加压毛细管电色谱—微流蒸发光散射检测联用系统研究及其在食品安全检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加压毛细管电色谱(Pressurized Capillary Electrochromatography, pCEC)是近年来新兴的一种电动毛细管微分离技术。它基于毛细管电色谱的理论和技术发展,具备毛细管区带电泳和高效液相色谱双重分离特征,是一种组合式创新的分离技术。与传统电泳技术相比,pCEC可同时分离带电物质和中性物质,具备更加优异的选择性和分辨率,更好的重复性和准确度;与传统高效液相色谱技术相比,pCEC具备更高的柱效率和分离速度;而与传统毛细管电色谱(capillary electrochromatography, CEC)相比,pCEC由于采用压力驱动,改善了由于焦耳热效应所带来的气泡和柱子烧干问题,而且实现了CEC的梯度洗脱,从而有能力解决更加复杂体系的样品分离问题。且因为pCEC本身的微流特点,大大节省了分析成本,同时对环境保护起到积极作用。作为近十几年来色谱技术的重大突破之一,pCEC适应现代分析仪器微型化的发展趋势,已成功应用于生命科学、中医药研究、药物分析、环境监测以及食品安全等热点研究领域,受到广泛的关注。
     蒸发光散射检测器(Evaporative light-scattering detector, ELSD),是一种自上世纪九十年代开始得到广泛应用的“通用型”和“质量型”检测器。相比目前液相色谱技术中使用最多的紫外检测器,ELSD不受物质本身分子结构的限制,不依赖物质本身的光学特性,对大多数物质的响应因子保持一致,只要物质的挥发性低于流动相溶剂的挥发性,ELSD就可用于绝大多数不挥发和半挥发性化合物的分析检测。近年来,随着ELSD的普及化程度不断提高,其应用领域也日益广泛,尤其在天然产物,中草药,脂类,表面活性剂及碳水化合物等物质的分析检测上表现出巨大的优势。
     本论文的立意基于将ELSD"通用性”特征,与pCEC分离技术的高效、高选择性和高分辨度以及快速分离等优势相结合的目的,致力于ELSD的微型化研究,实现加压毛细管电色谱—微流蒸发光散射检测器的联用(pCEC-μELSD)以及应用技术开发。主要研究内容包括:通过对微流雾化、微型蒸发化及微型光散射检测等关键部件的设计与开发,实现ELSD的整体微型化,研制成功的μELSD适用于加压毛细管电色谱等毛细管微分离技术的联用检测;通过对ELSD的雾化,蒸发和光散射检测主要仪器部件的参数优化,并进行pCEC-μELSD接口技术研究,实现pCEC-μELSD的联用;对照常规HPLC-ELSD分离技术,基于pCEC-μELSD联用平台,建立合适的分析方法并通过方法学验证等手段,对pCEC-μELSD联用平台的适用性和稳定性做出初步评价;建立了食品中人工合成和天然甜味剂的pCEC-μELSD分离检测方法,验证了仪器的实用性和先进性。pCEC-μELSD联用平台的研制将为现代各前沿研究领域对分析复杂物质的需求提供了一种高效且经济的新技术。本论文主体部分共六章:
     第一章系统综述了加压毛细管电色谱的发展历史,基本原理,联用检测技术,毛细管柱技术以及应用领域的情况;同样详细介绍了蒸发光散射检测器的发展史,基本原理,应用领域以及微型化研究现状;阐述了二者的特点和联用的可行性,并提出了本论文的研究目的和意义。
     第二章基于蒸发光散射检测器的整机微型化目的,以及对ELSD检测机理的认识和研究,分别对ELSD的雾化,蒸发和光散射检测三大主要关键部件进行微型化结构设计,最终确定了由雾化喷嘴和雾化毛细管组成的微流雾化器结构;圆柱锥形管,表面分布连接加热电阻,外置保温套筒的微型蒸发管结构;用于连接蒸发管和光散射池,外侧面具备辅助载气进口的鞘流套结构;由激光作为光源,光电倍增管作为信号采集装置,并带有光阱结构设计的微型光散射检测池结构。而为有效控制各部件正常工作以及参数调整,配套设计的电路系统可对蒸发温度,载气流速进行实时设置与监控,可对检测信号数值,系统气压进行实时监控,并专门为采集的检测信号设计了放大电路,为后续硬件结构改进,参数优化提供了调整空间和手段。
     第三章基于第二章ELSD的硬件结构设计,分别对μELSD的雾化,蒸发和光散射检测部件进行了参数优化。实验中研究了雾化喷嘴以及与之匹配的雾化毛细管的尺寸对雾化颗粒大小和均匀度的影响,确定了雾化喷嘴和雾化毛细管匹配的最佳尺寸为410μm和20μm I.D.×360μm O.D.;考察了雾化毛细管的位置对信噪比和重复性的影响,确定了雾化毛细管相对雾化喷嘴的位置状态;考察了不同长度、内径和形状的蒸发管,发现当锥形蒸发管的尺寸出口内径为1.0mm,入口内径为7.5mm,长10cm时,可获得最佳信噪比结果;实验中还制作了3种不同规格的光散射池进行考察,最终选择最大体积的光散射池(65mm i.d.×60mm高)以提高信噪比。通过上述优化实验,对μELSD整机性能进行了初步测试:其LOD是0.1ng(S/N=3,葡萄糖直接进样),基线噪声为8μV,基线漂移为0.182mV/h,峰面积重复性RSD6为0.4%,峰高重复性RSD6为0.3%。基于本文研制的μELSD,通过电隔离接口与零死体积三通两种接口技术,实现了pCEC-μELSD的联用。
     第四章基于第三章pCEC-μELSD的整体优化和调试结果,为了验证pCEC-pELSD联用平台用于实际样品分析的适用性和准确性,对pCEC-μELSD的性能进行系统评价,本章实验建立了食品中果糖,葡萄糖和蔗糖的亲水作用色谱的pCEC-μELSD分析方法,并进行了方法学验证和准确度测试。实验结果表明,pCEC-μELSD平台上使用TSK Amide-80毛细管色谱柱(150μm I.D.×150mm,5μm),在乙腈:水(80:20,v/v),分离电压+5KV条件下,可实现果糖,葡萄糖和蔗糖的快速分离。其中线性范围为0.01-1.00μg;检出限4ng,回收率在88.1%-103.9%之间;RSD在0.9%-3.3%之间。对比参考文献中,常规HPLC-ELSD类似的实验数据,pCEC-μELSD的线性范围和检测限略好于前者,回收率和RSD数据则相近,且分析速度最快。通过本章实验结果的各项比照,说明本论文研制的pELSD以及搭建的pCEC-μELSD平台具备良好的系统适应性和稳定性,实验数据准确可靠。
     第五章基于本论文研究的pCEC-μELSD平台,建立了一种无糖食品中赤藓糖醇、木糖醇、山梨糖醇、麦芽糖醇和乳糖醇的分离检测方法。实验中考察了流动相组成,分离电压对5种糖醇的分离影响,研究了不同酸碱体系下对检测信噪比的影响,并对微流蒸发光散射检测器的蒸发温度,载气流量的参数设置进行了优化。实验结果表明,赤藓糖醇的线性范围在0.01-1.0μg,检测限为4ng;木糖醇的线性范围在0.01-1.0μg,检测限也4ng;山梨糖醇的线性范围在0.015-1.5μg,检测限均为6ng;麦芽糖醇和乳糖醇的信噪比较低,线性范围分别为0.025-2.5μg,0.02-2.0μg,检测限分别为11ng和8ng。3个添加水平下的样品的平均回收率为82.4%-107.2%之间,相对标准偏差RSD6小于3.0%;方法最低检出限(LOD,S/N=3)在4-11ng之间;对比常规HPLC-ELSD分离5种糖醇的结果,分析速度可提高近30%。将该方法应用于两种实际样品:无糖饮料样品(产品标明含有木糖醇为主要甜味添加剂)和木糖醇口香糖样品(产品标明含有木糖醇为主要甜味添加剂,少量山梨糖醇和麦芽糖醇)的测定中,均准确检出了目标样品。该方法选择性好,分离速度快、灵敏度高,重现性好,经济环保,具有较高的实用性,为无糖食品中糖醇的定量检测提供了一种快速且行之有效的方法。
     第六章基于本论文研究的pCEC-μELSD平台,针对目前食品中多类甜味剂复配添加的情况,建立了一种食品中人工合成甜昧剂和糖醇类甜味剂的分离检测方法,可同时分离检测安赛蜜,甜蜜素,阿斯巴甜,三氯蔗糖,赤藓糖醇,木糖醇,山梨糖醇,麦芽糖醇和乳糖醇9种常见甜味剂。实验中考察了流动相体系组成,流动相的酸碱pH环境,分离电压,ELSD蒸发温度,载气流速等实验参数并进行了优化。实验结果表明:9种甜味剂的线性范围为7ng..4.2μg(相关性系数大于0.992)之间;3个添加水平下的样品的平均回收率为85.4%-110.4%之间,相对标准偏差RSD6小于3.6%;方法检测限(LOD, S/N=3)在7ng-42ng之间。将该方法应用于三种实际样品:木糖醇无糖口香糖(柠檬味,产品标明含有木糖醇,麦芽糖醇,安赛蜜,阿斯巴甜),木糖醇无糖口香糖(苹果味,产品标明含有木糖醇,麦芽糖醇,安赛蜜,三氯蔗糖)和无糖薄荷糖(产品标明含有安赛蜜,三氯蔗糖,山梨糖醇)的测定,均准确检出了目标样品。该方法利用pCEC-μELSD的双重分离能力,通过调节电压参数,实现了两大类甜味剂的同时分离检测,有效应对了目前食品添加剂多类添加的复杂情况,数据稳定可靠,灵敏度满足常规要求。
