东、黄海典型海域近200年的古生产力重建及其影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过分析东、黄海典型海域古生产力指标(BSi、TOC)的平面和垂直分布特征,并将其含量与相应的表层沉积物中各站位和柱状沉积物中各年代的浮游植物现存量做线性回归,从而得到沉积物中BSi、TOC含量与浮游植物现存量之间的定量关系。然后以BSi、TOC为指标来重建东、黄海近200年的古生产力。通过以上研究,得到的结论如下:
     一、由210Pb测得南黄海10594、10694和12694站位的沉积速率分别为0.350cm/a、0.143cm/a、0.153cm/a,三站位的沉积历史大约分别为150a、200a、230a。长江口H1-18站位沉积速率为0.225cm/a,该站位柱状样约有130年的沉积历史。
     二、从平面分布看,BSi和TOC呈现由北向南、由近岸向远海逐渐减小的趋势,这种分布趋势与浮游植物现存量的分布趋势相似。
     从垂直分布看,南黄海BSi垂直含量波动较小,含量稳定;长江口及邻近海域除在1966年出现最大值外,整体来说垂直含量稳定。这与南黄海水动力条件稳定和长江口复杂的沉积环境有关。TOC的百分含量随深度增加均呈现减小的趋势,南黄海表现尤为明显,这与有机质的矿化分解作用有关。此次调查南黄海测得4.60﹤TOC/TN﹤12.61,说明沉积物中的有机质属于混源有机质;长江口测得TOC/TN﹥20,说明沉积物中有机质主要来自陆源。
     三、南黄海表层样中BSi、TOC与硅藻、Chla的相关性均较好,与浮游植物生物量均无好的相关性。长江口和闽浙沿岸BSi与浮游植物现存量的相关性均较好,而TOC与其相关性均不好。
     南黄海柱样中BSi与浮游植物现存量均具有较好的相关性,TOC与其相关性均不好。BSi峰值与历史上浮游植物现存量峰值相符,TOC含量高值一般出现在表层,而历史上浮游植物生物量、硅藻生物量较大值一般出现在20世纪60年代左右和80年代中期,Chla高值一般出现在80年代中期,所以TOC含量与浮游植物生物量、硅藻、Chla相关性不好。除BSi与Chla的相关性不好外,长江口BSi、TOC与浮游植物现存量的相关性均较好。
     四、以BSi为指标来推算东、黄海典型海域浮游植物现存量,得出:南黄海浮游植物现存量一般在20世纪10~20年代、30年代、60年代左右、80年代初期和19世纪80年代中期出现较大值,20世纪50年代、70年代左右出现最小值。长江口一般在60、80年代左右、40年代末和19世纪80年代末出现较大值,较小值出现在20世纪左右,其它年代含量较稳定。这与以TOC为指标来推算东、黄海典型海域浮游植物现存量得出的结论大致相符。因此,BSi和TOC均可作为古生产力指标来反演长江口及邻近海区的古生产力。
     以BSi和TOC为指标分别推算的南黄海浮游植物现存量存在明显的差异,这可能与TOC在沉积物中的保存效率较低有关。所以以BSi为指标来重建古海洋生产力要优于TOC。
     五、各形态氮磷与TOC、BSi和浮游植物现存量的相关性比各形态氮好,因此东、黄海各形态磷对初级生产力的影响较大。黄海中部TOC、BSi和浮游植物现存量与各形态氮、磷的相关性比长江口好,这可能与黄海中部水动力条件相对平静、沉积物粒度小,而长江口水动力条件复杂,沉积物粒度较大,各形态氮、磷不易在此沉积有关。
     温度、陆源输入、鳀鱼资源量与浮游植物现存量和古生产力指标之间存在一定的相关性,陆源输入和鳀鱼资源量与其相关性更为明显。因此陆源输入和鳀鱼资源量对古生产力的影响较大。
Horizontal and vertical distribution of paleoproductivity index (BSi、TOC) in the typical areas of the East China Sea and the Yellow Sea is analyzed, and linear regression is done to get the correlations between the contents of BSi, TOC and the phytoplankton standing crop of surface sediments in all sampling sites and sediments of different age. BSi、TOC is used to rebuild paleo-productivity of the last 200 years. According to the study, the conclusions are as follows:
     One: Deposit velocities of 10594, 10694, 12694 were 0.350cm/a、0.143cm/a、0.153cm/a by 210Pb, deposit histories of three stations are about 150a, 200a, 230a. Deposit velocity of H1-18 was 0.225cm/a, and deposit history is about 130a.
     Two: From the hotizontal distributions, we get that the contents of BSi、TOC show the diminishing tendency from north to south and from coast to distant sea. The standing crop of phytoplankton shows the same tendency.
