东、黄海典型海域初级生产力和氮、磷营养要素的近代沉积记录
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在对东、黄海典型海域进行大面积调查的基础上,选择有机碳、生物硅、不同形态的氮和磷等作为古生产力和相应营养状况评估的替代指标,分析了该区近代沉积中有机碳、生物硅、不同形态氮和磷的分布特征,同步探讨了古生产力指标(总有机碳、生物硅)与浮游植物现存量和相应营养状况替代指标(氮、磷形态)之间的相关性,获得主要研究结果如下:
     (1)黄、东海典型区域近代沉积中古生产力指标的分布
     长江口及其邻近区域近代沉积中生物硅(BSi)、总有机碳(TOC)含量近岸大于远岸。从垂直变化来看,总有机碳(TOC)在两柱状样中随深度增加,没有明显的变化。生物硅(BSi)除出现两峰值外,随深度的增加,含量变化不明显。这可能与长江口复杂的水动力条件、氧化还原条件和较大的沉积速率有关。
     南黄海中部近代沉积中生物硅(BSi)、总有机碳(TOC)整体趋势均表现为西部沿岸较东部要高。从垂直变化来看,总有机碳(TOC)从上到下总有机碳(TOC)含量随深度的增加逐渐降低,与有机碳的化学成岩过程一致。生物硅(BSi)含量在8cm左右出现最大值,整体而言,没有明显的变化。
     (2)黄、东海典型海域沉积物中氮、磷的形态与分布
     长江口沉积物中,铁锰氧化态氮(IMOF-N)是可转化态氮的优势形态,受长江冲淡水影响,TN及各形态氮的较高含量分布在长江口偏东北方向。受氧化还原环境条件影响,随深度增大离子交换态氮(IEF-N)、铁锰氧化态氮(IMOF-N)、碳酸盐结合态氮(CF-N)呈降低趋势;总氮(TN)、有机态和硫化物结合态氮(OSF-N)垂直变化呈先增加后减小趋势,但两柱状样变化深度不同。
     长江口沉积物中碎屑磷(De-P)是磷的优势形态,受长江冲淡水与各海流的共同作用碎屑磷(De-P)的平面分布复杂。有机磷(Or-P)和Fe结合态磷(Fe-P)的含量相对较低。总磷(TP)及各磷的形态的含量近岸高,远岸低。自生磷(Au-P)含量高值区出现在123E附近,与浮游动物总生物量的高值区一致。从垂直分布看,碎屑磷(De-P)、自生磷(Au-P)、总磷(TP)自上而下有明显的增加。有机磷(Or-P)自上向下具有减小的总趋势,交换态磷(Ex-P)的垂直变化趋势与有机磷(Or-P)相反。Fe结合态磷(Fe-P)受氧化还原的影响较大,自上而下降低。长江口潜在生物有效性磷的平均含量约占总磷(TP)的10.08%-11.02%,仅仅是沉积磷库中的一小部。
     南黄海所调查的海区,氮的各赋予形态的高含量值分布在调查区域的西北部,基本趋势从西北向东南减少与南黄海中部细粒度组分较高的区域相符。有机态和硫化物结合态氮(OSF-N)是氮的主要赋予形态,有机态和硫化物结合态氮(OSF-N)含量的垂直分布,表层1-2cm内显著降低,总氮(TN)平均含量随深度增加,逐渐降低。离子交换态氮(IEF-N)含量表层1-2cm内显著降低,随后基本保持不变,与有机态和硫化物结合态氮(OSF-N)的垂直分布相似。受陆源输入、沉积环境影响,碳酸盐结合态氮(CF-N)垂直变化较为复杂,铁锰氧化态氮(IMOF-N)自上而下先增大后减小。可转化态氮占总有机碳(TOC)的20%,其含量相对其他海域含量较小,说明此处能参与氮循环,可被再次利用的氮含量较小。
     南黄海所调查的海区沉积物中,受黄海中部沉积中心的影响,各形态磷的最大值一般出现在10694、12494站位,交换态磷(Ex-P)表现较为明显。交换态磷(Ex-P)的垂直变化上下波动较大,与有机磷(Or-P)的矿化分解密切相关。Fe结合态磷(Fe-P)易解析,含量小,垂直变化最为复杂,从上向下波动较大;说明陆源物质对黄海中部影响不大。自生磷(Au-P)与碎屑磷(De-P)占总磷(TP)的50%以上是P的优势形态。由于黄海中部沉积环境平稳,自生磷(Au-P)、碎屑磷(De-P)自上向下平稳增大。
     (3)沉积物中氮、磷形态与总有机碳(TOC)、生物硅(BSi)的相关性分析
     做长江口及南黄海中部沉积物中各形态氮、磷与总有机碳(TOC)、生物硅(BSi)含量作线性相关性分析,结果显示:长江口沉积物中自生磷(Au-P)、碎屑磷(De-P)同生物硅(BSi)呈显著负相关,交换态磷(Ex-P)、Fe结合态磷(Fe-P)与总有机碳(TOC)呈显著正相关性;南黄海沉积物中有机磷(Or-P)、交换态磷(Ex-P)、Fe结合态磷(Fe-P)与生物硅(BSi)呈正相关性,自生磷(Au-P)、碎屑磷(De-P)同总有机碳(TOC)呈显著正相关,交换态磷(Ex-P)、Fe结合态磷(Fe-P)在适当条件下,均有利于生物利用。就各形态氮而言,长江口沉积物中有机态和硫化物结合态氮(OSF-N)、离子交换态氮(IEF-N)与生物硅(BSi)的显著正相关,铁锰氧化态氮(IMOF-N)同总有机碳(TOC)呈显著正相关;南黄海沉积物中只有碳酸盐结合态氮(CF-N)与生物硅(BSi)、有机态和硫化物结合态氮(OSF-N)与BSi表现出显著正相关性,其余氮形态与总有机碳(TOC)、生物硅(BSi)相关性都不大。
     (4)初级生产力的近代沉积记录及沉积物中生物硅(BSi)、总有机碳(TOC)与浮游植物现存量的相关性分析
     长江口及其邻近海域近代沉积中总有机碳(TOC)、生物硅(BSi)垂直分布与浮游植物量的历史长期变化并不一致,可能与长江口复杂的水动力条件及氧化还原条件有关。在南黄海中部两柱状样约为近150年来的沉积物,总有机碳(TOC)、生物硅(BSi)的变化与近150年来初级生产力的长期变化有关,其中生物硅(BSi)的含量在8cm左右出现最大值与60年代浮游植物量峰值相符。
     南黄海中部、长江口柱状沉积物中生物硅(BSi)、总有机碳(TOC)含量与水体中浮游植物现存量相关性不显著,但长江口H1-18站位柱状样中,沉积物中生物硅(BSi)与浮游植物现存量可建立线性关系,能更好的反映水体中浮游植物现存量,但考虑到缺少精确的测年数据及所调查区域复杂的沉积环境等因素影响,此线性关系还有待进一步研究。
Based on the observation in the typical areas of the East China Sea and the Yellow Sea BSi ,TOC, nitrogen forms and phosphorus forms data were used as the productivity and nutrient proxies.Three major aspects are addressed: distribution of BSi ,TOC, nitrogen forms and phosphorus forms in sediment, the correlations between BSi(TOC) and phytoplankton standing stock, the correlations between phosphorus(nitrogen) forms and BSi(TOC). The major results can be summarized as following:
     (1) Distribution of BSi and TOC
     The BSi and TOC concents in sediments were high in the west investigated region.. In sediments of Yangtzi River estuary ,the TOC concents fluctuated with the depth and without the variation regularity. BSi contents, except for an maximum at the depth of 10 cm, the contents of BSi had no significant chages.
     In sediments of the central part of the south yellow sea. the TOC concents decreased and the BSi concents without significant chages with the increasing depth.