Pressurized capillary electrochromatography (pCEC) based on the theory and technique of capillary electrochromatography (CEC) is emerging as an environmental friendly micro-separation technology in recent years. Compared with capillary zone electrophoresis (CE), where only charged compounds can be separated,bothcharged and neutral analytes can be separated simultaneously in pCEC. Moreover, pCEC can provide higher column efficiency than high performance chromatography (HPLC). Even more importantly, compared with traditional CEC, gradient elution mode can be achieved and some problem associated withJoule heating effect, like bubble formation and dryout of the column can bealsoovercome in pCEC due to the introduction of pump pressure. The appearance of pCEC followed the trend of high performance and miniaturization in the development of modern analytical instrumention. Thus, pCEC have been applied to the analysis of more complicated samples in life science, traditional Chinese medicine research, drug analysis, environment monitoring and food safety, as well as other popular research fields.
     Evaporative light-scattering detector (ELSD) has been widely used as a universal detector for HPLC since the1990s. The application of ELSD doesn't depend on the molecular structure and optical properties of analytes. ELSD only requests the evaporitivity of analytes to be lower than that of the mobil phase. Recently, ELSD has displayed the huge advantage for the detection of natural products, Chinese herbal medicines, lipids, surfactants and carbohydrates.
     Therefore, the aim of this dissertation focuses on the development of a platform based on pCEC coupledto micro-ELSD (μELSD)and its applications. Some key parts such as evaporation assembly, nebulization assembly, and micro light scattering module were designed. Subsequently, the interface technique of pCEC with μELSD was investigated through optimizing the operation conditions such as evaporation, nebulizer and light scattering parts. The performance of pCEC with μELSD was valuated in detail, and then a method based on pCEC-μELSD was applied successfully for the analysis of synthetic and natural sweeteners in food samples. pCEC-μELSD as an efficient and economical technology hasgreat potential for the analysis of complicated samples in various research fields。The content of this dissertation is as follows:
     Chapter1:The research background of pCEC and ELSD including their advances history, basic principle and application is systematically summarized. According to their characteristics, the feasibility of the coupling of two techniques was proposed. The purpose and significanceof this dissertation wereput forward。
     Chapter2:In order to investigate the miniaturization of the evaporative light-scattering detector and understand the mechanism of μELSD, the structure of evaporation assembly, nebulizer assembly and light scattering cell were designed in detail in this chapter. The finalized structure of micro-fluid nebulizer was composed of nebulization nozzle and nebulization capillary. The finalized mirco-evaporator was based on cylindrical conical tube which was connected to heating resistor and covered with insulation sleeve. Sheath liquid assembly equipped with supplementary carrier gas was used to connect the evaporative annular tube to light scattering detector cell. The laser and photomultiplier were used, respectively, as the light source and scattering light collector of μELSD. Light trap was also designed in the structure of μELSDin order to avoid the reflected light. The electronic circuit system that designed for μELSD can be used to adjust and monitorvarious parameters of μELSDin real time such as evaporation temperature, flow rate of carrier gas and system carrier gas pressure.
