脉冲强光、紫外和红外辐射对稻谷黄曲霉及其毒素的杀灭降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
霉菌和其代谢产生的毒素是导致粮食减产和影响人类健康的主要因素,稻谷作为我国最重要的粮食受到的黄曲霉菌和黄曲霉毒素侵害最为严重。因此,本文旨在保证稻谷品质的前提下,开发稻谷杀菌降毒素的新方法,以阻止霉菌污染产生毒素或直接降解毒素。研究了脉冲强光和紫外辐射技术的杀菌机理;通过反应动力学研究脉冲强光和紫外辐射技术的杀菌特征;对脉冲强光杀菌工艺进行了优化;研究新收获稻谷和储藏稻谷的红外热辐射杀菌工艺;评估脉冲强光降解不同介质中黄曲霉毒素的效果及降解动力学特征,测定降解产物的生物毒性和致突变毒性。
     通过对脉冲强光和紫外辐射对黄曲霉菌孢子的显微观察及现有理论归纳表明:脉冲强光辐射能够利用其高能光化和光热作用破坏孢子细胞壁结构导致细胞壁穿孔、皱缩,菌体胞浆物质外渗,阻碍其代谢而致死。紫外辐射对细胞壁无直观可见损伤,孢子的崩溃是由于紫外光直接对胞内物质干扰而进行的代谢阻碍。
     以辐射通量作为变量,对脉冲强光和紫外辐射杀菌效果进行研究,二者得到的孢子失活曲线分别对Weibull+Tail模型和Weibull模型拟合度高。比较两种辐射杀菌方法的单位能量消耗和杀菌速率得到:紫外杀菌能量利用率较高,而脉冲强光杀菌速率较快。紫外辐射处理可以在7min内杀死琼脂表面105cfu/g孢子,同样的效果脉冲强光只需要30s。
     脉冲强光结合保温处理的工艺可以极大提高杀菌效果并同时起到干燥稻谷的作用,杀菌数可达到5.2log cfu/g,干燥速率可达4.4%每分钟,干燥后稻谷水分可降低4.1个百分点。并且经各项指标测定,均未显示本研究方法对碾米质量有不良影响。
     对于新收获不同水分含量的稻谷和因不当的储藏条件等造成霉菌二次污染的稻谷,均可通过红外辐射快速加热稻谷至60℃然后在同样温度下保温不同时间来达到所需的杀菌干燥效果。对于新收获的初始水分含量高于21.1%的稻谷,推荐条件为红外辐射至60℃,保温120min,黄曲霉孢子可降低达8.3log cfu/go水分含量对杀菌效果起着至关重要的作用,水分含量越高,杀菌效果越好,因此将干燥的储藏稻谷表面润湿再进行热杀菌,可以显著提高杀菌效果。储藏稻谷杀菌的推荐条件为将谷壳润湿至稻谷整体水分含量为19.4%后进行红外热辐射处理至60℃,保温20min和自然冷却,黄曲霉孢子可降低7.2log cfu/g,最终水分含量为13.8%,可直接继续安全储藏而不需额外的干燥处理。
     脉冲强光对黄曲霉毒素Bi (AFB1)和黄曲霉毒素B2(AFB2)有极强的降解效果。HPLC检测定量分析显示,高浓度(500ppb)黄曲霉毒素B1和B2经过脉冲强光处理10s,在辐射通量为28.52J/cm2的条件下可分别降低96.6%和91.7%。降解动力学符合二级动力学方程,降解速率与黄曲霉毒素初始浓度和辐射强度成正比。卤虫无节幼体对黄曲霉毒素降解产物生物毒性检测以及彷徨试验对其致突变毒性检测显示,经脉冲强光处理后AFB1和AFB2降解产物的生物毒性和致突变毒性完全消除。
     脉冲强光对不同介质中黄曲霉毒素均具有很好的降解效果。处理稻谷时,在辐射通量为84.35J/cm2的条件下,AFB1和AFB2分别降低75.0%和39.2%。处理米糠时,在辐射通量为16.10J/cm2的条件下,AFB1和AFB2分别降低90.3%和86.7%。脉冲强光降解黄曲霉毒素符合二级动力学方程。
     研究表明,紫外、脉冲强光和红外热辐射对稻谷的黄曲霉菌杀灭效果理想。脉冲强光降解黄曲霉毒素效果理想。紫外、红外辐射技术尤其是高能脉冲强光辐射技术是一类可以应用于提高稻谷安全质量的高效、环保的杀菌脱毒技术。
Fungi and their mycotoxins produced in grains are the main factors that cause the reduction of output and affection of human health. Rice as the most important food in China is facing the most serious problem on pollution of Aspergillus flavus and aflatoxins. Therefore, new methods of simultaneous decontamination and detoxication were developed. The mechanisms of inactivation of pulsed light (PL) and ultraviolet radiation technology were studied. The reaction kinetics characteristics of PL and ultraviolet radiation were investigated. The PL sterilization process was optimized. Infrared radiation disinfection process on freshly harvest rice and stored rice were studied. PL degradation effects of aflatoxin and degradation kinetics in different medium and biological toxicity and genetic toxicity of degradation products were determined.