     From the vertical distribution, we get that the vertical contents of BSi was steady in the South Yellow sea. Except the biggest value in 1966, the vertical contents was steady in the Yangtzi River estuary. It is obvious in the South Yellow sea The percentage of TOC shows the diminishing tendency with the increase of age, this tendency was related to mineralization and degradation of organic matter. This investigation shows that TOC/TN was between 4.60 and 12.61 in the South Yellow sea, so organic matter of the sediments belonged to organic matter of mixed source, TOC/TN exceeded 20 in the Yangtzi River estuary, so organic matter of this sea is(was) from land source.
     Three: The correlations between BSi, TOC and diatom, Chla are all good in the surface sediments of the South Yellow sea, the correlation between BSi and diatom is best, BSi、TOC and the biomass of phytoplankton have bad correlations. The correlations between BSi and the standing crop of phytoplankton are all good, TOC is exactly on the contrary in the Yangtzi River estuary and the Coast of Fujian and Zhejiang.
     The correlations between BSi and the standing crop of phytoplankton were all good in the pillar samples of the South Yellow sea, TOC is exactly on the contrary. The peak value of BSi and the standing crop of phytoplankton was coherent in history, the high value of TOC was usually in the surface, the high value of the biomass of phytoplankton and diatom were usually in the 60era and the intermediate stage of 80 era of 20th century. The high value of Chla was about the intermediate stage of 80 era, so the correlations between TOC and the standing crop of phytoplankton are bad. Except that BSi and Chla has bad correlation, BSi、TOC and the standing crop of phytoplankton have good correlations in the Yangtzi River estuary.
     Four: The standing crop of phytoplankton is calculated by BSi in the typical areas of the East China Sea and the Yellow Sea. The conclution is that the high value of the standing crop of phytoplankton were usually in the 10-20era, 30era, about 60era, initial period of 80era and the intermediate stage of 80era of the 19th century in the South Yellow sea. The small value were usually in the 50 era and 70 era of the 20th century. The high value of the standing crop of phytoplankton are usually in the age of 60 and 80, the end of 40 and the end of 80 of the 19th century in the Yangtzi River estuary, the small value is in the 20th century, the contents in other years were steady. This conclusion matches with the conclusion of the standing crop of phytoplankton calculated by TOC. So BSi and TOC are all used as good indexes to rebuild the paleoproductivity of the Yangtzi River estuary.
     The standing crop of phytoplankton is calculated by BSi and TOC have evident differences. This may be related to the low stocking efficiency of TOC in the sediments. So BSi is a better index on rebuilding paleo-productivity than TOC.
     Five: The correlations of different phosphorus species and BSi, TOC are better than the correlations of different nitrogen species and BSi, TOC, So different phosphorus species influenced primary productivity more greatly. The correlations of TOC, BSi and different phosphorus and nitrogen species of the South Yellow sea are better than the Yangtzi River estuary, this may be related to the peaceful hydrodynamic conditions and small particle size of the South Yellow sea, and the complicated hydrodynamic conditions and big particle size of the Yangtzi River estuary.
     Temperature, source entry, anchovy scales deposition and indexes of paleo-productivity, the standing crop of phytoplankton had invariably correlations. source entry and anchovy scales deposition are evident. So source entry and anchovy scales deposition influence paleo-productivity greatly.
引文
[1]陈建芳.古海洋研究中的地球化学新指标.地球科学进展, 2002, 17 (3): 402~410.
    [2]杜俊民.南黄海中部沉积物微量元素的环境记录研究.海洋学报, 2004, 26(6): 49~56.
    [3]汪品先.气候演变中的冰和碳.地学前缘, 2002, 9(1): 85~94.
    [4]吕炳全,孙志国.海洋环境与地质.上海:同济大学出版社, 1997, 70~71, 119~123.
    [5] Muller P J, Suess E. Productivity, sedimentation rate, and sedimentary organic matter in the oceans. 1. Organic carbon preservation. Deep-Sea Research, 1979. 26: 1347~1362.
    [6] Stein R. Surface-water paleo-productivity as inferred from sediments deposited in oxic and anoxic deepwater [A] . Bio-geochemistry of Black Shaleseds. Degens E T, Meyers P A and Brasseli S C) [C] . Selbstverlag Universitat Hamburg, Hamburg, 1986. 55~70.
    [7] Sarnthein M, Winn K, Duplessy J C, et al. Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21000 years. Paleoceanography, 1988. 3(3): 361~399.
    [8] Brummer G J A, van Eijden A J M..“Blue-ocean”Paleoproductivity estimates from pelagic carbonate mass accumulation rates. Mar.Micropaleontology, 1992. 19: 99~117.
    [9] Van Kreveld S A ,Knappertsbusch M,Ottens J,etal. Bio-geniccarbonate and ice -rafteddebris (Heinrich layer) accumulation in deep sea sediments from a Northeast Atlanticpiston core. Mar.Geol, 1996. 131:21~46.