     Chapter3:The parameters of evaporation assembly, nebulizer assembly and light scattering cell were optimized in this chapter. The influence of nebulization nozzle and matching nebulization capillary on atomizing effect was investigated. The finalized size of nebulization nozzle and matching nebulization capillary were410μm and20μm I.D.×360μm O.D,respectively. The influenceof the position of capillary on the signal to noise ratio and repeatability was also investigated. It is indicated that the best signal to noise ratio can be abtained under the condition of10cm length,7.5mm inlet diameter and1.0outlet diameter of cylindrical conical tube. Moreover, three different light scattering detector cells were made to evaluate the influence of detector cell size on the signal to noise ratio. Finally, the largestone(65mm i.d.x60mm high)was choosen to increase the signal to noise ratio. Therefore, the detection limit of μELSD was caculated as0.1ng (S/N=3, direct injection with glucose sample),the noise of baseline was0.8μV,the baseline drift was0.182mV/h, the reproducibility of peek aera (RSD6) was0.4%, and the reproducibility of peek height(RSD6) was0.3%. The platform of pCEC coupling toμELSD was built successfully.
     Chapter4:Optimization and validation of pCEC with μELSD detector were processed. A method base on pCEC-μELSD was developed for the determination of a mixture of fructose, glucose and sucrose in food. TSK Amide-80capillary column (150mm x200μ m,5μm) was selected. The analytes can be separated within13min under-3kV of operation voltage. The mobile phase was chosen as80%acetonitrile in DI water. The linear range of the method was from0.01to1.0μg for each analytes. The detection limit was4ng. Recoveries within88.1%-103.9%and RSD within0.9%-3.3%(n=6) indicated that adaptability and stability of pCEC with μELSD are comparable with commercial HPLC-ELSD.
     Chapter5:Based on the technique of the pCEC-μELSD, a method was established for analysis of a mixture of erythritol, xylitol, sorbitol, maltose and lactitol in the sugar-free food. Some operation conditions of ELSD such as evaporated temperature and flow rate of carrier gas and the chromatographic condition were optimized. The influence of pH value on the signal to noise ratio was also investigated. The linear range of each analyetes was from0.01to2.5μg (correlation coefficient greater than0.998).The average recovery was between82.4%-107.2%under three different level by using standard addition method and the relative standard deviation (RSD) was less than3.9%(n=6). The detection limit (LOD, S/N=3)was between4to11ng. Contrast to conventional method based on HPLC with ELSD, analysis speed was improved obviously. This method then was applied for analyses of two real samples. The proposed method provides a fast and effective method for the quantitative detection of sugar alcohol in sugar-free foods.
     Chapter6:Based on the technique of the pCEC-μELSD, ananalytical method was established to detect simultaneously nine common sweetener. The operation conditions of ELSD and the separation condition were both optimized. The linear range of each sweetener was from7ng to4.2μg (correlation coefficient greater than0.998).The average recovery was between85.4%-110.4%under three different level by using standard addition method and the RSDwas less than3.6%(n=6). The detection limit (LOD, S/N=3)was between7ng to42ng. This method was applied for three reall xylitol samples and the targeted analytes were separated and detected accurately. The proposed method provides a sensitive and stable means for the determination of two kinds of sweetener simultaneously.
引文
[1]Hiroaki Kitano. Foundations of systems biology. Liu B F, Zhou Y H, et al, transl. Beijing: Chemical Industry Press(北野宏明.系统生物学基础.刘笔锋,周艳红,等,译.北京:化学工业出版社),2007
    [2]Charles Masi, Tim Studt.The Future of Chromatography White Paper. [2009-07-03].
    [3]Stolyhwo A, Colin H, Guiochon G., J Chromatogr 1983,265:1.
    [4]Stolyhwo A, Study of the Qualitative and Quantitative Properties of the Light Scattering Detector, J Chromatogr,1984,288:253.
    [5]江英桥,王强,魏国,等.高效液相色谱蒸发激光散射检测器分析西洋参中的人参皂苷.中国药科大学学报,2001,32(1):41.
    [6]Sung W K, Sang B H, IIH P, et al. J ChromatogrA,2001,921:335.
    [7]秦少容,余佳文,岳廷哲,等.高效液相色谱法-蒸发光散射检测器法测定红参及育精胶囊中人参皂苷Rgl和Re的含量.中国中药杂志,2001,26(8):544.
    [8]James N. A., J. Microcol. Sep.,1998,10(6),491-502.
    [9]Magnus B.O.A., Lars G. B., J. Microcol. Sep.,1998,10(3),249-254.
    [10]Karen G.,Arlette B., Pierre C., J Chromatogr A,2004,1051:43-51.
    [11]Lo_c Q., Karen G., Arlette B., Pierre C., J. Sep. Sci.2006,29,390-398.
    [12]H.H.Strain,J.Am.Chem.Soc.1939,61:1292.
    [13]Mould D L, Synge R L M. Analyst,1952,77:964.
    [14]J.Kowalczyk, J. Chromatogr.1964,14:411.
    [15]J. Salak and P. Roch, J. Chromatogr.1972,71:459.
    [16]G. Bundschuh, J.Chromatogr.1971,56:241.
    [17]Pretorius V, Hopkins B J, Schieke J D. J. Chromatogr.1974,99:23-30.
    [18]Jorgenson J W, Lukacs K D. J. Chromatogr,1981,218:209.
    [19]T.Tsuda, K.Nomura, and G. Nakagawa, J. Chromatogr.1982,248:241.
    [20]T.Tsuda, Nippon Kagaku Kaishi Pt.1986,7:937.
    [21]T.Tsuda, Anal. Chem.1987,59:521.
    [22]T.Tsuda, Anal. Chem.1988,60:1677.
    [23]Martin M, Guiochon G., Anal Chem,1984,56:614-620.
    [24]Knox J H, Grant I H. Chromatographia,1987,24:135.
    [25]Knox J H, Chromatographia,1988,26:329.
    [26]Knox J H, Grant I H. Chromatographia,1991,32:317.
    [27]Yamamoto H, Baumann J, Chromatogr,1992,593:313-319.
    [28]Chao.Yan, Daneil. Schaufelberger, and F. Erni, J. Chromatogr, A.670,15(1994).
    [29]Mohammad J, Zeerak A, Hjerten S. Biomed Chromatogr,1995,9:80.
    [30]Behnke B, Bayer E, J. Chromatogr A,1994,680:93.
    [31]C.Yan, R. Dadoo, R.N. Zare, D.J. Rakestraw, and D.S.Anex, Anal.Chem.68,2726(1996).
    [32]M.R. Euerby,presented at the 4th International Symposium on Capillary Electrophoresis, York, August(1996).
    [33]Tsuda T. Anal. Chem.,1987,59:521-523.
    [34]Eimer T, Unger K K, Tsuda T. Fresenius J. Anal.Chem,1995,352:649-653.
    [35]Zhang Y K, Shi W, Zhang L H, Zou H F. J Chromatogr. A,1998,802:59-71.