     The study of the inactivation mechanism of PL and ultraviolet radiation on Aspergillus flavus spores showed that, PL radiation destroied spore cell wall structure and led to cell wall perforation and shrinkage by producing the high-energy photochemical and photothermal effects, which caused the the leakage of cytoplasm and cell death. Ultraviolet radiation has non-visible damage on the cell wall. The spore collapse was due to the ultraviolet radiation directly effect on the material intracellular.
     By setting the radiation fluence as a variable, the sterilization effect of pulsed light and ultraviolet radiation were studied. The inactivation curves well fitted the Weibull+Tail model and Weibull model. After comparing the unit energy consumption and inactivation rate, the obtained results showed that, ultraviolet has higher unit energy consumption and PL has higher inactivation rate. It needed7min for ultraviolet to inactive105cfu/g spores and for the same inactivation populations, PL only need30s.
     The combined PL and holding processing can greatly improve the inactivation effect and simutanious drying of rice. The reduction could achieved5.2log cfu/g, the drying rate could reached up to4.4%per minute. After drying, moisture can be reduced by4.1percentage points. And after checking the quality indexes, no negative effects were showed on rice milling quality.
     The freshly harvest rice with different initial moisture content (IMC) could be treated by infrared radiation heating to60℃and holding at same temperature for different time to achieve sterilization and drying effect. For the rice with IMC higher than21.1%, the optimal conditions was infrared radiation to60℃, holding for120min, Aspergillus flavus spores could reduce8.3log cfu/g. The MC plays a vital role in sterilization, the higher MC lead to higher sterilization effect. Therefore, wetting the surface of dried rice and followed by infrared heating, could significantly improve the disinfection effect. The optimal conditions for sterilization of stored rice was wetting husk to obtain the whole MC of19.4%and treated by infrared radiation at60℃and followed by20min of holding and natural cooling. Aspergillus flavus spores can be reduced by7.4log cfu/g and final moisture content of13.8%. The rice can be safe storage directly.
     PL has strong degradation effect on aflatoxin B1(AFB1) and aflatoxin B2(AFB2). HPLC analysis showed, after exposed for10s of PL, at fluence of28.52J/cm2, the aflatoxin B1and B2at high concentration (500ppb) could be reduced by96.6%and91.7%respectively. The degradation dynamics was well fitted the second order kinetic model. The biological toxicity and genotoxicity of the degradation products were measured by using Artemia nauplii and Ames test methods. The results showed the toxicities were completely eliminate after the PL treatment.
     PL has good degradation effects on different medium. For rough rice treated at the fluence of84.35J/cm2, AFB1and AFB2were decreased by75.0%and39.2%, respectively. For rice bran treated at the fluence of16.1J/cm, AFB1and AFB2were decreased by90.3%and86.7%, respectively. The PL degradation kinetics fitted the second order reaction. The degradation rate has positive relationship with the initial aflatoxin concentration and radiation intensity.
     Research showed that, ultraviolet, pulsed light and infrared radiation could greatly inactive on rice Aspergillus flavus. PL could reduce of aflatoxin toxin as well. Ultraviolet, infrared radiation technology and especially the high energy PL radiation technology are a group of light technologies which can be applied to improve the food safety, environmental friendly, energy efficiency technologies on rice.
引文
[1]Juliano, B.O. Rice in human nutrition [M]1993.
    [2]FAOSTAT. Countries by commodity (Rice, paddy) [DB/OL].2010.
    [3]FAOSTAT. Rice [R]. Bull, USA 1990. p.20-8,55,73.
    [4]蒋耀.我国水稻种植机械化的发展趋向[J].农业工程学报,1989,5:76-85.
    [5]中国统计局.2010年国民经济和社会发展统计公报[OL].http://news.xinhuanet.com/fortune/2011-02/28/c_121130464.htm (May 28,2014).
    [6]前瞻网.2012年12月我国大米产量情况分析[OL].http://www.qianzhan.com/qzdata/detail/149/130122-b0a1581a.html (May 28,2014).
    [7]李初军,刘建萍,贾丽颖,等.我国水稻育种的现状与展望[J].中国种业,2007,1:11-2.
    [8]FAOSTAT. Food Balance Sheets> Commodity Balances> Crops Primary Equivalent [DB/OL].2008.
    [9]刘阳.主要粮油产品储藏过程中真菌毒素形成机理及防控基础[J].中国农科院农产品加工所:2012.
    [10]FAO. Food safety and quality:mycotoxins [EB/OL].2013.
    [11]Amaike, S., Keller, N.P. Aspergillus flavus [J]. Annual review of phytopathology, 2011,49:107-33.
