    [44]GB 3097-1997,中华人民共和国海水水质标准[S].
    [45]阮金山,罗冬莲,杨妙峰.东山湾巴非蛤养殖区海水、沉积物重金属的含量分布与潜在生态危害评价[J].福建水产,2006,(4):16-21.
    [46]陈秀开,田慧娟,刘吉堂,等.海州湾近海海水、沉积物及贝类体内重金属的含量和分布特征[J].检验检疫科学,2009,19(5):6-11.
    [47]阮金山.厦门贝类养殖区海水、沉积物和养殖贝类体内重金属含量的初步研究[J].热带海洋学报,2008,27(5):47-54.
    [48]Wang J Y, Liu R H, Ling M, et al. Heavy metals contamination and its sources in the Luoyuan Bay[J]. Procedia Environmental Sciences,2010,2:1188-1192.
    [49]GB 17378.4-1998,海洋监测规范第4部分:海水分析[S].
    [50]田琳,陈洪涛,杜俊涛,等.北黄海表层海水溶解态重金属的分布特征及其影响因素[J].中国海洋大学学报(自然科学版),2009,39(4):617-621.
    [51]高杨;刘孟德;刘岩,等.新型便携式海水重金属元素现场测量仪研究[J].海洋技术,2008,27(3):11-14.
    [52]高杨,刘孟德,程广欣,等.海水痕量重金属污染元素监测方法的研究[J].山东科学,2005,18(5):27-29.
    [53]邹绍芳,门洪,李毅,等.海水重金属自动检测系统研究[J].浙江大学学报(工学版),2005,39(11):1708-1712,1718.
    [54]Capitan-Vallvey L F, Cano-Raya C, del ValleC E, et al. A multilayer optical test strip for copper determination in human plasma [J]. Analytical Letter,2002,35(4):615-633.
    [55]周焕英,高志贤,房彦军,等.试纸-光电检测快速定量测定铅[J].分析化学,2005,33(1):141.
    [56]范志杰.对我国近岸海水中痕量重金属污染趋势监测意义的质疑[J].中国环境监测,1991,7(2):47-50.
    [57]Waldichuk M. Biological availability of metals to marine organisms [J]. Marine Pollution Bulletin,1985,16(1):7-11.
    [58]齐文启,陈光,孙宗光.水质环境监测技术和仪器的发展[J].现代科学仪器,2003,(6):8-12.
    [59]李嗣新,汪红军,周连凤,等.水环境监测的生物早期预警系统研究与应用技术初探[J].环境污染与防治,2008,30(11):96-98.
    [60]崔木子,施心路,刘桂杰,等.原生动物的水质监测及净化作用研究综述[J].吉首大学 学报:自然科学版,2008,29(1):90-94.
    [61]Ngayila N, Basly J P, Lejeune A H, et al. Myriophyllum alterniflorum DC, biomonitor of metal pollution and water quality. Sorption/accumulation capacities and photosynthetic pigments composition changes after copper and cadmium exposure[J]. Science of the Total Environment,2007,373(2-3):564-571.
    [62]Mahmoudi E, Essid N, Beyrem H, et al. Individual and combined effects of lead and zinc on a free-living marine nematode community:Results from microcosm experiments[J]. Journal of Experimental Marine Biology and Ecology,2007,343(2):217-226.
    [63]Shin P K S, Lam N W Y, Wu R S S, et al. Spatio-temporal changes of marine macrobenthic community in sub-tropical waters upon recovery from eutrophication. I. Sediment quality and community structure[J]. Marine Pollution Bulletin,2008,56(2):282-296.
    [64]Topcuoglu S, Guven K C, Balkis N, et al. Heavy metal monitoring of marine algae from the Turkish Coast of the Black Sea,1998-2000[J]. Chemosphere,2003,52(10):1683-1688.
    [65]Fratini S, Zane L, Ragionieri L, et al. Relationship between heavy metal accumulation and genetic variability decrease in the intertidal crab Pachygrapsus marmoratus (Decapoda; Grapsidae)[J]. Estuarine, Coastal and Shelf Science,2008,79(4):679-686.
    [66]Pereira P, de Pablo H, Rosa-Santos F, et al. Metal accumulation and oxidative stress in Ulva sp. substantiated by response integration into a general stress index[J]. Aquatic Toxicology, 2009,91(4):336-345.
    [67]Vidal-Linan L, Bellas J, Campillo J A, et al. Integrated use of antioxidant enzymes in mussels, Mytilus galloprovincialis, for monitoring pollution in highly productive coastal areas of Gaticia (NW Spain)[J]. Chemosphere,2010,78(3):265-272.
    [68]Saby E, Justesen J, Kelve M, et al. In vitro effects of metal pollution on Mediterranean sponges:Species-specific inhibition of 2',5'-oligoadenylate synthetase[J]. Aquatic Toxicology,2009,94(3):204-210.
    [69]沈惠麒,顾祖维,吴宜群.生物监测理论基础及应用[M].北京:北京医科大学、中国协和医科大学联合出版社,1996.
    [70]Zejli H, de Cisneros J L H H, Naranjo-Rodriguez I, et al. Alumina sol-gel/sonogel-carbon electrode based on acetylcholinesterase for detection of organophosphorus pesticides[J]. Talanta,2008,77(1):217-221.
    [71]Colombo A, Orsi F, Bonfanti P. Exposure to the organophosphorus pesticide chlorpyrifos inhibits acetylcholinesterase activity and affects muscular integrity in Xenopus laevis larvae[J]. Chemosphere,2005,61 (11):1665-1671.
    [72]穆大刚,孟范平,朱小山,等.海鱼AChE监测海水有机磷农药的可行性研究[J].海洋湖沼通报,2004,(1):68-73.
    [73]何东海,孟范平,朱小山.有机磷农药对海洋动物乙酰胆碱酯酶(AChE)的毒性效应研究进展[J].海洋通报,2003,22(6):71-78.
    [74]Szabo A, Nemcsok J, Asztalos B, et al. The effect of pesticides on carp (Cyprinus carpio L). Acetylcholinesterase and its biochemical characterization[J].Ecotoxicology and Environmental Safety,1992,23(1):39-45.
    [75]Lionetto M G, Caricato R, Giordano M E, et al. Integrated use of biomarkers (acetylcholinesterase and antioxidant enzymes activities) in Mytilus galloprovincialis and Mullus barbatus in an Italian coastal marine area[J]. Marine Pollution Bulletin,2003,46(3): 324-330.
    [76]Magni P, De Falco G, Falugi C, et al. Genotoxicity biomarkers and acetylcholinesterase activity in natural populations of Mytilus galloprovincialis along a pollution gradient in the Gulf of Oristano (Sardinia, western Mediterranean)[J]. Environmental Pollution,2006. 142(1):65-72.
    [77]王晶,周启星,张倩茹,等.沙蚕暴露于石油烃、Cu2+和Cd2+毒性效应及乙酰胆碱酯酶活性的响应[J].环境科学,2007,28(8):1796-1801.
    [78]van der Oost R, Beyer J, Vermeulen N P E. Fish bioaccumulation and biomarkers in environmental risk assessment:a review [J]. Environmental Toxicology and Pharmacology, 2003,13(2):57-149.