    [10] Suess E. Particulate organic carbon flux in the oceans surface productivity and oxygen utilization. Nature, 1980, 288: 260 ~263.
    [11] Betzer P R, Showers W J, Laws E A, et al. Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean. Deep Sea Res., 1984, 31: 1~11.
    [12] Herguera J C. Deep-sea benthic foraminifera and biogenicopal: glacial topost-glacial productivity changes in the western equatorial Pacific. Mar. Micropaleontol., 1992, 19: 79~98.
    [13] Herguera J C. Last glacial paleoproductivity patterns in the eastern equatorial Pacific: benthic foraminifera records. Mar. Micropaleontol., 2000, 40: 259~275.
    [14] Kuhnt W, Hess S, Jian Z. Quantitative composition of benthic foraminiferal assemblages as a proxy indicator for organic carbon flux rates in the South China Sea. Mar. Geol., 1999, 156: 123~158.
    [15] Ohkushi K, Thomas E , Kawahata H. Abyssal benthic foraminifera from the northwestern Pacific ( Shatsky Rise) during the last 298 kyr. Mar. Micropaleontol., 2000, 38: 119~147.
    [16] Jorissen F J, de Stigter H C, Widmark J G V. A conceptual model explaining benthic foraminiferal microhabitats. Mar. Micropaleontology, 1995, 26: 3~15.
    [17] Gooday A J, Bett B J, Shires R, et al. Deep-sea benthic foraminiferal species diversity in the NE Atlantic and NWArabian sea: a synthesis. Deep Sea Res., 1998, 45: 165~201.
    [18] Loubere P. Quantitative estimation of surface ocean productivity and bottom water oxygen concent ration using benthic foraminifera. Paleoceanography, 1994. 9: 723~737.
    [19] Dymond, Suess E, Lyle M, et al. Barium in the deep-sea sediment; A geochemical proxy for paleoproductivity. Paleoceanography, 1992. 7(2): 163~181.
    [20] Francois R, Honjo S, Manganini S J, et al. Biogenic barium fluxes to the deep sea: implications for paleoproductivity reconstruction. Global Biogeochemical Cycles, 1995, 9(2): 289~303.
    [21] Nurnberg C C, Bohrmann G, Schulter M. Barium accumulation in the Atlantic sector of the Southern Ocean: results from 190 000-year records. Paleoceanography, 1997, 12(4): 594~603.
    [22] Mortlock R A, Charles C D , Froelich P N, etal. Evidence for lower productivity in the Atlantic Ocean during the last glaciation. Nature, 1991, 351: 220~223.
    [23] Xiao Jule, Yoshio Inouchi, Hisao Kumai. Biogenic silica record in lake Biwa of central Japan over the past 145000 years. Quaternary Research, 1997, 47: 277~283.
    [24]汪品先.南海晚第四纪股海洋学研究.青岛海洋大学出版社, 1992.
    [25]吴时国,涂霞,罗又郎,郑范.南沙群岛海区有机碳沉积作用与古生产力估算.热带海洋. 1995, 14(4): 58~66.
    [26]吴时国,涂霞,罗又郎.海洋古生产力重建初探—以南沙群岛海区NS90-103柱样为例.海洋科学, 1996, 2: 47~51.
    [27]房殿勇,翦知缗,汪品先.南海海区南部近30ka来的古生产力记录.科学通报, 1998, 43(18): 2005~2008.
    [28]向容. 240ka以来西赤道太平洋碳酸钙沉积特征及其古海洋学意义.海洋与湖沼, 2000, 31(5): 535~542.
    [29]黄宝琦,翦知缗,林慧玲.南海东北部晚第四纪古生产力变化.海洋地质与第四纪地质, 2000, 20(2): 65~68.
    [30]李建如,王汝建,李保华.南海南部12Ma以来的蛋白石堆积速率与古生产力变化.科学通报, 2002, 47(3): 235~237.
    [31]王博士,赵泉鸿.南海南部中上新世以来沉积有机碳与古生产力变化.海洋地质与第四纪地质, 2005, 25(2): 73~79.
    [32]蓝先洪,申顺喜.南黄海中部沉积岩心的地球化学特征.海洋地质与第四纪地质, 2000, 16(2): 33~38.
    [33]田正隆.以钡为指标反演海洋古生产力的研究进展.热带海洋学报, 2004, 23(3): 78~86.
    [34]同济大学地质系.古海洋学概论.同济大学出版社, 1989. 192~194.
    [35] Conley D J, Schelske C L, Stoermer E F. Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecology Progress Series, 1993. 101: 179~192.