    [12]FAO. Rice and human nutrition [OL].2004.
    [13]Christensen CMS, D.H. Storage of cereal grains and their products [M]:American Association of Cereal Chemists, Inc.,1982.
    [14]Lichtwardt, R.W., Berron, G.L., Tiffany, L.H. Mold flora associated with shelled corn in Iowa [J]. Iowa State Journal of Science,1958,33:1-11.
    [15]汤建榕.广西黄曲霉毒素的研究进展[J].中兽医医药杂志,1999,5:21.
    [16]Probst, C., Njapau, H., Cotty, P.J. Outbreak of an acute aflatoxicosis in Kenya in 2004: Identification of the causal agent [J]. Applied and Environmental Microbiology,2007, 73:2762-2764.
    [17]Reddy, C.S, Reddy, K.R.N., Prameela, M., et al. Identification of antifungal component in clove that inhibits Aspergillus spp. colonizing rice grains [J]. Journal of Mycology and Plant Pathology,2007,37:87-94.
    [18]傅德成,王金木.食品卫生基础知识问答[M].北京:中国标准出版社,2001.
    [19]柳洁,何碧英,孙俊红.粮油食品中黄曲霉毒素B1测定[J].中国公共卫生,2006,22:122-3.
    [20]刘积良,王坤.癌症预防与康复[M].复旦大学出版社,2001.
    [21]Smela, M.E., Currier, S.S., Bailey, E.A. et al. The chemistry and biology of aflatoxin B1: from mutational spectrometry to carcinogenesis [J]. Carcinogenesis,2001,22:535-545.
    [22]刘睿杰.黄曲霉毒素B1在不同介质中紫外降解机理及安全性评价[D].无锡:江南大学,2011.
    [23]Woodhead, A.D. Biological characteristics of the aflatoxin-induced hepatic tumor [M]. Genetic Toxicology:Springer US,1982. p.127-48.
    [24]Pal, K.K., Gardener, B.M. Biological control of plant pathogens [J]. The plant health instructor,2006,2:1117-1142.
    [25]Raghavender, C.R., Reddy, K.R.N., Reddy, B.N. Fungi as potential biocontrol agents of phytopathogens [M]. In:Shahid A, editor. Plant disease management:For sustainable agriculture. Tri Nagar, Delhi:Daya Publishing House; in press.
    [26]Sauer, D.B., Burroughs, R. Disinfection of seed surfaces with sodium hypochlorite [J]. Phytopathology,1986,76:745-749.
    [27]唐芳,程树峰,伍松陵.稻谷储藏危害真菌生长规律的研究[J].中国粮油学报,2009;24:98-101.
    [28]史莹华,许梓荣,冯建蕾,等.新型吸附剂AAN对黄曲霉毒素B1,B2,G1,G2的体外吸附研究[J].中国农业科学,2005,38:1069-1072.
    [29]张妮娅,姜梦付,齐德生,等.葡甘聚糖对黄曲霉毒素的吸附作用[J].养殖与饲料,2007,56-59.
    [30]冯定远.花生饼中黄曲霉毒素化学脱毒的研究[J].中国粮油学报,1997,12:21-25.
    [31]Motomura, M., Toyomasu, T., Mizuno, K., et al. Purification and characterization of an aflatoxin degradation enzyme from Pleurotus ostreatus [J]. Microbiological research,2003, 158:237-242.
    [32]Liu, D.L, Yao, D.S., Liang, Y.Q., et al. Production, purification, and characterization of an intracellular aflatoxin-detoxifizyme from Armillariella tabescens (E-20) [J]. Food and Chemical Toxicology,2001,39:461-466.
    [33]夏文水,钟秋平.食品冷杀菌技术研究进展[J].中国食品卫生杂志,2003,6:539-544.
    [34]Krishnamurthy, K., Demirci, A., Irudayaraj, J. Inactivation of Staphylococcus aureus by pulsed UV-light sterilization [J]. Journal of Food Protection,2004,67:1027-1030.
    [35]Fine, F., Gervais, P. Efficiency of pulsed UV light for microbial decontamination of food powders [J]. Journal of Food Protection,2004,67:787-792.
    [36]Hoornstra, E., de Jong, G., Notermans, S. Preservation of vegetables by light. Conference frontiers in microbial fermentation and preservation [M]. Wageningen, Netherlands 2002. p. 75-77.
    [37]Fasina, O.O., Tyler, R.T. Chapter 7:Infrared heating of biological materials [M]. In: Irudayaraj, J., editor. Food processing operations modeling:design and analysis. Boca Raton, Fla:CRC Press,2001. p.189-224.
    [38]EPRI. Technology guidebook for electric infrared process heating [M]. Palo Alto:Electrical Power Research Institute,1993.
    [39]Rosenthal, I., Electromagnetic Radiations in Food Science [M]. Berlin, Germany: Springer-Verlag,1992.