    [36]Zhang K, Jiang ZJ, Gao R Y, Yan C,et al. J. Chromatogr. A,2003,987:453-458.
    [37]Zhang K, Yan C, Gao R Y, et al. Chinese J. Anl. Chem.,2003,21:419-422.
    [38]Liu S F, Wu X P, Xie Z H, et al. Electrophoresis,2005,26:2342.
    [39]Lin Z A, Xie Z H, LuH X, et al. Anal. Chem,2006,78,5322.
    [40]D.N. Heiger, High Performance Capillary Electrophoresis. Hewlett-Packard Company,1997.
    [41]M.M. Dittmann, G.P. Rozing, J. Microcol. Sep.1997,9,399-408.
    [42]A.S. Rathore, Cs.Horvath, Anal.Chem.1998,70,3271-3274.
    [43]A.S. Rathore, E. Wen, Cs. Horvath, Anal.Chem.1999,71,2633-2641.
    [44]M. Zhang, Z. El Rassi, Electrophoresis 1998,19,2068-2072.
    [45]C. Yang, Z. El Rassi, Electrophoresis 2000,21,1977-1984.
    [46]Von Smoluchowski M., Graetz I., Handbuch der Elektrizitat und des Magnetismus, Barth. Leipzig,1921:366.
    [47]Rice L., Whitehead R., J. Phys. Chem.,1965,69:4017
    [48]Grossman P. D., Colburn J. C., Capillary Electrophoresis:Theory and Practice, AcademicNew York,1992:19
    [49]Walhagen K., Unger K. K., Heam M. T. W., J. Chromatogr. A,2000,893:401.
    [50]Zhang S., Zhang J., Horvath C., J. Chromatogr. A,2001,914:189.
    [51]张丽华,邹汉法,施维,倪坚毅,张玉奎,色谱,1998,16:106.
    [52]Wen E., Asiaie R., Horvath Cs, J. Chromatogr A,1999,855:349.
    [53]Rathore, A. S., Horvath, C., Electrophoresis 2002,23,1211-1216.
    [54]Rathore, A. S., Horvath, C., J. Chromatogr. A 1996,743,231-246.
    [55]Tsuda T, Electric Field Application In Chromatogrephy, Industrial And Chemical Processes, Vch, Weinheim,1995:Part 1.
    [56]张丽华,中国科学院大连化学物理研究所博士论文,大连,2001.
    [57]Gfroerer P., Tseng L., Rapp E., Albert K., Bayer E., Anal.Chem.2001,73:1432.
    [58]Yang C M, EIRassi Z. Electrophoresis,1999,20:18.
    [59]Wen E, Rathore A S, Horvlth C. Electrophoresis,2001,22(3):720.
    [60]Yuan R J, Wang H F, Liu D N, etal Progress in Chemistry,2006,18(9):181.
    [61]GalhianeM S, Rissato S R, Apon B M. J Liq Chromatogr.RelatTechnol,2005,28:349.
    [62]Moring S E, Colburn J C, Grosam an P D, etal LC-GCInt,1990,8:34.
    [63]Tsuda T, Sweedler J.V, Rectangular capillaries for CZE. Anal.Chem.,1990,62:2149.
    [64]Tsuda T, Ikedom. Observation of flow profile in electroosmosis in a rectangular capillary, J Chromatogr.,1993,632:201.
    [65]Dittmann M M, Rozing G P, RossG, et al. J. CapilElectrophor,1997,4:201
    [66]QuQ S, He Y Z, Gan W E, et al. J. Chromatogr. A,2003,983:255-262.
    [67]Qu Q S, Qu R J, He Y Z, et al. J. Sep. Sci.,2004,27:725-728.
    [68]Boyce M C, Breadmore M, Macka M, et al. Electrophoresis,2000,21:3073.
    [69]Hilder E F, Zemann A J, Macka M, et al. Electrophoresis,2001,22:1273.
    [70]Chen X J, Zhao J, Meng Q, et al. J. Chromatogr A,2009,1216:7329.
    [71]Zhang B, BergstrEm E T, GoodallD M, et al. Anal Chem,2007,79:9229.
    [72]Yan C, Dadoo R, Zhao H, et al. Anal Chem,1995,67:2026.
    [73]Yan C, Dadoo R, Zare R N, et al. Anal Chem,1996,68:2726.
    [74]Dadoo R, Zare R N, Yan C, et al. Anal Chem,1998,70:4787.
    [75]Hilmi A, Luong J H T. Electrophoresis,2000,21:1395.
    [76]Liu S F.Wu X P, Xie Z H, et al. Electrophoresis,2005,26:2342.
    [77]Liu S. F. [PhD Dissertation]. Fuzhou:Fuzhou University(刘绍锋.[博士学位论文].福州:福州大学),2007
    [78]Verheij E R, Tjaden U R, Niessen M A, et al. J. Chromatogr,1991,554:339.
    [79]HugenerM, Tinke A P, Niessen M A, et al. J.Chromatogr,1993,647:375.
    [80]Schmeer K, Behnke B, Bayer E. Anal. Chem,1995,67:3656.
    [81]Zheng J, Shamsi S.A. Anal. Chem,2003,75:6295.
    [82]Tanaka Y, Otsuka K, Terabe S. J. Pharm Biomed Anal,2003,30:1889.
    [83]Zheng J, Shamsi S.A. Anal. Chem,2006,78:6921.
    [84]Smith R D, Barnaga C J, Udseth H R.Anal.Chem.,1988,60:1948-1952.
    [85]Tegeler T J, Mechref Y, Boraas K, et al. Anal. Chem,2004,76:6698.
    [86]Wahl J H, Smith R D. J Cap Electrophoresis,1994,1:62.
    [87]Wahl J H, Gale D C, Smith R D. J Chromatogr,1994,659:217.
    [88]Lee E D, MuckW, Hen ion J D, et al. J.Chromatogr,1988,458:313.
    [89]Warriner, R.N, Craze, A. S, Games, D. E., Lane, S. J., RapidCommun. Mass Spectrom.1998, 12,1143-1149.
    [90]Lazar, I. M., Li, L., Yang, Y., Karger, B. L., Electrophoresis,2003,24,3655-3662.
    [91]Que, A. H., Novotny, M. V., Anal. Bioanal. Chem.2003,375,599-608.
    [92]lvanov, A. R., Horvath, C., Karger, B. L., Electrophoresis2003,24,3663-3673.
    [93]Puseche r K, Schewitz J, BayrE. Anal. Chem,1998,70:3280.
    [94]Pusecke r K, Schewitz J, GfrEre r P, et al. Anal. Chem,1998,70:3280.