    [36] Martin R E. Cyclic and secular variation in microfossil biomineralization: Clues to t he biogeochemical evolution of Phanerozoic oceans. Global and Planetary Change, 1995. 11: 1~23.
    [37]王中波,杨守业,李从先.南黄海中部沉积物岩芯常量元素组成与古环境.地球化学. 2004, 33(5): 483~490.
    [38] Gold-burg, Arrhenius G O S. Chemistry of Pacific pelagic sediments. Geochimica et Cosmochimica A cta, 1958. 13: 153~212.
    [39] Dehairs F, Chesseet R, Jedwa B J. Discrete suspended particles of barite and the barium cycle in the open ocean. Earth and Planetary Science L etters, 1980. 49: 528~550.
    [40] Schmitz B. Barium,equatorial high productivity and the northward wandering of the Indian continent. Paleoceanography, 1987. 2(1): 63~77.
    [41] Jens Klamp.冰川结束é期之后太平洋沉积物中高浓度的生物成因钡.海洋地质动态, 2002, 18(4): 13~15.
    [42] GOLDMAN J C. Physiological processes , nut rient availability and concept of relative growt h rate in marine phytoplankton ecology[A] . FAL KOWSKE P G. Primary Product ion in the Sea [C]. New York :Plenum, 1980: 179~183.
    [43] BROECKER W S, PENG T H. T racers in the Sea[M]. New York: Eldigio Press, 1982.
    [44] HONJO S. Studies of ocean fluxes in time and space by bottom-tethered sediment trap arrays: A recommendation [A]. Proc. Global Ocean Flux Study Workshop [C]. Washington, DC: National Academic Press, 1984: 305~324.
    [45] DEUSSER W G. Seasonal variations in isotopic composition and deep-water fluxes of tests of perennially abundant planktonic foraminifera of Sargasso Sea: Results from sediment trap-collections and their paleoceanographic significance. Journal of Foramini feral Research, 1987, 17: 14~27.
    [46] DEUSSER W G, ROSS E H. Seasonally abundant planktonic foraminifera of Sargasso Sea: Succession, deep-water fluxes, isotopic compositions, and paleoceanographic implications[J]. Journal of Foraminiferal Research, 1989, 19: 268~293.
    [47] Lyons T W, Werne J P, Hollander D J, et al. Contrasting sulfur geochemistry and Fe/Aland Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chemical Geology, 2003. 195: 131~157.
    [48] Wilde P, Quinby-Hunt M S, Lyons T W. Molybdenum as an indicator of original organic content in ancient anoxic sediments. Geological Society of American,Abstracts with Programs [C]. 2001. 33 (6): 39~48.
    [49] Stoll H M, Schrag D P. Sr/Ca variations in Cretaceous carbonates: Relation to productivity and sea level change. Paleogeography , Paleoclimatology , Paleoecology , 2001. 168: 311~336.
    [50] Robinson R S, Meyers P A, Murra Y R W. Geochemical evidence for variations in delivery and deposition of sediment in Pleistocene light-dark color cycles under the Ben-guela Current Upwelling system. Marine Geology, 2002. 180 : 249~270.
    [51]王兆荣,彭子成,孙卫东,等.高精度热电离质谱(TIMS)铀系法洞穴沉积物(石笋)年龄的研究.沉积学报. 2000, 18(1): 162~164.
    [52]范德江,杨作升,郭志刚.中国陆架210Pb测年应用现状与思考.地球科学进展, 2000, 15 (3) : 297~302.
    [53]陈巧云,徐胜利.海洋现代沉积速率210Pb-210Bi法的射线测定研究.海洋环境科学, 1996, 15 (4): 38~42.
    [54] Goldberg E. D, Koide M. Rates of sediment accumulation in the Indian Ocean. In Geiss J, Goldberg E D eds. Earth Sciences and Meteoritics. Amsterdam: North-Holland publishing Company. 1963, 90~102
    [55] Kiishnaswamy S. L. D, Martin J M et al.Geochronology of lake sediments, Earth and Planetary Science Letters, 1971, 11: 407~414.
    [56] Koide M, Soutar A, Goldberg E D. Marine geochronology with 210Pb, Earth and Planetary Science Letters, 1972, 14: 442~446.
    [57]林瑞芬,阂育顺,卫克勤,等.珠江口沉积柱样210Pb法年龄测定结果及其环境地球化学意义.地球化学, 1998, 27(5): 401~411.
    [58]王福,王宏,李建芬,等.渤海地区210Pb、137Cs同位素测年的研究现状.地质论评, 2006, 52(4): 244~250.
    [59] Schaffner L C. Faunal characteristics and sediment accumulation processes in the James River estuary. Coastal and Shelf Science, 1987. 25: 211~226.
    [60]潘少明,朱大奎,李炎,等.河口港湾沉积物中137Cs剖面及其沉积学意义.沉积学报, 1997, 15 (4 ): 67~71.