    [40]Gabel, M.M, Pan, Z., Amartunga, K.S.P., et al. Catalytic infrared dehydration of Onions [J]. Journal of food Science,2006,71:351-357.
    [41]Schroeder, H.W., Rosberg, D.W. Infrared drying of rough rice. I. Long grain rice:Rexoro and Bluebonnet 50 [J]. Rice Journal,1960,63:3-5,23-7.
    [42]Nelson, S.O. Radiation processing in Agriculture [J]. Trans ASAE,1962,5:20-25,30.
    [43]Ginzburg, A.S. Application of infrared radiation in food processing [M]. London, U.K.: Leonard Hill Books,1969.
    [44]Bingol, G., Yang, J., Brandl, M.T., et al. Infrared pasteurization of raw almonds [J]. Journal of Food Engineering,2010,104:387-93.
    [45]Hamanaka, D., Dokan, S., Yasunaga, E., et al. The sterilization effects on infrared ray of the agricultural products spoilage microorganisms. Bulletin artcle [R]. ASAE Annual International Meeting. Milwaukee, Wisconsin, USA 2000. p.1-9.
    [46]周建新,鞠兴荣,孙肖东.不同储藏条件下稻谷霉菌区系演替研究[J].中国粮油学报,2008,23(5):133-136.
    [47]付鹏程,李荣涛,谢刚,等.稻谷真菌毒素污染调查与分析[J].粮食储藏,2004,33:49-51.
    [48]中国报告大厅,2013年粮食行业分析http://www.chinabgao.com/k/183461iangshi/analysis.html [OL]. (May 28,2014).
    [49]肖军霞,张岩,黄国清,等.黄曲霉毒素脱除方法研究进展[J].食品安全质量检测学报,2012,3(5):395-399.
    [50]董铁有,朱文学,张仲欣,等.我国水稻干燥机械化存在的问题及对策研究[J].食品科学,2005,26:92-98.
    [1]Gomez, M., Plaza, F., Garralon, G. et al. A comparative study of tertiary wastewater treatment by phsicochemical-UV process and macrofiltration-ultrafiltration technologies [J]. Desalination,2007,202:369-376.
    [2]Cheigh, C.I., Park, M.H., Chung, M.S., et al. Comparison of intense pulsed light-and ultraviolet (UVC)-induced cell damage in Listeria monocytogenes and Escherichia coli O157: H7 [J]. Food Control,2012,25:654-659.
    [3]靳志强.微波杀灭霉变玉米中寄生曲霉动力学模型[J].农业机械学报,2011,42:148-153.
    [4]Albert, I, Mafart, P. A modified Weibull model for bacterial inactivation [J]. International Journal of Food Microbiology,2005,15:197-211.
    [5]Geveke, D.J, Brunkhorst, C. Radio frequency electric fields inactivation of Escherichia coli in apple cider [J]. Journal of Food Engineering,2008,85:215-221.
    [6]Wang, T., MacGregor, S.J., Anderson, J.G., et al. Pulsed ultra-violet inactivation spectrum of Escherichia coli. [J]. Water Research,2005,39:2921-2925.
    [7]Fine, F., Gervais, P. Efficiency of pulsed UV light for microbial decontamination of food powders [J]. Journal of Food Protection,2004,67:787-792.
    [8]Hierro, E., Manzano, S., Ordonez, J.A., et al. Inactivation of Salmonella enterica serovar Enteritidis on shell eggs by pulsed light technology [J]. International journal of food microbiology,2009,135:125-130.
    [9]陈婉如,李益洪,周兆浓.污水处理厂出水消毒方式的探讨[J].广东工业大学学报,2006,23:36-39.
    [10]Bialka, K.L., Demirci, D., Puri, V.M. et al. Modeling the inactivation of Escherichia coli O157:H7 and Salmonella enterica on raspberries and strawberries resulting from exposure to ozone or pulsed UV light [J]. Journal of Food Engineering,2008,85:444-449.
    [11]冯日珍,徐金美,贾荣娟,等.紫外线灯管辐照强度监测方法及使用寿命的临床研究[J].中华现代护理杂志,2011,17:413-417.
    [1]Pitt, J.I., Hocking, A.D. Fungi and food spoilage Blackie Academic and Professional [M]. London, UK,1997.
    [2]Salunkhe, D.K., Chavan, J.K., Kadam, S.S. Postharvest biotechnology of cereals [M]:CRC Press Inc,1985.
    [3]CAST. Mycotoxins:risks in plant, animal, and human systems [M]. Council for Agricultural Science and Technology:CAST,2003.
    [4]Pitt, J.I., Miscamble, B.F. Water relations of Aspergillus flavus and closely related species [J]. Journal of Food Protection,1995,58:86-90.
    [5]Gomez-Lopez, V.M., Ragaert, P., Debevere, J., et al. Pulsed light for food decontamination:A review [J]. Trends in Food Science & Technology,2007,18:464-473.