    [95]GfrEre r P, Schewitz J, PuseckerK, et al. Electrophoresis,1999,20:3.
    [96]Lin Z A. [PhD Dissertation]. Fuzhou:Fuzhou U n ive rs ity(林子俺.[博士学位论文].福州:福州大学),2007
    [97]Lin Z A, L in J, Wu X. P. Electrophoresis,2008,29:401.
    [98]Lin Z A, Wu X P, Lin X C, J. Chromatogr A,2007,1170:118.
    [99]Robson, M.M., Cikalo, M.G., Myers,P., Euerby,M.R., J.Microcol.Sep.1997,9:357-372.
    [100]Dermaux, A., Sandra,P., Electrophresis 1999,20:3027-3065.
    [101]Li, D.,Knobel, H. H., Remcho, V. T., J. Chromatogr. B,1997,695:169-174
    [102]Spikmans, V., Lane, S. J., Tjaden, U. R., vander Greef, J., Rapid Commun. Mass Spectrom. 1999,13:141-149.
    [103]Spikmans, V., Lane, S. J., Smith, N. W., Chromatographia,2000,51:18-24.
    [104]Huang, P. Q., Jin, X. Y., Chen, Y. J., Srinivasan, J. R., Lubman, D. M., Anal. Chem.1999, 71:1786-1791.
    [105]Zhao Z Z, Qu Q S, Zhang X X, et al, Chinese Journal of Chromatography(赵震震,瞿其曙,张欣欣,等.色谱),2009,27(4):431.
    [106]Okamoto Y, Ikawa Y, Kitagawa F, et al, J Chromatogr. A,2007,1143:264.
    [107]Stahl, M., Jakob, A., von Brocke, A., et al,Electrophoresis 2002,23,2949-2962.
    [108]Unger K K, Kumar D, GrunM, Buchel G, etal, J Chromatogr A,2000,892.
    [109]Qu Q S, Lu X, Huang X J, H u X Y, Zhang Y K., Y an C. Electrophoresis,2006,27:3981.
    [110]Choudhary, G., Horvath, C, Banks, J. F., J. Chromatogr. A.1998,828:469-480.
    [111]Lord, G. A., Gordon, D. B., Myers, P., King, B. W., J. Chromatogr.A 1997,768:9-16.
    [112]Tsuda T, Tanaka 1, Nakagawa G. Anal. Chem,1984,56(8):1249.
    [113]Knox J H, Crant I H, Chromatogr.,1987,24:135.
    [114]Knox J H, Chromatogr.,1988,26:329.
    [115]Knox J H, Mccarmack K A,J. Lig. Chromatogr.,1989,12:2435.
    [116]Yan C. US Patent,5453163.1993:10-29.
    [117]Robson, M. M., Roulin, S., Shariff, S. M., etal, Chromatographia 1996,43:313-321.
    [118]Tang, Q., Xin, B., Lee, M.L., J. Chromatogr. A 1999,837:35-50.
    [119]Fermier,A.M., Colon,L.A., J. Microcol. Sep.1998,10:439-447.
    [120]Maloney, T. D., Colon,L. A., Electrophoresis 1999,20:2360-2365.
    [121]Reynolds, K. J., Colon,L. A., Analyst 1998,123:1493-1495.
    [122]Minakuchi H, Nakanishik, Soga N, Ishizuka N, Anal. Chem.,1996,68:3498-3501
    [123]Hara T, KobayashiH, IkegamiT, et al. Anal. Chem,2006,78:632
    [124]Laschober S, SulyokM, Rosenberg E.J. Chromatogr. A,2007,1144 (1):55-62.
    [125]Ye F G, Xie Z H, Wu X P, L in X C, Chen G N. J. Chromatogr A,2006,117:170.
    [126]Allen D, EIRassi Z. Electrophoresis,2003,24(3):408.
    [127]Allen D, EIRassi Z. J. Chromatogr, A,2004,1029:239.
    [128]BedairM, EIRassi Z. J. Chromatogr, A,2003,1013:47.
    [129]Preinerstorfer B, Lubda D, LindnerW, LmmerhoferM. J. Chromatogr, A,2006,1106:94.
    [130]Randon J, Huguet S, Piram A, Puy G, Demesmay C, J. Chromatogr, A,2006,1109:19.
    [131]Asiaie R, Huang X, Faman D, Horvath C. J Chromatogr, A,1998,806:251.
    [132]S. Hjerten, D. Eaker, K. Elenbring, et al, Jpn, J. Electrophor.1995,39:105.
    [133]Guryca V, Mechref Y, Palm A K, et al, J. Biochem BiophysMethods,2007,70:3.
    [134]Fujimoto C, Kino J, Sawada H. J. Chromatogr, A,1995,716:107.
    [135]Fujimoto C, Fujise Y, MatsuzawaE. Anal. Chem,1996,68(17):2753.
    [136]ZhangM Q, El Rassi Z. Electrophoresis,2001,22:2593.
    [137]Wahl A, Schnell 1, PyellU.,J.Chromatogr A,2004,1044:211.
    [138]Barrioulet M P, DelaunayBertoncini N, Demesmay C,Electrophoresis,2005,26:4104.
    [139]YeM L, Hu S, SchoenherrR M, DovichiN J., Electrophoresis,2004,25:1319.
    [140]Peters E C, Petro M, Svec F, et al, Anal.Chem,1998,70(11):2296.
    [141]Wang J B, L.H X, Lin X C, et al, Electrophoresis,2008,29:928.
    [142]Guo Y, Gaiki S. J.Chromatogr, A,2005,1074:71.
    [143]Jiang Z J, Reilly J, Everatt B, et al, J.Chromatogr, A,2009,1216:2439.
    [144]DellAversan C, Eaglesham G K, QuilliamM A.J.Chromatogr, A,2004,1028:155.
    [145]Wang X C, Lin X C, Xie Z H. Electrophoresis,2009,30:2702.
    [146]Herrero-Martinez J M, Eeltink S, Schoenm akers P J, et al. J.Sep.ScI.2006,29:660.
    [147]UysalU D, Aturki Z, RaggiM A, et al.,J.Sep.Sci,2009,32:1002.
    [148]Wu X P, Wang L, Xie Z H, et al. Electrophoresis,2006,27:768.
    [149]Liu S F, Wu X P, Xie Z H, et al. Electrophoresis,2005,26:2342.
    [150]Liu S F, Zhang X, Lin X C, et al. Electrophoresis,2007,28(11):1696.
    [151]Pesek J J, MatyskaM T, BloomquistT, et al.,J.Liq Chromatogr RelatTechnol,2005, 28(19):3015.