    [61]万国江, Santschi P, Sturm M,等.放射性核素和纹理计年对比研究瑞士格莱芬湖近代沉积速率.沉积学报, 1986, 3: 259~270.
    [62] Wang G J, Santschi P H, Sturm M et al. Natural (210Pb, 7Be) and fallout (137Cs)as geochemical tracers of sedimentation in Greifensee, Switzerland. Chemical Geology, 1987, 63: 181~189.
    [63] Meyers P A. Organic geochemical proxies of paleoceanographic,paleolimnologic, and paleoclimatic processes. Org. Geochem., 1997, 27(5/ 6): 213~250.
    [64] Lyle M, Murrey D W, Finney B P. The record of late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean. Paleoceanography, 1988, 5: 719~742.
    [65] Rea D K, Pisias N G, Newberry T. Late Pleistocene paleoclimatology of the central equatorial Pacific: flux patterns of biogenic sediments. Paleoceanography, 1991, 6: 227~244.
    [66] Siesser W G. Paleoproductivity of the Indian Ocean during the Tertiary period. Global and Planetary Change, 1995, 11: 71~88.
    [67] Paytan A, Kastner M. Benthic Ba fluxes in the central Equatorial Pacific: implications for the oceanic Ba cycle. Earth & Planetary Science Letters, 1996, 142: 439~450.
    [68] Pollock D E. The role of diatoms , dissolved silicate and Antarctic glaciation in glacial/ interglacial climatic change : a hypothesis. Global and Planetary Change, 1997, 14: 113~125.
    [69] Dugdale R C ,Wilkerson F P ,Minas HJ . The role of a silicate pump in driving new production. Deep Sea Res., 1995, 42: 687~719.
    [70] Dugdale R C ,Wilkerson F. Silicate regulation of new production in the equatorial Pacific upwelling. Nature, 1998, 391: 270~273.
    [71] Dickens G R, Barron J A. A rapidly deposited pennate diatom ooze in Upper Miocene-Lower Pliocene sediment beneath the North Pacific Polar front. Mar. Micropaleontology, 1997, 31: 177~182.
    [72] Bonn W J, Gingele F X, Grobe H, et al. Palaeoproductivity at the Antarctic continental margin : opal and barium records for the last 400 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 139: 195~211.
    [73] Dickens G R , Owen R M. The Latest Miocene-Early Pliocene biogenic bloom:a revised Indian Ocean perspective. Mar, Geol., 1999, 161:75~91.
    [74] Barcena M A, Cacho I, Abrabtes F, et al. Paleoproductivity variations related to climatic conditions in the Alboran Sea(western Mediterranean) during the last glacial-interglacialtransition :the diatom record. Palaeogeography, Palaeo- climatology, Palaeoecology, 2001, 167: 337~357.
    [75] Ragueneau O, Treguer P, Leynaert A, et al. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenicopal as a paleoproductivity proxy. Global and Planetary Change, 2000, 26:317 ~365.
    [76] Kumar N, Anderson R F, Mortlock R A, et al. Increased biological productivity and export production in the glacial Southern Ocean. Nature, 1995, 378: 675~680.
    [77] Frank M, Gersonde R, et al. Similar glacial and interglacial export bioproductivity in the Atlantic sector of the Southern Ocean: Multiproxy evidence and implications for glacial atmospheric CO2. Paleoceanography , 2000, 15: 642~658.
    [78] Chase Z, Anderson R F, Fleisher M Q. Evidence from authigenic uranium for increased productivity of the glacial subantarctic ocean. Paleoceanography, 2001, 16: 468~478.
    [79]陈木宏,黄良民,涂霞,郑范.南海放射虫与初级生产力的古海洋学转换关系.科学通报, 1999, 44(3): 327~333.
    [80]叶曦雯.东、黄海沉积物中生物硅的分布及其环境意义.中国环境科学, 2004, 24(3): 265~269.
    [81]赵颖翡,刘素美,叶曦雯,张经.黄、东海柱状沉积物中生物硅含量的分析. 2005, 35(3): 423~428.
    [82] Follmik B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Science Reviews, 1996. 40: 55~124.
    [83]黄永建,王成善,汪云亮.古海洋生产力指标研究进展.地学前缘, 2005, 12(2): 163~170.
    [84] Follmik B. 160 m. y. record of marine sedimentary phosphorus burial: Coupling of climate and continental weathering under greenhouse and icehouse conditions. Geology, 1995. 23(6): 859~862.
    [85] Hecky R E, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography, 1988, 33(4): 796~822.
    [86] Kilham P, Hecky R E. Comparative ecology of marine and freshwater phytoplankton. Limnology and Oceanography, 1988, 33(4): 776~795.