    [6]Pataro, G., Munoz, A., Palgan, I., et al. Bacterial inactivation in fruit juices using a continuous flow Pulsed Light (PL) system [J]. Food Research International,2011,44:1642-1648.
    [7]Hierro, E., Ganan, M., Barroso, E., et al. Pulsed light treatment for the inactivation of selected pathogens and the shelf-life extension of beef and tuna carpaccio [J]. International Journal of Food Microbiology,2012,158:42-8.
    [8]Manzocco, L., Da Pieve, S., Maifreni, M. Impact of UV-C light on safety and quality of fresh-cut melon[J]. Innovative Food Science & Emerging Technologies,2011,12:13-17.
    [9]Jun, S., Irudayaraj, J., Demirci, A., et al. Pulsed UV-light treatment of corn meal for inactivation of Aspergillus niger spores [J]. International Journal of Food Science & Technology,2003,38:883-888.
    [10]Aron-Maftei, N., Ramos-Villarroel, A.Y., Nicolau, A. I., et al. Pulsed light inactivation of naturally occurring moulds on wheat grain [J]. Journal of the Science of Food and Agriculture,2013, Article first published online:27 AUG 2013.
    [11]Keklik, N.M., Demirci, A., Puri, V.M. Inactivation of Listeria monocytogenes on Unpackaged and Vacuum Packaged Chicken Frankfurters Using Pulsed UV-Light [J]. Journal of food science,2009,74:M431-M439.
    [12]Bialka, K.L, Demirci, D. Efficacy of Pulsed UV-Light for the Decontamination of Escherichia coli O157:H7 and Salmonella spp. on Raspberries and Strawberries [J]. Journal of food science,2008,73:201-207.
    [13]Anderson, J.G., Rowan, N.J., MacGregor, S.J., et al. Inactivation of food-borne enteropathogenic bacteria and spoilage fungi using pulsed-light [J]. IEEE Transactionson Plasma Science,2000,28:83-88.
    [14]Turtoi, M., Nicolau, A. Intense light pulse treatment as alternative method for mould spores destruction on paper-polyethylene packaging material [J]. Journal of food engineering 2007, 83:47-53.
    [15]Oms-Oliu, G., Martin-Belloso, O., Soliva-Fortuny, R. Pulsed Light Treatments for Food Preservation. A Review [J]. Food and Bioprocess Technology,2010,3:12-23.
    [16]Oxen, P., Knorr, D. Baroprotective Effects of High Solute Concentrations Against Inactivation of Rhodotorula rubra [J]. LWT-Food Science and Technology,1993, 26:220-223.
    [17]马海乐,高梦祥.介质特性参数对脉冲磁场杀菌效果的影响[J].食品科学,2004,25.
    [18]VanOsdell, D., Foarde, K. Defining the effectiveness of UV lamps installed in circulating air ductwork [M]. Arlington, Virginia:Air-Conditioning and Refrigeration Technology Institute, 2002. p.49.
    [19]Khir, R., Pan, Z., Salim., A., et al. Mohamed. S. Moisture diffusivity of rough rice under infrared radiation drying [J]. LWT-Food Science and Technology,2011,44:1126-1132.
    [20]Wekhof, A. Disinfection with flash lamps [J]. PDA Journal of Pharmaceutical Science and Technology,2000,54:264-276.
    [21]Wekhof, A., Trompeter, F.J., Franken, O. Pulse UV disintegration (PUVD):A new sterilisation mechanism for packaging and broad medical-hospital applications [M]. The first international conference on ultraviolet technologies 2001. p.14-16.
    [22]Araujo, R., Goncalves Rodrigues, A., Pina-Vaz, C. Susceptibility pattern among pathogenic species of Aspergillus to physical and chemical treatments [J]. Medical Mycology,2006, 44:439-443.
    [23]Civello, P.M., Martinez, G.A., Chaves, A.R., et al. Heat treatments delay ripening and postharvest decay of strawberry fruit [J]. Journal of Agricultural and Food Chemistry 1997, 45:4589-4594.
    [24]Hawkins, L.K., Windham, G.L., Williams, W.P. Effect of different postharvest drying temperatures on Aspergillus flavus survival and aflatoxin content in five maize hybrids [J]. Journal of Food Protection,2005,68:1521-1524.
    [25]Pan, Z., Khir, R., Godfrey, L.D., et al. Feasibility of simultaneous rough rice drying and disinfestations by infrared radiation heating and rice milling quality [J]. Journal of Food Engineering,2008,84:469-479.
    [26]Mutters, R.G., Thompson, J.F. Rice quality handbook [M]. UCANR Publications,2009.
    [27]Ramos-Villarroel, A.Y., Aron-Maftei, N., Martin-Belloso, O., et al. Influence of spectral distribution on bacterial inactivation and quality changes of fresh-cut watermelon treated with intense light pulses [J]. Postharvest Biology and Technology,2012,69:32-29.