    [79]Drevet J R. The antioxidant glutathione peroxidase family and spermatozoa:A complex story[J]. Molecular and Cellular Endocrinology,2006,250(1-2):70-79.
    [80]Chandran R, Sivakumar A A, Mohandass S, et al. Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2005,140(3-4):422-426.
    [81]Manduzio H, Monsinjon T, Rocher B,et al. Characterization of an inducible isoform of the Cu/Zn superoxide dismutase in the mussel Mytilus edulis[J]. Aquatic Toxicology,2003,6(64): 73-83.
    [82]Ringwood A H, Conners D E. The effects of glutathione depletion on reproductive success in oysters, Crassostrea virginica[J]. Marine Environmental Research,2000,50(1-5):207-211.
    [83]Soares S S, Martins H, Gutierrez-Merino C, et al. Vanadium and cadmium in vivo effects in teleost cardiac muscle:Metal accumulation and oxidative stress markers[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2008,147(2):168-178.
    [84]de Almeida E A, Miyamoto S, Bainy A C D, et al. Protective effect of phospholipid hydroperoxide glutathione peroxidase (PHGPx) against lipid peroxidation in mussels Perna perna exposed to different metals[J]. Marine Pollution Bulletin,2004,49(5-6):386-392.
    [85]Franco J L, Trivella D B B, Trevisan R, et al. Antioxidant status and stress proteins in the status and stress proteins in the gills of the brown mussel Perna perna exposed to zinc[J]. Chemico-Biological Interactions,2006,160(3):232-240.
    [86]程华胜.重金属在近江牡蛎体内的动力学及其生理效应研究[D].暨南大学,2004.
    [87]Thomais V, Manos D. Michael J S, et al. Integrated use of biomarkers (superoxide dismutase, catalase and lipid per-oxidation) in mussels Mytilus galloprovincialis for assessing heavy metals'pollution in coastal areas from the Saronikos Gulf of Greece[J]. Marine Pollution Bulletin,2007,54(9):1361-1371.
    [88]李海英,赵娟,李海生.Na+,K+-ATP酶和Ca2+,Mg2+-ATP酶活性影响因素的研究进展[J].现代中西医结合杂志,2008,17(9):1449-1450.
    [89]Vijayavel K, Gopalakrishnan S, Balasubramanian M P. Sublethal effect of silver and chromium in the green mussel Perna viridis with reference to alterations in oxygen uptake, filtration rate and membrane bound ATPase system as biomarkers[J]. Chemosphere,2007, 69(6):979-986.
    [90]Thaker J, Chhaya J, Nuzhat S, et al. Effects of chromium(Ⅵ) on some ion-dependent ATPases in gills, kidney and intestine of a coastal teleost Periophthalmus dipes [J]. Toxicology,1996,112(3):237-244.
    [91]Pattnaik S, Chainy G B N, Jena J K. Characterization of Ca2+-ATPase activity in gill microsomes of freshwater mussel, Lamellidens marginalis (Lamarck) and heavy metal modulations[J]. Aquaculture,2007,270(1-4):443-450.
    [92]Viarengo A, Mancinelli G, Pertica M, et al. Effects of heavy metals on the Ca2+-ATPase activity present in gill cell plasma-membrane of mussels (Mytilus galloprovincialis Lam.) [J]. Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology,1993,106(3):655-660.
    [93]Agrahari S, Gopal K. Inhibition of Na+-K+-ATPase in different tissues of freshwater fish Channa punctatus (Bloch) exposed to monocrotophos[J]. Pesticide Biochemistry and Physiology,2008,92(2):57-60.
    [94]辛福言,崔毅,陈碧鹃.胜利原油对褐牙鲆(Paralichthysolivaceus)幼鱼鳃的Na+-K+-ATPase活性的影响[J].海洋环境科学,2009,28(6):660-663.
    [95]Li Z H, Zlabek V, Grabic R, et al. Effects of exposure to sublethal propiconazole on the antioxidant defense system and Na+-K+-ATPase activity in brain of rainbow trout, Oncorhynchus mykiss[J]. Aquatic Toxicology,2010,98(3):297-303.
    [96]Huong D T T, Jasmani S, Jayasankar V, et al. Na/K-ATPase activity and osmo-ionic regulation in adult whiteleg shrimp Litopenaeus vannamei exposed to low salinities[J]. Aquaculture,2010,304(1-4):88-94.
    [97]Shugart L R. DNA damage as a biomarker of exposure[J]. Ecotoxicology,2000,9(5): 329-340.
    [98]Wong P K. Mutagenicity of heavy metals[J]. Bulletin of Environmental Contamination and Toxicology,1988,40(4):597-603.
    [99]Emmanouil C, Sheehan T M T, Chipman J K. Macromolecule oxidation and DNA repair in mussel (Mytilus edulis L.) gill following exposure to Cd and Cr(VI)[J]. Aquatic Toxicology, 2007,82(1):27-35.
    [100]宛立.锦州湾重金属污染状况及其对非律宾蛤仔的遗传损伤[D].大连海事大学,2007,85-94.
    [101]Garman G D, Anderson S L, Cherr G N. Developmental abnormalities and DNA-protein crosslinks in sea urchin embryos exposed to three metals [J]. Aquatic Toxicology,1997, 39(3-4):247-265.
    [102]Labieniec M, Milowska K, Balcerczyk A, et al. Interactions of free copper (Ⅱ) ions alone or in complex with iron (Ⅲ) ions with erythrocytes of marine fish Dicentrarchus labrax[J]. Cell Biology International,2009,33(9):941-948.
    [103]卜元卿,骆永明,滕应,等.铜暴露下赤子爱胜蚓[Eisenia foetida)舌体基因的损伤研究[J].生态毒理学报,2006,1(3):228-235.
    [104]Large A T, Shaw J P, Peters L D, et al. Different levels of mussel(Mytilus edulis) DNA strand breaks following chronic field and acute laboratory exposure to polycyclic aromatic hydrocarbons[J]. Marine Environmental Research,2002,54(3-5):493-497.
    [105]Andersson M A, Hellman B E. Evaluation of catechol-induced DNA damage in human lymphocytes:A comparison between freshly isolated lymphocytes and T-lymphocytes from extended-term cultures[J]. Toxicology in Vitro,2007,21(4):716-722.
    [106]Rank J, Jensen K, Jespersen P H. Monitoring DNA damage in indigenous blue mussels (Mytilus edulis) sampled from coastal sites in Denmark[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2005,585(1-2):33-42.
    [107]Akcha F, Tanguy A, Leday G, et al. Measurement of DNA single-strand breaks in gill and hemolymph cells of mussels, Mytilus sp., collected on the French Atlantic Coast[J]. Marine Environmental Research.2004,58(2-5):753-756.
    [108]Robbins A H, McRee D E. Williamson M. et al. Refined crystal structure of Cd, Zn metallothionein at 2.0 A resolution [J]. Journal of Molecular Biology,1991,221(4): 1269-1293.
    [109]徐立红,张甬元,陈宜瑜.分子生态毒理学研究进展及其在水环境保护中的意义[J].水生生物学报,1995,19(2):171-185.
    [110]Coyle P, Philcox J C, Carey L C, et al. Metallothionein:the multipurpose protein[J]. Cellular and molecular life sciences,2002,59(4):627-647.