    [87] Raymont J E G. Plankton and Productivity in the Oceans[A]. Phytoplankton: Vol.1[M]. 2nd ed. Oxford: Pergamon Press, 1980. 489.
    [88] Ryther J K, Dunstan W M. Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science, 1971, 171: 1008~1013.
    [89] Fisher T R, Peele E R, Ammerman J W, et al. Nutrient limitation in Chesapeake Bay. Mar Ecol Prog Ser, 1992, 82: 51~63.
    [90]孙耀,宋云利,崔毅,方建光,等.桑沟湾养殖水域的初级生产力及其影响因素的研究.海洋水产研究, 1996, 17(2): 32~40.
    [91]曲克明,陈碧鹃,袁有宪,等.氮磷营养盐影响海水浮游硅藻种群组成的初步研究.应用生态学报, 2000, 11(3): 445~448.
    [92]王汉奎,董俊德等.三亚湾氮磷比值分布及其对浮游植物生长的限制.热带海洋学报, 2002, 21(1): 33~38.
    [93] Nakat suka ,T. ,Watannabe, K, Handa, N, etal, 1995. Glacial to interglacial surface nut rient variations of Bering deep basins recorded byδ13 C andδ15 N of sedimentary organic matter. Paleoceanog ra phy, 1995. 10(6): 1047~1061.
    [94] Wang P, Prell W L, Blum P, et al . Proceedings of Ocean Drilling Program, Initial Reports Volume 184. Texas A & M University , College Station, 2000. 1~1 410.
    [95]陈建芳,郑连福, Wiesner M G,等.基于沉积物捕获器的南海表层初级生产力及输出生产力估算.科学通报, 1998, 43(6): 639~642.
    [96]翦知,王律江, Kienast M,等.南海晚第四纪表层古生产力与东亚季风变迁.第四纪研究, 1999, 1: 32~40.
    [97]王汝建,李建.南海ODP1143站第四纪高分辨率的蛋白石记录及其古生产力意义.科学通报, 2003, 48(1): 74~77.
    [98] Wang L, Wang P. Late Quaternary paleoceanography of the South China Sea : glacial~interglacial contrasts in an enclosed basin. Paleoceanography, 1990. 5 (1) : 77~90.
    [99]王律江,卞云华,汪品先.南海北部末次冰消期及快速气候回返事件.第四纪研究, 1994, 1: 1~12.
    [100] Miao Q, Thunell R C. Glacial2Holocene carbonate dissolution and seasurface temperatures in the South China and Sulu seas.Paleoceanography, 1994. 9 (2) : 269~290.
    [101]陈大刚.黄渤海渔业生态学.北京:海洋出版社, 1991.
    [102]赵传絪.中国渔业资源调查和区划之六—中国海洋渔业资源.杭州:浙江科技出版社, 1990.
    [103]宋金明.中国近海生物地球化学.济南:山东科学技术出版社, 2004. 1~308.
    [104]马红波.渤海沉积物中氮的赋予形态及其在循环中的作用: [硕士学位论文].中国科学院海洋研究所, 2001.
    [105]扈传昱,王正方,吕海燕.海水和海洋沉积物中总磷的测定.海洋环境科学, 1999, 3: 53~62.
    [106] Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and Oceanogerphy, 1992. 37(7): 1460~1482.
    [107] Demaster D J. Rates of sediment reworking at the Hebble site based on measurements of 234Th , 137Cs and210Pb. Marine Geology, 1985. 66: 133~148.
    [108] LI Feng-ye. Modern sedimentation rates and sedimentation feature in the Huanghe River Estuary based on 210Pb technique. Chin. J. Oceanol. Limnol., 1993. 11(4): 333~342.
    [109]费尊乐, Trees C C,李宝华. Estimating primary productivity using chlorophyll-a data.黄勃海海洋, 1997, 15(1): 35~47.
    [110]宁修仁,刘子琳,蔡昱明.我国海洋初级生产力研究二十年.东海海洋, 2000, 18(3): 13~19.
    [111]郑元甲,陈雪忠,程家骅.东海大陆架生物资源与环境.上海:上海科学技术出版社, 2003.
    [112]陈纪新,黄邦钦,刘媛,曹振锐,洪华生.应用特征光合色素研究东海和南海北部浮游植物的群落结构.地球科学进展, 2006, 07.
    [113] Wu, Y., Zhang, Y. and Zhou, C.. Phytoplankton distribution and community structure in the East China Sea (ECS) continental shelf. Chinese Journal of Oceanology and Limnology. 2000. 18, 74~79.
    [114]高亚辉,虞秋波,齐雨藻,等.长江口附近海域春季浮游硅藻的种类组成和生态分布.应用生态学报, 2003, 14: 1044~1048.