    [28]TosHizo, B.A.N. Rice Cracking in High Rate Drying [J]. Japan Agricultural Research Quarterly 1971,6:113-116.
    [29]Kunze, O.R., Choudhury, M.S.U. Moisture adsorption relatedto the tensile strength of rice [J]. Cereal Chemistry,1972,49:684-696.
    [30]Kunze, O.R. Fissuring of the rice grain after heated air drying [M]. American Society of Agricultural Engineers,1979. p.1197-202,207.
    [31]Wallen, R.D., May, R., Rieger, K. et al. Sterilization of a new medical device using broad-spectrum pulsed light [J]. Biomedical Instrumentation & Technology,2001,35: 323-30.
    [32]百度百科.稻谷.http://aike.baidu.com/link?url=nWDJmjMEu840AnT78TsG_jDniiFT8H4-jiQs3UwiJQu82 H90o-oU7a4abQWS-1Fm. (May 28,2014)
    [33]江天宝,陆蒸,陆则坚.脉冲强光对熟地瓜干杀菌效果及品质的影响[J].福建农林大学学报:自然科学版,2007,36:201-204.
    [34]阮少兰,毛广卿.大米蒸煮品质的研究[J].粮食与饲料工业,2004,10:25-26.
    [1]程晓燕,刘建学.远红外技术在食品工程中的应用与进展[J].河南科技大学学报:农学版,2004,23:51-54.
    [2]王相友,操瑞兵,孙传祝.红外加热技术在农业物料加工中的应用[J].农业机械学报,2007,38:183-188.
    [3]Bingol. G., Yang, J., Brandl, M.T., et al. Infrared pasteurization of raw almonds [J]. Journal of Food Engineering,2011,104:387-393.
    [4]Hamanaka, D., Dokan, S., Yasunaga, E., et al. The sterilization effects on infrared ray of the agricultural products spoilage microorganisms [R].2000 ASAE Annual International Meeting. Milwaukee, WI2000. p.1-9.
    [5]Khir, R., Pan, Z., Thompson, J.F., et al. Moisture Removal Characteristics of Thin Layer Rough Rice under Sequenced Infrared Radiation Heating and Cooling [J]. Journal of food processing and preservation,2014,38:430-440.
    [6]Thakur, A.K., Gupta, A.K. Water absorption characteristics of paddy, brown rice and husk during soaking [J]. Journal of Food Engineering,2006,75:252-257.
    [7]Pan, Z., Khir, R., Godfrey, L.D., et al. Feasibility of simultaneous rough rice drying and disinfestations by infrared radiation heating and rice milling quality [J]. Journal of Food Engineering,2008,84:469-479.
    [8]Khir, R., Pan, Z., Salim. A., et al. Moisture diffusivity of rough rice under infrared radiation drying [J]. LWT-Food Science and Technology,2011,44:1126-1132.
    [9]Geeraerd, A.H., Valdramidis, V.P., Van Impe, J.F. GlnaFiT, a freeware tool to assess non-log-linear microbial survivor curves [J]. International Journal of Food Microbiology, 2005,102:95-105.
    [10]Geeraerd A. H, Herremans, C.H. and Van Impe, J.F. Structural model requirements to describe microbial inactivation during a mild heat treatment [J]. Journal of Food Microbiology,2000,59:185-209.
    [11]Pan. Z., Khir, R., Godfrey, L.D., et al. Feasibility of simultaneous rough rice drying and disinfestations by infrared radiation heating and rice milling quality [J]. Journal of Food Engineering,2008,84:469-479.
    [12]Mutters, R.G., Thompson, J.F. Rice quality handbook [M]. Oakland, CA.:UCANR Publications; 2009.
    [13]Araujo, R., Goncalves Rodrigues, A., Pina-Vaz, C. Susceptibility pattern among pathogenic species of Aspergillus to physical and chemical treatments [J]. Medical Mycology,2006, 44:439-443.
    [14]ICMSF. Toxigenic fungi:Aspergillus [M]. London:Blackie Academic and Professional, 1996.
    [15]Sandeep, K.P. Thermal processing of foods:Control and automation [M]. Iowa:Blackwell publishing Ltd,2011.
    [16]McCann, M.S., McDowell, D.A., Sheridan, J.J. Effects of reduction in beef surface water activity on the survival of Salmonella typhimurium DT104 during heating [J]. Journal of Applied Microbiology,2009,106:1901-1907.
    [17]Sun, D.W. Thermal food processing:new technology and quality issues [M]. New York:CRC Press,2012.
    [18]Furugori, K. Rice processing manufacturing industries in Japan:recent trends in technologies [M]. FAO/UNDP Regional Workshop on Rice Processing Industries. Jakarta (Tndonesia)1985.
    [1]高群,虞蔚岩.铜离子对卤虫的急性毒性试验[J].安徽农学通报,2010;16:54-55.