    [111]Li Y, Kimura T,Laity J H, et al. The zinc-sensing mechanism of mouse MTF-1 involves linker peptides between the zinc fingers[J]. Molecular And Cellular Biology,2006,26(15): 5580-5587.
    [112]Roesijadi G. Metallothionein and its role in toxic metal regulation[J]. Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology,1996, 113(2):117-123.
    [113]Banni M, Dondero F, Jebali J, et al. Assessment of heavy metal contamination using real time PCR analysis of mussel metallothionein mt10 and mt20 expression:a validation along the Tunisian coasts[J]. Biomarkers,2007,12(4):369-383.
    [114]Hayes R A, Regondi S, Winter M J, et al. Cloning of a chub metallothionein cDNA and development of competitive RT-PCR ofchub metallothionein mRNA as a potentialbiomarker of heavy metal exposure[J]. Marine Environmental Research,2004,58(2-5):665-669.
    [115]Wang L L, Song L S, Ni D J, et al. Alteration of metallothionein mRNA in bay scallop Argopecten irradians undercadmium exposure and bacteria challenge[J]. Comparative Biochemistry and Physiology, Part C:Toxicology & Pharmacology,2009,149(1):50-57.
    [116]Soazig L, Marc L. Potential use of the levels of the mRNA of a specific metallothionein isoform (MT-20) in mussel(Mytilus edulis) as a biomarkerof cadmium contamination[J]. Marine Pollution Bulletin,2003,46(11):1450-1455.
    [117]Mahmood K. Study of biomarker response of metallothionein and heat shock proteins in Macrobrachium rosenbergii in exposure to heavy metals and thermal stress[D].2008.
    [118]Jillette N, Cammack L, Lowenstein M, et al. Down-regulation of activity and expression of three transport-related proteins in the gills of the euryhaline green crab, Carcinus maenas, in response to high salinity acclimation[J]. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology,2011,158(2):189-193.
    [119]Wallace W G, Lopez G R, Levinton J S. Cadmium resistancein an oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp[J]. Marine Ecology Progress,1998. 172:225-237.
    [120]Berthet B, Mouneyrac C, Amiard J C, et al. Accumulation and soluble binding of cadmium, copper, and zinc in the polychaete Hediste diversicolor from coastal sites with different trace metal bioavailabilities[J]. Archives of Environmental Contamination and Toxicology,2003, 45(4):468-478.
    [121]Mouneyrac C, Mastain O, Amiard J C, et al. Trace-metal detoxification and tolerance of the estuarine worm Hediste diversicolor chronically exposed in their environment[J]. Marine Biology,2003,143(4):731-744.
    [122]Cosson R P. Bivalve metallothionein as a biomarker of aquatic ecosystem pollution by trace metals:limits and perspectives [J]. Cell and Molecular Biology,2000,46(2):295-309.
    [123]Erk M, Ivankovic D, Raspor B, et al. Evaluation of different purification procedures for the electrochemical quantification of mussel metallothioneins[J]. Talanta,2002,57(6): 1211-1218.
    [124]Choi Y K, Jo P G, Choi C Y. Cadmium affects the expression of heat shock protein 90 and metallothionein mRNA in the Pacific oyster, Crassostrea gigas[S]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2008,147(3):286-292.
    [125]Fang Y, Yang H S, Wang T M, et al. Metallothionein and superoxide dismutase responses to sublethal cadmium exposure in the clam Mactra veneriformis[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2010,151(3):325-333.
    [126]Bebianno M J, Serafim M A. Comparison of metallothionein induction in response to cadmium in the gills of the bivalve molluscs Mytilus galloprovincialis and Ruditapes decussates[J]. The Science of the Total Environment,1998,214(1-3):123-131.
    [127]陈欢林.环境生物技术与工程[M].北京:化学化工出版社,2003:72.
    [128]Ramirez D C, Mejiba S G, Mason R P. Mechanism of hydrogen peroxide-induced Cu,Zn-superoxide dismutase-centered radical formation as explored by immuno-spin trapping:the role of copper-and carbonate radical anion-mediated oxidations[J]. Free Radical Biology and Medicine,2005,38(2):201-214.
    [129]Nadella S R, Fitzpatrick J L, Franklin N, et al. Toxicity of dissolved Cu, Zn, Ni and Cd to developing embryos of the blue mussel(Mytilus trossolus) and the protective effect of dissolved organic carbon[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2009,149(3):340-348.
    [130]Torres P, Tort L, Flos R. Acute toxicity of copper to mediterranean dogfish[J]. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology,1987,86(1):169-171.
    [131]李春娣,颜文,龙爱民,等.Cu暴露条件下翡翠贻贝(Perna viridis)消化腺内金属和类金属硫蛋白的变化[J].环境科学,2007,28(8):1788-1795.
    [132]Serafim A, Bebianno M J. Metallothionein role in the kinetic model of copper accumulation and elimination in the clam Ruditapes decussates[J].Environmental Research,2009,109(4): 390-399.
    [133]Company R, Serafim A, Cosson R P, et al. Antioxidant biochemical responses to long-term copper exposure in Bathymodiolus azoricus from Menez-Gwen hydrothermal vent[J]. Science of the Total Environment,2008,389(2-3):407-417.
    [134]Fang Y Z, Yang S, Wu G. Free radicals, antioxidants, and nutrition[J]. Nutrition,2002, 18(10):872-879.
    [135]Cherian M G, Jayasurya A, Bay B H. Metallothioneins in human tumors and potential roles in carcinogenesis[J]. Mutation Research,2003,533(1-2):201-209.
    [136]Peixoto N C, Roza T, Flores E M M, et al. Effects of zinc and cadmium on HgCl2-5-ALA-D inhibition and Hg levels in tissues of suckling rats[J]. Toxicology Letters, 2003,146(1):17-25.
    [137]Peixoto N C, Roza T, Flores E M M, et al. Metallothionein, zinc, and mercury levels in tissues of young rats exposed to zinc and subsequently to mercury[J]. Life Sciences,2007, 81(16):1264-1271.
    [138]Ballatori N. Transport of toxic metals by molecular mimicry[J]. Environmental Health Perspectives,2002,110(supplement 5):686-694.
    [139]Serafim A, Bebianno M J. Involvement of metallothionein in Zn accumulation and elimination strategies in Rutlitapes decussates[J]. Archives of Environmental Contamination and Toxicology.2007,52(2):189-199.
    [140]苏文,吴惠丰,廖春阳,等.锌铝暴露条件下菲律宾蛤仔消化腺和鳃内金属和金属硫蛋自的变化[J].中国科学院研究生院学报,2010,27(4):456-462.
    [141]Bebianno M J, Serafim M A. Variation of metal and metallothionein concentrations in anatural population of Ruditapes decussates[J]. Archives of Environmental Contamination and Toxicology,2003,44(1):53-66.
    [142]Prusky A M, Dixon D R. Effects of cadmium on nuclear integrity and DNA repairefficiency in the gill cells of Mytilus edulis L.[J].Aquatic Toxicology,2002,57(3): 127-137.
    [143]Berlin G, Averbeck D. Cadmium:cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review)[J]. Biochimie,2006, 88(11):1549-1559.