    [152]Chang C H, Chen C J, Chuang Y C, et al.Electrophoresis,2006,27:303.
    [153]WallW, Li J, Rassi Z E. J.Sep.Sci,2002,25:1231.
    [154]Chun-Chi Lin, Guan-Ren Wang, Chuen-Ying Liu. Analytica Chimica Acta,2006,572(2):197-204
    [155]Shediac R, N go la S M, Throckmorton D J, et al. J.Chromatogr, A,2001,925:251.
    [156]Augustin V, Stachowiak T, Svec F, et al, Electrophoresis,2008,29:875.
    [157]Zhao L J, Zou J J, Wang X L, et al. Chinese Journal ofChromatography(赵良娟,邹娟娟,王秀丽,等.色谱),2005,23:669.
    [158]Xie G X, Su M M, LiP, et al, Electrophoresis,2007,28:4459.
    [159]Que A H, NovotnyM V. Anal. Chem,2002,74:5184.
    [160]Que A H, Mechref Y, Huang Y, et al. Anal. Chem,2003,75:1684
    [161]Johannesson N, Olsson L, BEckstrEm D, et al, Electrophoresis,2007,28:1435
    [162]刘海兴,刘凤芹,于爱民,等.毛细管电色谱法测定旱莲中总黄酮的含量[J].潍坊学院学报,2005,5(6):95-96,100.
    [163]刘海兴,刘凤芹,于爱民,等.毛细管电色谱法测定槐花、槐角中总黄酮含量[J].化学试剂,2006,28(6):349-350.
    [164]Zhang, L. Y, Zhang, J., Wang, H., et al, J.Sep.Sci.2005,28,774-779.
    [165]Xie, C. H., Hu, J. W., Xiao, H.,et al, Electrophoresis 2005,26,790-797.
    [166]Yan, L. J., Zhang, Q. H., Zhang, J., et al, J. Chromatogr. A,2004,1046:255-261.
    [167]颜流水,王宗花,罗国安,等.梯度加压毛细管电色谱同时分离大黄提取液中5种葸醌类化 合物[J].高等学校化学学报,2004,25(5):827-830.
    [168]Leona K, Zdenek G, Hana S, et al. J.Chromatogr A,2001,916(1/2):265-271.
    [169]Desiderio C, Fanali S, J. Chromatogr. A,2000,895:123.
    [170]Lin X C, Wang J B, Li L Y, et al, J Sep ScI,2007,30:3011
    [171]Yang C M, Rassi Z E, Electrophoresis,2000,21:1977
    [172]Zhang K, Yan C, Zhang Z C, et al, J Liq ChromatogrRelatTechnol,2003,26(13):2119.
    [173]Mazereeuw M, Spikmans V, Tjaden U R, et al, J. Chromatogr. A,2000,879:219.
    [174]Deng Q L, Lun Z H, Shao H, et al, Anal Bioanal Chem,2005,382:51.
    [175]HilmiA, Luong J H T., Electrophoresis,2000,21:1395.
    [176]吕海霞,王家斌,王晓春.整体柱毛细管电色谱法测定蔬菜中有机磷农药的含量[J].光谱实验室,2007,24(4):735-738.
    [177]Dadoo R, Zare R N, Yan C, et al, Anal Chem,1998,70(22):4787.
    [178]Mayer S, Schruig V. J.H.R.C[J].,1992,15:129.
    [179]Lin B, ZhengM.M., Ng S C, et al, Electrophoresis,2007,28:2 771.
    [180]Messina A, SinibaldiM., Electrophoresis,2007,28:2 613.
    [181]Xu Y L, Liu Z S, WangH F, et al, Electrophoresis,2005,26:804.
    [182]Xie G X, Qiu M F, Zhao A H, et al, Chinese Journal ofAnalytical Chemistry(谢国祥,邱明丰,赵爱华等.分析化学),2007,35:160.
    [183]Preinerstorfer B, Hoffmann C, Lubda D, et al,Electrophoresis,2008,29:1626.
    [184]Von Brocke A, Wistuba D, GfrErer P, et al, Electrophoresis,2002,23:2963.
    [185]Jia L, Liu Y L, Du Y Y, et al, J. Chromatogr. A,2007,1154:416.
    [186]Huang X J, LiL, Li P, et al. Chinese Journal of Chromatography(黄晓晶,黎路,李鹏等.色谱),2007,25(3):437.
    [187]FORD D L, KENNARDW. [J]. JoilColourChem Assoc,1966,49:299-313.
    [188]CHARLESWORTH JM. [J]. Anal. Chem,1978,50(11):1414-1420.
    [189]STOLYHWO A, COLINH, GUIOCHON G. [J]. J Chromatogr,1983,265:1-18. MOUREY TH, OPPENHEIMER L E. [J].Anal. Chem,1984,56:2427-2434.
    [190]OPPENHEIMER L E, MOUREY TH. [J]. J Chromatogr,1985,323:297-304.
    [191]RIGHEZZAM, GUIOCHON G. [J]. J Liquid Chromatogr,1988,11(13):2709-2729.
    [192]GUIOCHON G,MOYSAN A,HOLLEY C.[J]. J. Liquid Chromatogr,1988,11(12): 2547-2570.
    [193]MENGERINK Y, MANH C JD, WALSV D. [J]. J.Chromatogr,1991,552:593-604.
    [194]MEERENP V D, VANDERDEELEN J, BAERT L. [J]. Anal. Chem.1992,64:1056-1062.
    [195]Wilcox M J, Nordhaus R S. Am Lab News Edition,1998,30-34.
    [196]兰燕宇,王爱民,何迅,等.高效液相色谱法测定强身颗粒中黄芪甲苷的含量[J].贵阳医学院学报,2005,30(2):143-145.
    [197]赵岩,刘金平,卢丹等,反相高效液相色谱-蒸发光散射检测定西洋参和西洋红参中人参皂苷的含量[J],时珍国医国药,2006,17(10):1956-1958.
    [198]王强,江英桥,马世平等,高效液相色谱法测定三七中三七皂苷R1的含量,中国中药杂志,2000,25(10):617.
    [1991薛燕,顾好粮.HPLC-ELSD法测定浙贝母中主要生物碱的含量[J].药学学报,2005,40(6):550-552.
    [200]Avery B. A., Venkatesh K. K., Avery M. A., J. Chromatogr. B,1999,730 (1):71-80.
    [201]王明娟,胡昌勤等,氨基糖苷类抗生素在蒸发光散射检测器中响应因子的一致性考察,药学学报,2002,7(3):204-206.