    [2]Panagoula, B., Panayiota, M., Iliopoulou-Georgudaki, J. Acute Toxicity of TBT and IRGAROL in Artemia salina [J]. International journal of toxicology,2002,21:231-233.
    [3]Svensson, B.M., Mathiasson, L., Martensson, L., et al. Artemia salina as test organism for assessment of acute toxicily of leachate water from landfills [J]. Environmental monitoring and assessment,2005,102:309-321.
    [4]Mclaughlin, J.L., Rogers, L.L., Anderson, J.E. The use of biological assays to evaluate botanicals [J]. Drug information journal,1998,32:513-524.
    [5]Montanher, A.B.P., Pizolatti, M.G., Brighente, I.M.C. An application of the brine shrimp bioassay for general screening of brazilian medicinal plants [J]. Acta Farm Bonaer,2002, 21:175-178.
    [6]Jacques Quignard, E.L., Nunomura, S.M., Pohlit, A.M. et al. Median lethal concentrations of Amazonian plant extracts in the brine shrimp assay [J]. Pharmaceutical Biology,2004,42: 253-257.
    [7]周常义,池信才,黄成,等.三唑磷对四种水生生物的毒性及安全评价研究[J].台湾海峡,2003,22:319-324.
    [8]Rao, J.V,. Kavitha, P., Jakka, N.M. et al. Toxicity of organophosphates on morphology and locomotor behavior in brine shrimp, Artemia salina [J]. Archives of environmental contamination and toxicology,2007,53:227-232.
    [9]刘浩强,李鸿筠,冉春,等.啶虫脒5种常用剂型对柑桔蚜虫类害虫的田间药效评价[J].中国南方果树,2010,39:40-41.
    [10]Ames, B.N., McCann, J., Yamasaki, E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test [J]. Mutation Research/Environmental Mutagenesis and Related Subjects,1975,31:347-363.
    [11]王家玲,运珞珈,吕维善,等.鼠伤寒沙门氏菌/微粒体试验(Ames试验)对9种化学物质致突变性的测定[J].华中科技大学学报(医学版),1980,4:011.
    [12]黄燕,钟振国,罗沛,两种Ames试验方法在蒲葵子提取物致突变试验中灵敏度的研究[J].时珍国医国药,2009,20:1578-1579.
    [13]AOAC. Thin-Layer Chromatographic Method [S]. AOAC Official Method 97122 Standards for Aflatoxins,1997.
    [14]Murata, H., Mitsumatsu, M., Shimada, N. Reduction of feed-contaminating mycotoxins by ultraviolet irradiation:an in vitro study [J]. Food Additives and Contaminants,2008, 25:1107-1110.
    [15]Bottalico, A., Logrieco, A., Visconti, A. Fusarium species and their mycotoxins in infected corn in Italy [J]. Mycopathologia,1989,107:85-92.
    [16]ASTMD. Standard method of test for evaluating acute toxicity of water to freshwater fishes [S].
    [17]刘树深,刘芳,刘海玲.20种水溶性有机溶剂对发光菌的毒性效应[J].中国环境科学,27:371-276.
    [18]卢珩俊,陆胤,徐冬梅,等.咪唑类离子液体系列对卤虫的急性毒性研究[J].中国环境科学,2011,31:454-460.
    [19]Chang, F.H., Gall, M. Pigment compositions and toxic effects of three harmful Karenia species, Karenia concordia, Karenia brevisulcata and Karenia mikimotoi (Gymnodiniales, Dinophyceae), on rotifers and brine shrimps [J]. Harmful Algae,2013.
    [20]Hall, B.M., Ma, C.X., Liang, P. et al. Fluctuation AnaLysis CalculatOR:a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis [J]. Bioinformatics, 2009,25:1564-1565.
    [21]Maron, D.M., Ames, B.N. Revised methods for the Salmonella mutagenicity test [J]. Mutation Research/Environmental Mutagenesis and Related Subjects,1983,113:173-215.
    [22]Aibara, K., Yamagishi, S. Effects of ultraviolet irradiation on the destruction of aflatoxin B [J]. Proceedings of the First US-Japan Conference on Toxic Microorganisms:Mycotoxins and Botulism, Under the US-Japan Cooperative Program in Natural Resources (UJNR). Honolulu, Hawaii UJNR Joint Panels on Toxic Microorganisms and the US Department of the Interior; 1970. p.211.
    [23]Elmnasser, N., Guillou, S., Leroi, F. et al. Pulsed-light system as a novel food decontamination technology:a review [J]. Canadian journal of microbiology,2007,53: 813-821.
    [24]Murata, H., Sultana, P., Shimada, N., et al. Structure-activity relationships among zearalenone and its derivatives based on bovine neutrophil chemiluminescence [J]. Veterinary and human toxicology,2003,45:18.
    [25]刘睿杰.黄曲霉毒素B1在不同介质中紫外降解机理及安全性评价[D].无锡:江南大学,2011.