    [144]Ivanina A V, CherkasovA S, Sokolova I M. Effects of cadmium on cellularprotein and glutathione synthesis and expression of stress proteins in easternoysters, Crassostrea virginica Gmelin[J]. The Journal of Experimental Biology,2008,211 (4):577-586.
    [145]Fang Y, Yang H S, Wang T M, et al. Metallothionein and superoxide dismutase responses to sublethal cadmium exposure in the clam Mactru veneriformis[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2010,151(3):325-333.
    [146]Geret F, Serafim A, Barreira L, et al.Effect of cadmium onantioxidant enzyme activities and lipid peroxidation in the gills of the clam Ruditapes decussatus[J]. Biomarkers,2002, 7(3),242-256.
    [147]Zorita 1, Bilbao E, Schad A, et al. Tissue-and cell-specific expression of metallothionein genes in cadmium- and copper-exposed mussels analyzed by in situ hybridization and RT-PCR[J]. Toxicology and Applied Pharmacology,2007,220(2):186-196.
    [148]Choi Y K, Jo P G, Choi C Y. Cadmium affects the expression of heat shock protein 90 and metallothionein in RNA in the Pacific oyster, Crassostrea gigas [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2008,147(3):286-292.
    [149]Geret F, Cosson R P. Induction of specific isoforms of metallothionein in mussel tissues after exposure to cadmium or mercury[J]. Archives of Environmental Contamination and Toxicology,2002,42(1):36-42.
    [150]Amiard J C, Journel R, Bacheley H. Influence of field and experimental exposure of mussels(Mytilus sp.) tonickel and vanadium on metallothionein concentration[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology.2008, 147(3):378-385.
    [151]孟范平,付海防,赵顺顺,等.镧(Ⅲ)离子对菲律宾蛤仔不同组织金属硫蛋白诱导的研究[J].中国稀土学报,2010,28(2):232-237.
    [152]1MW. International Mussel Watch Proiect:initial implementation phase, final report[R]. Silver Spring, MD:US Department of Commerce, National Oceanic and Atmospheric Administration, Office of Ocean Resources Conservation and Assessment, National Ocean Service,1995.
    [153]Kimbrough K L, Lauenstein G G, Christensen J D, et al. An assessment of two decades of contaminant monitoring in the Nation's Coastal Zone[R]. Silver spring, MD:NOAA./ National Centers for Coastal Ocean Science, (NOAA Technical Memorandum NOSNCCOS, 74),2008.
    [154]中华人民共和国国土资源部.2004年中国海洋环境质量公报[EB/OL]. http://www.mlr.gov.cn/zwgk/tjxx/201004/t20100401143693.htm.
    [155]柯翎,骆庭伟,林志超.利用菲律宾花蛤的金属硫蛋白作为镉污染的检测指标[J].漳州师范学院学报(自然科学版),2004,17(1):60-64.
    [156]Fernandez B, Camoillo J A, Martinez-Gomez C, et al. Antioxidant responses in gills of mussel(Mytilus galloprovincialis) as biomarkers of environmental stress along the Spanish Mediterranean coast[J]. Aquatic Toxicology,2010,99:186-197.
    [157]Geffard A, Amiard T C, Amiard J C, et al. Temporal variations of metallothionein and metal concentrations in the digestive glandof oysters Crassostrea gigas from A clean and a metal-rich sites[J]. Biomarkers,2001,6(2):91-107.
    [158]Bebianno M J, Serarim M A, Simes D. Metallothioneins in the clam Ruditapes decussatus: an overview [J]. Analusis,2000,28:386-390.
    [159]任育红,吴江涛,杨加华,等.镉诱导牡蛎金属硫蛋白的初步研究[J].中国海洋药物,2002,(6):29-31.
    [160]Chen C C, Lu C L. An analysis of the combined effects of organic toxicants[J]. Science of the Total Environment,2002,289(1-3):123-132.
    [161]金叶飞,施维林,任岗,等.LAS、Cd2+复合污染对鲫鱼组织Cd蓄积及抗氧化酶活性的影响[J].浙江大学学报(农业与生命科学版),2010,36(2):230-236.
    [162]马陶武,朱程,周科,等.Cd、Pb单一及复合污染沉积物对铜锈环棱螺肝胰脏SOD、MT的影响[J].农业环境科学学报[J],2010,29(1):30-37.
    [163]严竞.三种重金属对扁额原细首纽虫的急性毒性研究[D].中国海洋大学,2008,6.
    [164]Company R, Felicia H, Serafim A, et al. Metal concentrations and metal lothionein-like protein levels in deep-sea fishes captured near hydrothermal vents in the Mid-Atlantic Ridge off Azores[J]. Deep Sea Research Part I:Oceanographic Research Papers,2010,57(7): 893-908.
    [165]Riou V, Duperron S, Halary S, et al. Variation in physiological indicators in Bathymodiolus azoricus (Bivalvia:Mytilidae) at the Menez Gwen Mid-Atlantic Ridge deep-sea hydrothermal vent site within a year[J]. Marine Environmental Research,2010,70(3-4): 264-271.
    [166]Lesser M P, Kruse V A. Seasonal temperature compensation in the horse mussel, Modiolus modiolus:metabolic enzymes, oxidative stress and heat shock proteins[J]. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2004,137(3): 495-504.
    [167]Hermesz E, Abraham M, Nemcsok J. Tissue-specific expression of two metallothionein genes in common carp during cadmium exposure and temperature shock[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2001,128(3):457-465.
    [168]Golli E E, Hassen W, Bouslimi A, et al. Induction of Hsp 70 in Vero cells in response to mycotoxins:Cytoprotection by sub-lethal heat shock and by Vitamin E[J]. Toxicology Letters, 2006,166(2):122-130.
    [169]Serafima M A, Companya R M, Bebiannoa M J, et al. Effect of temperature and size on metallothionein synthesis in the gill of Mytilus galloprovincialis exposed to cadmium[J]. Marine Environmental Research,2002,54(3-5):361-365.
    [170]Baykan U, Atli G, Canli M. The effects of temperature and metal exposures on the profiles of metal loth ionein-like proteins in Oreochromis niloticus[J]. Environmental Toxicology and Pharmacology,2007,23(1):33-38.
    [171]朱兰部,翁学传.胶州湾海水温,盐度的变化特征[J].海洋科学,1991,(2):52-55.
    [172]Roy L A, Davis D A, Saoud I P, et al. Branchial carbonic anhydrase activity and ninhydrin positive substances in the Pacific white shrimp, Litopenaeus vannamei, acclimated to low and high salinities[J]. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology,2007,147(2):404-411.
    [173]潘鲁青,唐贤明,刘泓宇,等.盐度对褐牙鲆(Paralichthys olivaceus)幼鱼血浆渗透压和鳃丝Na+-K+-ATPase活力的影响[J].海洋与湖沼,2006,37(1):1-6.
    [174]Hyndman K A, Evans D H. Effects of environmental salinity on gill endothelin receptor expression in the killifish, Fundulus heteroclitus[J]. Comparative Biochemistry and Physiology-Part A,2009,152(1):58-65.
    [175]Legrasa S, Mouneyraca C, Amiard J C, et al. Changes in metallothionein concentrations in response to variation in natural factors (salinity, sex, weight) and metal contamination in crabs from a metal-rich estuary [J]. Journal of Experimental Marine Biology and Ecology, 2000,246(2):259-279.