    [202]董海鸥,倪钟,张津枫等,高效液相色谱一蒸发光散射检测器分析糖类化合物[J].食品科学,1999,20(11):50-52.
    [203]梁乾德,马百平,王升启.液相色谱/蒸发光散射测定四物汤煎液中单糖和双糖的含量[J].中草药,2004,35(4):395-397.
    [204]鄢丹,张毅等,HPLC-ELSD法测定疏血通注射液中17种未衍生氨基酸含量,药物分析杂志,2007,27(04):558-560.
    [205]王玉红,申克宇等,高效液相色谱-蒸发光散射检测法直接检测20种未衍生基本氨基酸,色谱,2011,29(9):908-911.
    [206]S. Hoffmann, H.R. Norli, T. Greibrokk, J. High Resolut. Chromatogr.1989,12;260.
    [207]R. Trones, T. Andersen, I. Hunnes, T. Greibrokk, J. Chromatogr. A1998,55:814.
    [208]S. Heron, A. Tchapla, J. Chromatogr. A,1999,95:848.
    [209]Z. Cobb, P.N. Shaw, L.L. Lloyd, N. Wrench, D.A. Barret, J. Microcol. Sep.2001,13:169.
    [210]J.N. Alexander, J. Microcol. Sep.1998,10:491.
    [211]M.B.Andersson,L.G.Blomberg,J.Microcol.Sep.1998,10:249
    [1]Chariesworth J. M. Anal. Chem.1978,50,1414-1420.
    [2]Stolyhwo A, Colin H., Guiochon G. J Chromatogr,1983,265:1-18.
    [3]Stolyhwo A., Colin H., Martin M., Guiochon G. J Chromatogr,1984,288:253-275.
    [4]Stolyhwo A., Colin H., Guiochon G. Anal. Chem.,1985,57:1342-1354.
    [5]ZHAO Shao-Hua, LIU Min-Yan, WANG Yu-Feng, XU Hong-Hhui, ZHANG Yong-Feng, WANG Meng. Food Science,2012,33(02),224-226.
    [6]LIU Fang, WANG Yan, WANG Yu-Hong, ZHOU Jun-Yi, YAN Chao. Chinese Journal of Chromatography,2012,30(3):292-297.
    [7]LIU Wei, JIN Cheng, KONG Wei-Jun, Wang Hai-Tao, GONG Qian-Feng, Xiao Xiao-He. Chinese Journal of Analytical Chemistry,2010,38 (4):522-526.
    [8]WANG Yu-Hong, SHEN Ke-Yu, LI Peng, ZHOU Jun-Yi, YAN Chao. Chinese Journal of Chromatography,2011,29(9):908-911.
    [9]ZHANG Yong, ZHOU Ya-Qiu, CHEN Fa-Gui. Chinese Journal of Pharmaceutical Analysis, 2008,28(10):1732-1734.
    [10]James N. A. J. Microcolumn Separations,1998,10(6):491-502.
    [11]Magnus B. O. A., Lars G. B. J. Microcolumn Separations,1998,10(3):249-254.
    [12]Karen G., Arlette B., Pierre C. Journal of Chromatography A,2004,1051:43-51.
    [13]Loic Q., Karen G., Arlette B., Pierre C. J. Separation Science.2006,29:390-398.
    [14]Guillarme D, Rudaz S., Schelling C., Dreux M., Veuthey J.-L. Journal of Chromatography A, 2008,1192:103-112.
    [1]R. Trones, T. Andersen, I. Hunnes, T. Greibrokk, J. Chromatogr. A,1998,814:55.
    [2]S. Heron, A. Tchapla, J. Chromatogr. A,1999,848:95.
    [3]Z. Cobb, P.N. Shaw, L.L. Lloyd, N. Wrench, D.A. Barret, J. Microcol. Sep.2001,13:169.
    [4]James N. A.Evaporative Light Scattering Detection for Microcolumn Liquid Chromatography. J. Microcol. Sep.,1998,10(6):491-502.
    [5]胡平,周进,黄玉辉,王振国.气液同轴式喷嘴缩进比对雾化细度影响的实验.国防科技大学学报,1996,18(3):16-19.
    [6]Karen G., Arlette B., Pierre C. J. Chromatogr. A,2004,1051:43-51.
    [7]Roger Trones, Thomas Andersen, Iris Hunnes, Tyge Greibrokk, J. Chromatogr.A, 1998,814:55-61.
    [1]Unites States Pharmacopeia, Chapter<1058>, Analytical Instrument Qualification (美国药典通则<1058>分析仪器验证),USA,2009
    [2]ICH Q2B, Validation of Analytical Procedures:Methodology(分析过程的验证:方法学),adopted in 1996, Geneva Q2B, in 2005 incorporated in Q2(R1)
    [3]GB/T 5009.7-2003食品中还原糖的测定[S].
    [4]GB/T 22221-2008食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定[S].
    [5]蔡欣欣,张秀尧,高效液相色谱法蒸发光散射检测法测定食品中果糖、葡萄糖、蔗糖、乳糖和麦芽糖,中国卫生检验杂志,2007,17(6):968-969.
    [6]王艳颖,胡文忠等,高效液相色谱-蒸发激光散射法测定苹果中可溶性糖的含量,分析与检测,2008,34(6):129-131.
    [7]罗进,夏敏等,HPLC-ELSD同时测定食品中5种糖含量,食品科学,2010,31(8):226-229.
    [8]贾红卫,林童等,蒸发光散射检测-高效液相色谱法测定沙棘果蜜中的葡萄糖、果糖和蔗糖,理化检验-化学分册,2011,47(9):1066-1070.
    [1]GB 2760-2011食品添加剂使用标准,,中华人民共和国卫生部.
    [2]Mark A. Adams, ZuLiang Chen, Peter Landman, Timothy D. Colmer. Simultaneous Determination by Capillary Gas Chromatography of Organic Acids, Sugars, and Sugar Alcohols in Plant Tissue Extracts as Their Trimethylsilyl Derivatives, Analytical Biochemistry,1999, 266(1):77-84.
    [3]Francesco Bartolozzi, Gianpaolo Bertazza, Daniele Bassi, Graziella Cristoferi; Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography; Journal of Chromatography A,1997,758(1):99-107.
    [4]王成福,赵光辉,周娟.气相色谱毛细管柱对木糖醇产品的测定,中国食品添加剂,2005(3):104-107.
    [5]Valoran P Hanko, Jeffrey S Rohrer; Determination of Carbohydrates, Sugar Alcohols, and Glycols in Cell Cultures and Fermentation Broths Using High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection, Analytical Biochemistry,2000,283(2): 192-199.