    [115]周伟华,霍文毅,袁翔城,殷克东.东海赤潮高发区春季叶绿素a和初级生产力的分布特征.应用生态学报. 2003, 14(7): 1055~1059.
    [116] Fenchel T, King G M, Blackburn T H. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling. Academic Press. 1998. 2: 54~61.
    [117]徐韧,洪君超,王桂兰,等.长江口及其邻近海域的赤潮现象.海洋通报, 1994, 13(5): 25~29.
    [118]韩秀荣,王修林,孙霞,等.东海近海海域营养盐分布特征及其与赤潮发生关系的初步研究.应用生态学报, 2003, 14(7): 1097~1001.
    [119] WANG Bao-dong, WANG Xiu-lin, ZHAN Run. Nutrient conditions in the Yellow Sea and the East China Sea. Estuarine, Coastaland Shelf Science, 2003. 58: 127~136.
    [120]王俊.黄海春季浮游植物的调查研究.海洋水产研究, 2001, 22(3): 56~61.
    [121]周伟华,袁翔城,霍文毅,殷克东.长江口邻域叶绿素a和初级生产力的分布. 2004, 26(3): 143~150.
    [122]高芳蕾,杨小强,董艺辛,梁秋.珠江三角洲PD孔沉积物的碳氮记录及其环境意义.海洋地质与第四纪地质, 2006, 26(2): 34~37.
    [123]陈建芳,金海燕,刘小涯,等.黄海和东海沉积物有机质活性及营养盐再生潜力初探,地球化学, 2005, 34(4): 24~28.
    [124]魏建伟,石学法,辛春英,等.南黄海粘土矿物分布特征及其指示意义.科学通报, 2002, 46(增刊): 30~33.
    [125] Treguer P, Nelson D M, Van Bennekom A J, et al. The silica balance in the world ocean: A reestimate. Science, 1995, 26(8): 375~379.
    [126]费尊乐,李宝华.叶绿素a与初级生产力的相关关系.青岛海洋大学学报, 1990, 20(1): 73~79.
    [127]费尊乐, Trees C C,李宝华. Estimating primary productivity using chlorophyll-a data.黄勃海海洋, 1997, 15(1): 35~47.
    [128]杨东方,王凡,高振会,陈永利,谢利.长江口理化因子影响初级生产力的探索Ⅱ.磷不是长江口浮游植物生长的限制因子.海洋科学进展, 2006, 24(1): 97~107.
    [129]王金辉.长江口3个不同生态系统的浮游植物群落.青岛海洋大学学报, 2002, 32(3): 422~428.
    [130]黄海水产研究所资源调查室.黄渤海浮游生物概况及其与渔业的关系.海洋水产研究丛刊, 1961, 6: 34~48.
    [131]全国海洋综合调查报告第八册, 1965
    [132] Steele J H, Yentsh C S. The vertical distribution of chlorophyll. J. Mar Biol. Ass. U. K., 1960, 39(1): 217~226.
    [133] Anderson G C. Subsurface chlorophyll maximum in the northeast Pacific Ocean. Limnol Oceanogr, 1969, 14(2): 386~391.
    [134]宁修仁,刘子琳,胡钦贤.浙江沿岸上升流区叶绿素a和初级生产力的分布特征. 1985, 7(6): 751~762.
    [135]柴心玉.长江口及济州岛邻近海域叶绿素-a含量的分布和初级生产力的估算.山东海洋学院学报, 1986, 16(2): 1~26.
    [136]农业部渔业局.中国专属经济区生物资源及其环境调查图集(第二册).河北:气象出版社, 2002, 1~4.
    [137]王俊,李洪志.渤海近岸叶绿素和初级生产力研究.海洋水产研究, 2002, 23(1): 23~28.
    [138]李宝华,傅克忖,荒川久辛.南黄海叶绿素a与初级生产力之间的相关分析.黄渤海海洋, 1998, 16(2): 48~53.
    [139]张书文,夏长水,袁业立.黄海冷水团上升流对叶绿素垂向分布的影响.海洋科学进展, 2002, 20(3): 9~14.
    [140]张书文.黄海冷水团夏季叶绿素垂向分布结构的影响机制.海洋与湖沼, 2003, 34(2): 179~186.
    [141]郭玉洁,潘友联.长江口区初级生产力的研究[A].中国科学院海洋研究所.海洋科学集刊, (33)[C].北京:科学出版社, 1992. 191~20.
    [142]郭玉洁,杨则禹.长江口区浮游植物的数量变动及生态分析.海洋科学集刊, 1992, 33: 167~189.
    [143]顾新根,袁骥.长江口羽状峰海区浮游植物的生态研究.中国水产科学, 1995, 2(1): 1~15.
    [144]赵保仁,任广法,曹德明,杨玉玲.长江口上升流海区的生态环境特征.海洋与湖沼, 2001, (3): 13~16.