    [176]Miron D D S, Moraes B, Becker A G, et al. Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae)[J]. Aquaculture,2008,277(3-4):192-196.
    [177]柳敏海,罗海忠,陈波.盐度、pH对鮸鱼幼鱼鳃丝Na+-K+-ATPase活力的影响[J].海洋湖沼通报,2008,(1):109-113.
    [178]Carvalho C D S, de Araujo H S S, Fernandes M N. Hepatic metallothionein in a teleost (Prochilodus scrofa) exposed to copper at pH4.5 and pH 8.0[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2004,137(2):225-234.
    [179]周驰,李纯厚.生物大分子标记物检测在环境监测中的应用[J].中国水产科学,2007,14(5):864-871.
    [180]Domouhtsidou G P, Dailianis S, Kaloyianni M, et al. Lysosomal membrane stability and metallothionein content in Mytilus galloprovincialis(L.),as biomarkers:combination with trace metal concentrations[J].Marine Pollution Bulletin,2004,48(5-6):572-586.
    [181]Serafim A, Bebianno M J. Effect of a polymetallic mixture on metal accumulation and metallothionein response in the clam Ruditapes decussatus[J]. Aquatic Toxicology,2010, 99(3):370-378.
    [182]Simkiss K, MasonA Z. Metal ions:metabolic and toxic effects[A]. Hochachka P W(Eds). The Mollusca[C]. New York:Academic Press,1983,101-164.
    [183]Baudrimont M, Andres S, Durrieu G, et al. The key role of metallothioneins in the bivalve Corbicula fluminea during the depuration phase, after in situ exposure to Cd and Zn[J]. Aquatic Toxicology,2003,63(2):89-102.
    [184]GB 17378.6-2007,海洋监测规范第6部分:生物体分析[S].
    [185]Choi J Y, Yu J, Yang D B, et al. Acetylthiocholine (ATC)-Cleaving cholinesterase (ChE) activity as a potential biomarker of pesticide exposure in the Manila clam, Ruditapes philippinarum, of Korea[J]. Marine Environmental Research,2011,71(3):162-168.
    [186]Amiard J C, Amiard-Triquet C, Barka S, et al. Metallothioneins in aquatic invertebrates: Their role inmetal detoxification and their use as biomarkers[J]. AquaticToxicology,2006, 76(2):160-202.
    [187]Cheggour M, Chafik A, Fisher N S, et al. Metal concentrations in sediments and clams in four Moroccan estuaries[J]. Marine Environmental Research,2005,59(2):119-137.
    [188]方展强,杨丽华.重金属在鲫幼鱼组织中的积累与分布[J].水利渔业,2004,24(6):23-26.
    [189]Gnassia-Barelli M, Romeo M, Puiseux-dao S. Effects of cadmium and copper contamination on calcium content of the bivalve Ruditapes decusstus[J]. Marine Environmental Research,1995,39(1-4):325-328.
    [190]Hamza-Chaffai A, Romeo M, Gnassia-Barelli M. Effect of copper and lindane on some biomarkers measured in the clam Ruditapes decussates[J].Bulletin of Environmental Contamination and Toxicology,1998,61(3):397-404. [191] Onsanit S, Ke C H, Wang X H, et al. Trace elements in two marine fish cultured in fish cages in Fujian province, China[J]. Environmental Pollution,2010,158(5):1334-1342.
    [192]陈波,胡云平,金泰廙.多环芳烃的肝脏毒性及其遗传易感性[J].环境与职业医学,2005,22(2):154-155.
    [193]许章程,洪丽卿,郑邦定.重金属对儿种海洋双壳类和甲壳类生物的毒性[J].台湾海峡,1994,13(4):381-387.
    [194]Romeo M, Gnassia-Barelli M. Metal distribution in different tissues and in subcellular fractions of the Mediterranean clam Ruditapes decussatus treated with cadmium, copper and zinc[J].Comparative Biochemistry and Physiology Part C:Comparative Pharmacology and Toxicology,1995,111(3):457-463.
    [195]Geffard A, Amiard-Triquet C, Amiard J C. Do seasonal changes affect metallothionein induction by metals in messels, Mytilus edulis?[J]. Ecotoxicology and Environmental Safety, 2005,61(2):209-220.
    [196]Viarengo A, Canesi L, Pertica M, et al. Biochemical characterization of a copper-thionein involved in Cu accumulation in the lysosomes of the digestive gland of mussels exposed to the metal[J]. Marine Environmental Research,1988,24(1-4):163-166.
    [197]Marigomez I, Soto M, Cajaraville M P, et al. Cellular and subcellular distribution of metals in mollusks[J]. Microscopy Research and Technique,2002,56(5):358-392.
    [198]Langston W J, Bebianno M J, Burt GR. Metal handling strategiesin molluscs[A]. Langston W J, Bebianno M J(Eds.), Metal metabolism in aquatic environments[C]. London:Chapman and Hall,1998.
    [199]Campenhout K V, Infante H G, Hoff P T, et al. Cytosolic distribution of Cd, Cu and Zn, and metallothionein levels in relation to physiological changes in gibel carp (Carassius auratus gibelio) from metal-impacted habitats[J]. Ecotoxicology and Environmental Safety,2010, 73(3):296-305.
    [200]叶属峰,陆健健.无脊椎动物金属硫蛋白(MTs)多样性及其生态服务功能[J].生物多样性,2000,8(3):317-324.
    [201]Smaoui-Damak W, Berthet B, Hamza-Chaffai A. In situ potential use of metallothionein as a biomarker of cadmium contamination in Ruditapes decussates[J]. Ecotoxicology and Environmental Safety,2009,72(5):1489-1498.
    [202]Martin-Diaz M L, Blasco J, Sales D, et al. Biomarkers study for sediment quality assessment in Spanish Ports using the crab Carcinus maenas and the clam Ruditapes philippinarum[J]. Archives of Environmental Contamination and Toxicology,2007,53(1): 66-76.
    [203]Barka S, Pavilion J F, Amiard J C. Influence of different essential and non-essential metals on MTLP levels in the Copepod Tigriopus brevicornis[J]. Comparative biochemistry and physiology,2001,128(4):479-493.
    [204]Marijic V F, Raspor B. Metallothionein in intestine of red mullet, Mullus barbatus asa biomarker of copper exposure in the coastal marine areas[J]. Marine Pollution Bulletin,2007, 54(7):935-940.
    [205]Martin-Diaz M L, Blasco J, Sales D, et al. Biomarkers as tools toassess sediment quality: Laboratory and fields surveys[J]. Trends in AnalyticalChemistry,2004,23(10-11):807-818.
    [206]RegoliF. Trace metals and antioxidant enzymes in gills and digestive gland ofthe Mediterranean mussel Mytilus galloprovincialis[J]. Archives of Environmental Contamination and Toxicology,1998,34(1):48-63.
    [207]Burton G A, Greenberg M S, Rowland C D, et al. In situ exposures using caged organisms: a multi-compartment approach to detect aquatic toxicity and bioaccumulation[J]. Environmental Pollution,2005,134(1):133-144.
    [208]丘耀文,颜文,王肇鼎,等.大亚湾海水、沉积物和生物体中重金属分布及其生态危害[J].热带海洋学报,2005,24(5):69-76.