    [6]唐坤甜,林立,梁立娜,蔡亚歧,牟世芬.无糖和低糖食品中的糖醇和糖同时分析的阴离子交换色谱-脉冲安培检测法研究,食品科学,2009,29(6):327-331.
    [7]刘玉峰,唐华澄,李东;离子色谱法在糖和糖醇分析检测中的应用研究;北京工商大学学报(自然科学版),2010,28(4):61-64.
    [8]林榕.离子色谱同时测定食品中糖醇和糖的方法学研究与应用[D];天津大学;2010年.
    [9]马立田,王式箴.高效液相色谱法测定低热量食品中的葡萄糖、果糖、蔗糖、麦芽糖醇和山梨糖醇的研究.食品与发酵工业,1998,24(4):12-17.
    [10]施燕支,郭雪清,余启荣,许彬,申严:HPLC-示差折光分析法测定口香糖中的木糖醇等多种糖醇的含量;首都师范大学学报(自然科学版),2005,26(1):61-67.
    [11]李黎,刘玉峰,唐华澄,李东,王晶,方向,吴方迪;高效液相色谱法测定食品中的糖醇;食品科学:2007,28(06):278-280.
    [12]田强,方春雷,修秀红;高效液相色谱法测定木糖醇产品中的木糖醇含量;中国食品添加剂,2009,4:164-168.
    [13]方积年,魏远安.高效液相色谱法在糖类研究中的应用,色谱,1991,9(2):103-107.
    [14]辛梅华,徐金瑞,方柏山等.蔗糖水解液及发酵液中糖及糖醇的高效液相色谱分析,分析测试学报,1997,16(6):44-46.
    [15]ShukoNojiri, Nobuo Taguchi, MistuoOishi, Sukeji Suzuki. Determination of sugar alcohols in confectioneries by high-performance liquid chromatography after nitrobenzoylation Determination of sugar alcohols in confectioneries by high-performance liquid chromatography after nitrobenzoylation, Journal of Chromatography A,2000,893(1):195-200.
    [16]Lochmuller C. H., Hill W. B.; Saccharide separations in reversed-phase high performance liquid chromatography using nalkyl amine mobile phaseadditives. Journal of Chromatography A, 1983,264(2):215-222.
    [17]徐绣珠,徐根良.糖和糖醇高效液相色谱分析,分析化学,1999,27(5):547-550.
    [18]史海良,杨红梅,王浩,郭启雷,刘婷,刘燕琴;高效液相色谱-蒸发光散射法测定无糖食品中糖醇;分析试验室,2009,28:294-296.
    [19]曹英华,贾丽,钱春燕,夏敏,王颖;蒸发光散射液相色谱测定无糖酸奶中糖醇;食品研究与开发,2011,32(2):117-119.
    [20]于趁,闫正,蔡立鹏,张智慧,赵志磊,李小亭;高效液相色谱-蒸发光散射法测定无糖糕饼中糖醇含量;食品工业科技,2010,31(3):362-364.
    [21]PamitaBhandari, Neeraj Kumar, Bikram Singh, Vijay K. Kaul; Simultaneous determination of sugars and picrosides in Picrorhiza species using ultrasonic extraction and high-performance liquid chromatography with evaporative light scattering detection; Journal of Chromatography A, 2008,1194:257-261.
    [22]马书民,王明泰,韩大川,荣会,胡婷婷,康明芹,周晓;液相色谱串联质谱法测定食品中甘露糖醇、麦芽糖、木糖醇、山梨糖醇;中国食品添加剂,2011,05:206-210.
    [23]李传慧,李淑娟,安娟;HPLC/MS/MS法同时测定食品中5种天然甜味剂;中国医药指南,2008,6:161-163.
    [24]刘芳,蒸发光散射检测器在食品安全方面的应用以及与加压毛细管电色谱的联用,《上海交通大学药硕士论文》,2012-02-01.
    [25]GAUDINK, CHAMINADE P, FERRIER D, et a.l [J]. Chromatographia,1999,49:241.
    [26]DESCHAMPS F S, BAILLETA, CHAMINADE P. [J]. Analyst,2002,27:35-41.
    [1]王守兰,谢杨.荧光光度法测定饮料中糖精钠含量[J].光谱实验室,2001,(5):601-603.
    [2]叶姗.主成分回归—紫外光度法同时测定甜味剂安赛蜜、阿斯巴甜和糖精[J].南昌大学学报:理科版,2007,31:132.
    [3]KOnig H, Separation,identification, and determination of the artificial sweetening agents cyclamate,dulcin,and saccharin by gas chromatography[J]. Z.Anal.Chem.1971,255(2):123.
    [4]W.Qiu, Z.Wang, W.Nie, Y.Gun, L.Huang. Chromatographia,2007,66:935.
    [5]R.Takeshita, J.Chromatogr.A,1972,66:283.
    [6]钱桂平,余建中.单扫描极谱法测定食品中的甜蜜素[J].中国卫生检验杂志,2000,10(6):692-694.
    [7]C.O.Thompson, V.C.Trenerry, B.Kemmery, J.Chromatogr.A,1995,694:507.
    [8]Catherine O Thompson, Craige V.Trenerry, Bridget Kemmery, J.Chromatography A,1995, 704:203-210.
    [9]肖琳,刘赐敏,周金森等.HPLC法测定饮料中安赛蜜、糖精钠和阿斯巴甜.中国卫生检验杂志,2011,21(5):1120-1122.
    [10]M. Hauek, H. KObler, Z. Lebensm. Unters. Forsch,1990,191:322.
    [11]张玉,吴慧明,王伟等.高效液相色谱-蒸发光散射检测器同时测定食品中5种甜味剂.食品安全质量检测学报,2010,27(1):18-23.
    [12]小山正道,吉田和郎,内堀伸健等.LC/MS法同时测定食品中9种甜味剂.食品卫生学杂志(日.J),2005,46(3):72-78.
    [13]郭莹莹,朱岩,叶明立.淋洗液发生器离子色谱抑制电导法测定甜味剂[J].浙江大学学报:理学版,2004,(04):435.438.
    [14]E. C. Demiralay, G. Ozkan, Z. Guzel—Seydim, Chromatographia,2006,63:91.
    [15]Andrzej Wasik, Josephine McCourt, Manuela Buchgraber. Journal of Chromatography A, 2007,1157:187-196.
    [16]Yang D, Chen B, J. Agric. FoodChem,2009,57:3022-3027.
    [17]GB/T5009.28-2003食品中糖精钠的测定.
    [18]GB/T5009.97-2003食品中环己基氨基磺酸钠.
    [19]GB/T5009;140-2003饮料中乙酰磺胺酸钾的测定.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700