    [26]Marion, E., Prado, S., Cano, C. et al. Photodegradation of the Mycobacterium ulcerans Toxin, Mycolactones:Considerations for Handling and Storage [J]. PloSone,2012,74:e33600.
    [27]李伟英,张明,陈玲,等.紫外线对微囊藻毒素-RR降解动力学拟合[J].同济大学学报:自然科学版,2009,7:925-928.
    [28]Cooper, W.J., Zika, R.G., Petasne, R.G., et al. Sunlight-induced photochemistry of jumic substances in natural waters:major reactive species. Washington D.C.:American Chemical Socoety,1989.
    [29]杨俊,张平,刘恋,等.波长254nm和365nm紫外辐照下活性艳红X-3B的光催化降解动力学研究[J].环境科学,2011,32:3365-3371.
    [30]USEPA. Proctedings of seminar on methodology or montoring the marine enviroments [S]. United states environmental protection agency (USEPA); 1983.
    [31]颜天,谭志军,李钧等.塔玛亚历山大藻和赤潮异弯藻对黑褐新糠虾和卤虫的急性毒性作用[J].海洋学报,2004,26:76-81.
    [32]Kleinwachter, V., Koukalova, B. Reduction of mutagenic activity of aflatoxins after UV-irradiation [J]. Acta biologica et medica Germanica,1979,38:1239.
    [33]Moreau, M., Lescure, G., Agoulon, A. et al. Application of the pulsed light technology to mycotoxin degradation and inactivation [J]. Journal of Applied Toxicology,2011, doi:10.1002/jat.1749.
    [34]王锋.黄曲霉毒素B1的辐射降解机理及产物结构特性分析[D].北京:中国农业科学院,2013.
    [1]EC. Setting Maximum Level for Certain Contaminants in Food-stuffs [J]. Official Journal of the European Union,2006;49:5-24.
    [2]FDA. Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed. Industry Activities Staff Booklet. Washington, DC,2000.
    [3]Bullerman LB, & Bianchini, A. Stability of mycotoxins during food processing [J]. International Journal of Food Microbiology,2007,119:140-146.
    [4]付鹏程,李荣涛,谢刚,等.稻谷真菌毒素污染调查与分析[J].粮食储藏,2004;33:49-51.
    [5]余敦年,刘勇,刘坚,等.粮仓内稻谷及稻谷籽粒中黄曲霉毒素B1分布情况研究[J].粮食储藏,2008,6:42-44.
    [6]Dong, Q., Manns, D., Feng, G. et al. Reduction of patulin in apple cider by UV radiation [J]. Journal of Food Protection,2010,73.
    [7]Yousef, A.E., Marth, E.H. Use of Ultraviolet Energy to Degrade Aflatoxin M1 in Raw or Heated Milk with and Without Added Peroxide [J]. Journal of dairy science,1986, 69:2243-2247.
    [8]Gomez-Lopez, V.M, Ragaert, P., Debevere, J., et al. Pulsed light for food decontamination:A review [J]. Trends in Food Science & Technology,2007,18:464-473.
    [9]Jun, S., Irudayaraj, J., Demirci, A., et al. Pulsed UV-light treatment of corn meal for inactivation of Aspergillus niger spores [J]. International Journal of Food Science & Technology,2003,38:883-888.
    [10]Ozer, N.P., Demirci, A. Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment [J]. International journal of food science & technology,2006,41:354-360.
    [11]Gomez, P.L., Salvatori, D.M., Garcia-Loredo, A., et al. Pulsed light treatment of cut apple: dose effect on color, structure, and microbiological stability [J]. Food and Bioprocess Technology,2012,5:311-322.
    [12]Trucksess, M.W., Abbas, H.K., Weaver, C.M., et al. Distribution of aflatoxins in shelling and milling fractions of naturally contaminated rice [J]. Food Additives & Contaminants:Part A, 2011,28:1076-1082.
    [13]Breckenridge, C., Arseculeratne, S.N. Laboratory studies on parboiled and raw rough rice and their milling fractions as substrates for the production and accumulation of aflatoxin [J]. Food microbiology,1986,3:67-72.
    [14]Wallen, R.D., May, R., Rieger, K. et al. Sterilization of a new medical device using broad-spectrum pulsed light [J]. Biomedical Instrumentation & Technology,2001,35: 323-30.
    [15]Freitas-Silva, O., Venancio, A. Ozone applications to prevent and degrade mycotoxins:a review [J]. Drug metabolism reviews,2010,42:612-620.
    [16]Maeba, H., Takamoto, Y., Kamimura, M. et al. Destruction and detoxification of aflatoxins with ozone [J]. Journal of Food Science,1988,53:667-668.
    [17]McKenzie, K.S, Sarr, A., Mayura, K., et al. Chemical degradation of diverse mycotoxins using a novel method of ozone production [J]. Food and Chemical Toxicology,1997,35: 807-820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700