    [209]毛天宇,戴明新,彭士涛,等.近10年渤海湾重金属(Cu, Zn, Pb, Cd, Hg)污染时空变化趋势分析[J].天津大学学报,2009,42(9):817-825.
    [210]Knapen D, Reynders H, Bervoets L, et al. Metallothionein gene and protein expression as a biomarker for metal pollution in natural gudgeon populations[J]. Aquatic Toxicology,2007, 82(3):163-172.
    [211]Paul-Pont I, Gonzalez P, Baudrimont M, et al. Short-term metallothionein inductions in the edible cockle Cerastoderma edule after cadmium or mercury exposure:Discrepancy between mRNA and protein responses[J]. Aquatic Toxicology,2010,97(3):260-267.
    [212]NAS, The international Mussel Watch. US Natl. Acad. Sci. Washington, DC,1986.
    [213]Wang L, Luqing Pan L Q, Liu N, et al. Biomarkers and bioaccumulation of clam Ruditapes philippinarum in response to combined cadmium and benzo[a]pyrene exposure[J]. Food and Chemical Toxicology,2011,49(12):3407-3417.
    [214]Paul-Pont I, de Montaudouin X, Gonzalez P, et al. Interactive effects of metal contamination and pathogenic organisms on the introduced marine bivalve Ruditapes philippinarum in European populations[J]. Environmental Pollution,2010,158(11): 3401-3410.
    [215]Mubiana V K, Blust R. Effects of temperature on scope for growth and accumulation of Cd, Co, Cu and Pb by the marine bivalve Mytilus edulis[J]. Marine Environmental Research, 2007,63(3):219-235.
    [216]Lekhi P, Cassis D, Pearce C M, et al. Role of dissolved and particulate cadmium in the accumulation of cadmium in cultured oysters (Crassostrea gigas)[J]. Science of the Total Environment,2008,393(2-3):309-325.
    [217]Pan K, Wang W X. Mercury accumulation in marine bivalves:Influences of biodynamics and feeding niche[J]. Environmental Pollution,2011,159(10):2500-2506.
    [218]Tang A K, Liu R H, Ling M, et al. Distribution characteristics and controlling factors of soluble heavy metals in the Yellow River Estuary and adjacent sea[J]. Procedia Environmental Sciences,2010,2:1193-1198.
    [219]王琳,潘鲁青,许超群,等.Cd2+-B[a]P复合污染对菲律宾蛤仔急性毒性和解毒代谢酶 活力的影响[J].水生生物学报,2011,35(1):37-44.
    [220]Liu X L, Zhang L B, You L P, et al. Toxicological responses to acute mercury exposure for three species of Manila clam Ruditapes philippinarum by NMR-based metabolomics[J]. Environmental Toxicology and Pharmacology,2011,31(2):323-332.
    [221]Blackmore G, Wang W X. Uptake and efflux of Cd and Zn by the green mussel Perna viridis after metal preexposure[J]. Environmental Science and Technology,2002,36(5): 989-995.
    [222]Wu J P, Chen H C. Metallothionein induction and heavy metal accumulation in white shrimpLitopenaeus vannamei exposed to cadmium and zinc[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2005,140(3-4):383-394.
    [223]Choi H J, Ji J, Chung K H, et al. Cadmium bioaccumulation and detoxification in the gill and digestive gland of the Antarctic bivalve Laternula elliptica[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2007,145(2):227-235.
    [224]Abreu S N, Pereira E, Vale C, et al. Accumulation of mercury in sea bass from a contaminated lagoon (Ria de Aveiro, Portugal)[J]. Marine Pollution Bulletin,2000,40(4): 293-297.
    [225]Cardellicchio N, Decataldo A, Leo A D, et al. Accumulation and tissue distribution of mercury and selenium in striped dolphins (Stenella coeruleoalbd) from the Mediterranean Sea (southern Italy)[J]. Environmental Pollution,2002,116(2):265-271.
    [226]Viarengo A, Canesi L, Mazzu-cotelli A, et al. Cu, Zn, Cd content in different tissues of the antarctic scallop Adamussium colbecki (Smith 1902):Role of metallothionein in the homeostasis and in the detoxication of heavy metals[J].Marine Environmental Research, 1993,35(1-2):216-217.
    [227]Viarengo A, Nott J. Mechanisms of heavy metal cation homeostasis in marine invertebrates[J]. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology,1993,104(3):355-372.
    [228]Bebianno M J, Machado L M. Concentrations of metals and metallothioneins in Mytilus galloprovincialis along the south coast of Portugal [J]. Marine Pollution Bulletin,1997,34(8): 666-671.
    [229]Lecoeur S, Videmann B, Berny P. Evaluation of metallothionein as a biomarker of single and combined Cd/Cu exposure in Dreissena polymorpha[J]. Environmental Research,2004, 94(2):184-191.
    [230]Wang D, Couillard Y, Campbell PGC, et al.Changes insubcellular metal partitioning in the gillsof freshwater bivalves (Pyganodongrandis) living along an environmental cadmium gradient[J]. Canadian Journal of Fisheries and Aquatic Science,1999,56(5):774-784.
    [231]Chen R W, Ganther H E, Hoekstra W G. Studieson the binding of methylmercury by thionein[J]. Biochemical and biophysical research communications,1973,51(2):383-390.
    [232]Storelli M M, Giacominelli-Stuffler R, Marcotrigiano G O. Total and methylmercury residues in cartilaginous fish from Mediterranean Sea[J]. Marine Pollution Bulletin,2002, 44(12):1354-1358.
    [233]王婷,郑玉建,吴顺华,等.锌、硒对砷诱导金属硫蛋白合成影响的研究[J].新疆医科大学学报,2008,31(7):799-800,803.
    [234]Omotayo T I, Rocha J B T, Ibukun E O, et al. Inorganic mercury interacts with thiols at the nucleotide and cationic binding sites of the ouabain-sensitive cerebral electrogenic sodium pump[J]. Neurochemistry International,2011,58(7):776-784.
    [235]Faria M, Carrasco L, Diez S, et al. Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to polychlorobiphenyls and metals[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2009,149(3):281-288.
    [236]Andreani G, Santoro M, Cottignoli S, et al. Metal distribution and metal lothionein in loggerhead(Caretta carettd) and green (Chelonia mydas) sea turtles[J]. Science of the Total Environment,2008,390(1):287-294.
    [237]George S G, Todd K, Wright J. Regulation of metallothionein in teleosts:induction of MT mRNA and protein by cadmium in hepatic and extrahepatic tissues of a marine flatfish, the turbot (Scophthalmus maximus)[J]. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology,1996,113(2):109-115.
    [238]Kucuksezgin F, Kontas A, Altay O, et al. Assessment of marine pollution in Izmir Bay: Nutrient, heavy metal and total hydrocarbon concentrations[J]. Environment International, 2006,32(1):41-51.
    [239]Cabon J Y, Giamarchi P, Floch S L. A study of marine pollution caused by the release of metals into seawater following acid spills[J]. Marine Pollution Bulletin,2010,60(7): 998-1004.
    [240]苏秋克,张海鸥,郭玉芳.泉州湾重金属污染生态地球化学预警[J].环境科学与管理,2010,35(6):41-45.