    [145]王云龙,袁骐,沈新强.长江口及邻近水域春季浮游植物的生态特征.中国水产科学, 2005, 12(3): 300~306.
    [146]林学举,黄邦钦,洪华生,等.东、黄海典型海域叶绿素a含量的垂向变化与周日波动.海洋科学, 2002, 26(11): 57~63.
    [147]贾国东,翦知民,彭平安,等.南海南部17962柱状样生物硅沉积记录及其古海洋意义.地球化学, 2000, 29: 293~296.
    [148] Broecker W S, Peng T H. Tracers in the Sea[M]. New York: Eldigio Press, 1982.
    [149] Thunell R C, Pride C J, Tappa E, et al. Biogenic silica fluxes and accumulation rates in the gulf of California. Geology, 1994. 22: 303~306.
    [150]李学刚,宋金明,袁华茂,李凤业,孙松.胶州湾沉积物中高生源硅含量的发现—胶州湾浮游植物生长硅限制的证据.海洋与湖沼, 2005, 36(6): 572~579.
    [151] Emerson S and Archer D. Glacial carbonate dissolution cycles and atmospheric PCO2: a view from the ocean bottom. Paleoceanography, 1992. 7(3): 319~331.
    [152] Emerson S K and Hedges J I. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography, 1988. 3: 621~634.
    [153] Miao Q and Thunell R C. Recent deep-sea benthic foraminiferal distributions in the South China and Sulu Seas. Marine Micropaleontology, 1993. 22: 1~32.
    [154]涂霞,罗又郎,吴时国.南沙群岛海区晚第四纪古海洋学研究(一).北京:科学出版社, 1995.
    [155]吴芳,郭卫东,郑佩如,等.三都澳养殖海域沉积物中P的形态分布特征.海洋环境科学, 2005, 24(4): 24~27.
    [156] Ralzm W. Organic matter degradation and biogenic element cycling in a nearshore sediment (Kiel Bight). Jimnnl Oceanngr, 1984. 29(6): 1231~1246.
    [157]李道季,张经,黄大吉,等,长江口外氧亏损.中国科学(D辑), 2002, 32: 686~694.
    [158]张晓东,翟世奎,许淑梅,等.长江口外缺氧区沉积物中氧化还原敏感性元素的/粒控效应.中国海洋大学学报, 2005, 35(5): 868~874.
    [159]石学法,刘焱光,任红,等.南黄海中部沉积物粒径趋势分析及搬运作用.科学通报, 2002, 6: 1103~1106.
    [160]汤毓祥,邹娥梅,李兴宰,等.南黄海环流的若于特征.海洋学报, 2000, 22(1): 1~16.
    [161] Hu D X.. Some striking features of circulation in Huanghai Sea and Easl China Sea. Oceanology of China Sea, 1994, 1: 27~38.
    [162]翁焕新.河流沉积物中磷的结合状态及其环境地球化学意义.科学通报, 1993, 38(13): 1219~1222.
    [163] Jensen H S, Mortensen P B, Andersen F, etal. Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnol Oceanogr, 1995. 40(5): 908~917.
    [164] Sundby B, Gobeil C, Silverberg N. The phosphorus cycle in coastal marine sediments. Limnology and Oceanography, 1992. 37(6): 1129~1145.
    [165] Sonzogni W C, Chapra S C, Am strong D E, et al. Bioavailability of phosphoms inputs to lakes. Journal of Environmental Quality, 1982. 11(4): 555~563.
    [166]吕晓霞,宋金明等.南黄海表层沉积物中氮的潜在生态学功能.生态学报, 2004, 24(8): 1636~1643.
    [167]马红波,宋金明,吕晓霞,袁华茂.渤海沉积物中氮的形态及其在循环中的作用.地球化学, 2003, 32(1): 49~54.
    [168] Eglinton, G. and Hamilton, R.J.. Leaf epicuticular waxes. Science 156, 1967. 1322~1335.
    [169] Zhao M., Dupont L., Eglinton G. and Teece M. n-alkane and pollen reconstruction of terrestrial climate and vegetation for N.W. Africa over the last 160 kyr. Org. Geochem. 34, 2003. 131~143.
    [170] Wu, Y., Zhang, J., Mi, T.-z. and Li, B. Occurrence of n-alkanes and polycyclic aromatic hydrocarbons in the core sediments of the Yellow Sea. Mar. Chem. 2001. 76, 1~15.
    [171]朱德山, Iversen A. (主编).黄、东海鳀鱼及其他经济鱼类资源声学评估的调查研究.海洋水产研究, 1990. 11: 1~141.
    [172]唐启升,苏纪兰.中国海洋生态系统动力学研究Ⅰ.北京:科学出版社,2000. 252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700