    [2411 Karageorgis A P, Nikolaidis N P, Karamanos H, et al. Water and sediment quality assessment of the Axios River and its coastal environment[J]. Continental Shelf Research, 2003,23(17-19):1929-1944.
    [242]Li Q S, Wu Z F, Chu B, et al. Heavy metals in coastal wetland sediments of the Pearl River Estuary, China[J]. Environmental Pollution,2007,149(2):158-164.
    [243]Chen K P, Jiao J J. Metal concentrations and mobility in marine sediment and groundwater in coastal reclamation areas:A case study in Shenzhen, China[J]. Environmental Pollution, 2008,151(3):576-584.
    [244]崔振昂,郑志昌,林进清,等.广西北海近岸海域表层沉积物甲重金属分布特征及生态风险评价[J].安全与环境工程,2010,17(1):31-35.
    [245]郑振华,周培疆,吴振斌.复合污染研究的新进展[J].应用生态学报,2001,12(3):469-473.
    [246]苏永红,唐柱云,曾科.重金属联合毒性研究进展[J].现代农业科技,2007,(10):174-175,178.
    [247]Bliss C I. The toxicity of poisons applied jointly[J]. Annals of Applied Biology, 1939,26(3): 585-615.
    [248]纪云晶.实用毒理学手册[M].中国环境科学出版社,1993,37-55.
    [249]Nirmalakhandan N, Arulgnanendran V, Mohsin M, et al. Toxicity of mixtures of organic chemicals to microorganisms[J]. Water Research,1994,28(3):543-551.
    [250]Fernandez N, Beiras R. Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus Lividus sea-urchin[J]. Ecotoxicology,2001,10(5):263-271.
    [251]Frias-Espericueta M G, Voltolina D, Osuna-Lopez I, et al. Toxicity of metal mixtures to the Pacific white shrimp Litopenaeus vannamei postlarvae[J]. Marine Environmental Research, 2009,68(5):223-226.
    [252]施钢,陈,张健东,等Cu2+-Zn2+对蓝点笛鲷幼鱼急性及联合毒性研究[J].安徽农业科学,2011,39(15):9295-9297.
    [253]Otitoloju A A. Evaluation of the joint-action toxicity of binary mixtures of heavy metals against the mangrove periwinkle Tympanotonus fuscatus var radula (L.)[J]. Ecotoxicology and Environmental Safety,2002,53(3):404-415.
    [254]Otitoloju A A. Relevance of joint action toxicity evaluations in setting realistic environmental safe limits of heavy metals[J]. Journal of Environmental Management,2003, 67(2),121-128.
    [255]Peter E, Candido M, Jones D. Transgenic Caenorhabditis elegans strains as biosensors[J]. Trends in Biotechnology,1996,14(4):125-129.
    [256]房燕.四角蛤蜊Mactra veneriformis对镉、汞胁迫响应机制的基础研究[D].青岛,中国科学院海洋研究所,2010.
    [257]张融,范文宏,唐戈,等.水体中重金属镉和锌对大型蚤联合毒性效应的初步研究[J].生态毒理学报,2008,3(3):286-290.
    [258]白树猛,田黎.指示生物在海洋污染监测中的应用[J].海洋科学,2010,(1):80-83.
    [259]Groten J P, Feron V J,Suhnel J. Toxicology of simple and complex mixtures[J]. Trends in Pharmacological Sciences,2001,22(6):316-322.
    [260]Kraak M H S, Stuijfzand S C, Admiraal W. Short-term ecotoxicity of a mixture of five metalsto the zebra mussel Dreissena polymorpha[J]. Bulletin of Environmental Contamination and Toxicology,1999,63(6):805-812.
    [261]王莹,郝家胜,陈娜,等.铅、镉和锌3种重金属离子对水螅的联合毒性研究[J].生命科学研究,2006,10(1):91-94.
    [262]唐建勋,刘忠良,程樟顺,等.重金属Pb, Cu联合攻毒对泥鳅卵细胞发育胁迫的显微观察[J].广东微量元素科学,2010,17(9):10-16.
    [263]Cooper N L, Bidwell J R, Kumar A.Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata[J]. Ecotoxicology and Environmental Safety, 2009,72(5):1523-1528.
    [264]周彦锋,吴伟,尤洋,等.重金属镉锌联合胁迫下鲫鱼组织中金属硫蛋白的动态变化[J].生态与农村环境学报,2010,26(1):63-67.
    [265]Palaniappan P R, S. Karthikeyan S. Bioaccumulation and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel[J]. Journal of Environmental Sciences,2009,21(2):229-236.
    [266]梁秋燕,谢勇平,方展强.Zn2+和Cd2+对斑马鱼早期胚胎发育阶段的单一与联合毒性[J].中国水产科学,2012,19(2):283-292.
    [267]陈琳琳,张高生,陈静,等.汞、硒暴露对紫贻贝[Mytilus edulis)抗氧化酶系统的影响[J].生态毒理学报,2011,6(4):383-388.
    [26R]陈细香.重金属污染对可口革囊星虫的毒性效应[D].厦门,厦门大学,2007.
    [269]沈骅,王晓蓉,张景飞.应用应激蛋白HSP70作为生物标志物研究锌、铜及其联合毒性对鲫鱼肝脏的影响[J].环境科学学报,2004,24(5):895-899.
    [270]Hagopian-Schlekat T, Chandler G T, Shaw T J. Acute toxicity of five sediment-associated metals, individually and in a mixture, to the estuarine meiobenthic harpacticoid copepod Amphiascus tenuiremis[J]. Marine environmental research,2001,51(3):247-64.
    [271]卢健民,蔺玉华,李怀明.重金属对草鱼胚胎及鲤鱼苗的毒性研究[J].水产学杂志,1995,8(1):55-62.
    [272]Jenkins K D, Mason A Z. Relationship between subcellular distributions of cadmium and perturbations in reproduction in the polychaete Neanthes arenaceodendata[J].Aquatic Toxicology,1988,12(3):229-244.
    [273]吕振明,樊甄姣,吴常文,等.两种重金属离子对黄口荔枝螺的毒性及其影响因素的研究[J].渔业现代化,2007,34(6):35-38.
    [274]顾兵.联合作用特征的评价[J].中国工业医学杂志,2000,13(1):55-58.
    [275]Calabrese E J, Baldwin L A, Holland C D. Hormesis:a highly generalizable and reproducible phenomenon with important implications for risk assessment[J]. Risk Analysis, 1999,19(2):261-281.
    [276]Gerhardt A. Review of impact of heavy metals on stream invertebrates with special emphasis on acid conditions[J]. Water Air and Soil Pollution,1993,66(3):289-314.
    [277]焦月英,李君,关维俊,等.某沿海工业区周边海水及土壤的重金属污染状况调查[J].环境与职业医学,2010,27(11):645-649.
    [278]张效龙,丁德文,徐家声,等.渤海西部河口潮间带区海水及沉积物中重金属研究[J].东华理工大学学报(自然科学版),2010,33(3):276-280.
    [279]张才学,孙省利,陈春亮.湛江港附近海域潮间带海水、沉积物和贝类体内的重金属[J].广东海洋大学学报,2011,31(1):67-72.
    [280]黄厚见,平仙隐,李磊,等.春、夏季长江口海水、沉积物及生物体中重金属含量及其评价[J].生态环境学报,2011,20(5):898-903.
    [281]Wang J, Liu R H, Yu P, et al. Study on the pollution characteristics of heavy metals in seawater of Jinzhou Bay[J]. Procedia Environmental Sciences,2012,13:1507-1516.
    [282]高鹰.海水铜铅及环境因子对菲律宾蛤仔生物标志物的影响研究[D].中国海洋大学,2011.
    [283]Ivankovic D, Pavicic J, Erk M, et al. Evaluation of the Mytilus galloprovincialis Lam. digestive gland metallothionein as a biomarker in a long-term field study:Seasonal and spatial variability[J]. Marine Pollution Bulletin,2005,50(11):1303-1313.
    [284]Roesijadi G. Metallothionein induction as a measure of response to metal exposure in aquatic animals[J]. Environmental Health Perspectives,1994,102(supplement 12):91-95.
    [285]Klaassen C D, Liu J, Choudhuri S. Metallothionein:an intracellular protein to protect against cadmium toxicity[J]. Annual Review of Pharmacology and Toxicology,1999,39: 267-294.
    [286]Cairns J. The threshold problem in ecotoxicology[J]. Ecotoxicology,1992,1(1):3-16.
    [287]Bebianno M J, Lopes B, Guerra L, et al. Glutathione S-tranferases and cytochrome P450 activities in Mytilus galloprovincialis from the South coast of Portugal:Effect of abiotic factors[J]. Environment International,2007,33(4):550-558.
    [288]Verlecar X N, Jena K B, Chainy G B N. Biochemical markers of oxidative stress in Pernaviridis exposed to mercury and temperature[J]. Chemico-Biological Interactions,2007, 167(3):219-226.
    [289]王亚男,王辉,罗明明,等.温度、盐度对马氏珠母贝外套膜Hsp70基因表达量的联合影响[J].广东海洋大学学报,2012,32(3):35-41.
    [290]王贵宁,姜令绪,王韶华,等.盐度对菲律宾蛤仔摄食率和清滤率的影响[J].海洋科学,2010,34(6):6-8.
    [291]江双林,赵从明,王彦怀,等.菲律宾蛤仔摄食率与温度、壳长和饵料浓度的关系[J].渔业科学进展,2009,30(4):78-83.
    [292]王敢峰,叶能权.职业接触的生物监测及展望[J].职业医学,1992,19(6):359-361.
    [293]Hamza-Chaffai A, Amiard J C, Pellerin J, et al. The potential use of metallothionein in the clam Ruditapes decussatus as a biomarker of in situ metal exposure[J]. Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology,2000, 127(2):185-197.
    [294]杨健,陈刚,黄建盛,等.温度和盐度对军曹鱼幼鱼生长与抗氧化酶活性的影响[J].广东海洋大学学报,2007,27(4):25-29.
    [295]Menezes S, Soares A M V M, Guilhermino L, et al. Biomarker responses of the estuarine brown shrimp Crangon crangon L. to non-toxic stressors:Temperature, salinity and handling stress effects[J]. Journal of Experimental Marine Biology and Ecology,2006,335(1): 114-122.
    [296]Tu H T.Silvestre F, De Meulder B, et al. Combined effects of deltamethrin, temperature and salinity on oxidative stress biomarkers and acetylcholinesterase activity in the black tiger shrimp (Penaeus monodon)[J]. Chemosphere,2012,86(1):83-91.
    [297]Moullac G L, Haffner P. Environmental factors affecting immune responses in Crustace[J]. Aquaculture,2000,191(1-3):121-131.
    [298]Munari M, Matozzo V, Marin M G. Combined effects of temperature and salinity on functional responses of haemocytes and survival in air of the clam Ruditapes philippinarum[J]. Fish & Shellfish Immunology,2011,30(4-5):1024-1030.
    [299]Delgado M, Alejandro Perez Camacho A P. Influence of temperature on gonadal development of Ruditapes philippinarum (Adams and Reeve,1850) with special reference to ingested food and energy balance[J]. Aquaculture,2007,264(1-4):398-407.
    [300]Guinot D, Urena R, Pastor A, et al. Long-term effect of temperature on bioaccumulation of dietary metals and metallothionein induction in Sparus aurata[J]. Chemosphere,2012,87(11): 1215-1221.
    [301]Van Cleef-Toedt K A, Kaplan L A, Crivello J F. Killifish metallothionein messenger RNA expression following temperature perturbation and cadmium exposure[J]. Cell Stress Chaperones.2001,6(4):351-359.
    [302]Ivanina A V, Taylor C, Sokolova I M. Effects of elevated temperature and cadmium exposure on stress protein response in eastern oysters Crassostrea virginica (Gmelin)[J].Aquatic Toxicology,2009,91(3):245-54.
    [303]董波,薛钦昭,李军.温度对菲律宾蛤仔滤食率、清滤率和吸收率的影响[J].海洋水产研究,2000,21(1):37-42.
    [304]Atif F, Kaur M, Yousuf S, et al. In vitro free radical scavenging activity of hepatic metallothionein induced in an Indian freshwater fish, Channa punctata Bloch[J]. Chemico-Biological Interactions,2006,162(2):172-180.
    [305]Dorts J, Bauwin A, Kestemont P, et al. Proteasome and antioxidant responses in Cottus gobio during a combined exposure to heat stress and cadmium[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2012,155(2):318-324.
    [306]李大鹏,刘松岩,谢从新.水温对中华鲟血清活性氧含量及抗氧化防御系统的影响[J].水生生物学报,2008,32(3):327-332.
    [307]Liu X D, Thiele D J. Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription[J]. Genes and Development,1996,10(5):592-603.
    [308]Abele D, Philipp E, Gonzalez PM, et al. Marine invertebrate mitochondria and oxidative stress[J]. Frontiers in bioscience,2007,12:933-946.
    [309]Saydam N, Steiner F, Georgiev O, et al. Heat and heavy metal stress synergize to mediate transcriptional hyperactivation by metal-responsive transcription factor MTF-1[J]. The Journal of Biological Chemistry,2003,278(34):31879-31883.
    [310]Leung K M Y, Svavarsson J, Crane M, et al. Influence of static and fluctuating salinity on cadmium uptake and metallothionein expression by the dogwhelk Nucella lapillus (L.)[J]. Journal of Experimental Marine Biology and Ecology,2002,274(2):175-189.
    [311]Rainbow P S. Trace metal accumulation in marine invertebrates:marine biology or marinechemistry [J]. Marine Biology,1997,77(1):195-210.
    [312]Erk M, Muyssen B T A, Ghekiere A, et al. Metallothionein and cellular energy allocation in the estuarine mysid shrimpNeomysis integer exposed to cadmium at different salinities[J]. Journal of Experimental Marine Biology and Ecology,2008,357(2):172-180.
    [313]刘青,张越,付鑫,等.非律宾蛤仔的研究进展[J].河北渔业,2011,(1):56-59.
    [314]Isani G, Andreani G, Kindt M, et al. Metallothioneins (MTs) in marine mollusks[J]. Cellular and molecular biology,2000,46(2):311-330.
    [315]Yan X W, Zhang G F, Yang F. Effects of diet, stockingdensity, and environmental factors on growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum larvae[J]. Aquaculture,2006,253(1-4):350-358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700