     (2)Distribution of phosphorus and nitrogen forms in sediment
     In sediments of the Yangtzi River estuary, IMOF-N is the main forms of transferable nitrogen. In the influence of changjiang diluted water,TN and nitrogen forms was higher in Northeast. In the influence of oxidation and reduction, IEF-N ,.IMOF-N and CF-N contents decreased with the depth. TN and OSF-N contents increased at first and then decreased with the depth.
     De-P is the main forms of TP and Or-P, Fe-P contents is comparative lower than other forms in the Yangtzi River estuary. TP, phosphorus and nitrogen forms concents is high in the nearshore of the Yangtzi River estuary because of continental input effect。De-P is the main forms of TP, accounts for 56.45% of TP and complexity in horizontal distribution. Au-P concents were high in 123E region and coincided with primary productivity. Vertical distribution of De-P, Au-Pand TP increase significantly with depth. Or-P concents showed a tendency to increase and vertical distribution of Ex-P and Fe-P has opposite to action. Phosphorus bioavailability is only little, accounts for 10.08%-11.02% of TP.
     Nitrogen forms contents was high in the northwest of the south yellow sea and is similar to distribution of fine-grained components. OSF-N were the predominant forms in the research area , accounted for 85% of TP and vertical distribution decreased in the surface sediment, IEF-N,OSF-N concents showed Similar distributing characteristics. Because of continental input and sediment environmenta effect vertical distribution of CF-N showed complex. IMOF-N in sediment cores increases at first and decreases later downwards Transferable nitrogen accounts for 20% of TOC and was rela tively smaller than others.
     Because of the influence of depositional center phosphorus forms contents is high in the 10694、12494 sediment cores especially Ex-P contents which is closely related to mineralization of Or-P. Decomposable Fe-P contents in sediment cores are small and vary greatly with the depth which suggested terrigenous sediment had notable influence on the central part of the south yellow sea. Au-P and De-P were the main forms of TP, accounts for 50% of TP and gradually increased with the depth.
     (3) The correlations between phosphorus (nitrogen) forms and BSi(TOC).
     In sedimengt of the Yangtzi River estuary, Au-P and De-P contents correlate negatively to the BSi contents. The Ex-P and Fe-P contents in sediments had close relation with TOC. OSF-N and IEF-N contents are correlated with BSi contents positively. There was positive correlation between IMOF-N and TOC.
     In the central part of the south yellow sea, there was positive correlation between Or-P, Fe-P, Ex-P and BSi, as to Au-P, De-P and TOC, CF-N and BSi.The rest of nitrogen forms had no correlation with TOC and BSi in the 10694 station.
     (4) Recent sedimentary records of primary production and the correlations between BSi (TOC)and phytoplankton standing stock
     In sediments of the Yangtzi River estuary, the vertical distribution of TOC and BSi in different in long-term changes of phytoplankton quantity, which maybe relate to hydrodynamic factors and the redox conditions. Maximum value in vertical distribution of TOC,BSi in the yellow sea were in accordance with maximum valueof phytoplankton quantity in 1960s in sediment of 10694,10294 station.
     In the central part of the south yellow sea and the Yangtzi River estuary sea area, the TOC and BSi contents have no correlations with the phytoplankton standing stock. But there were linear relationship between BSi and the phytoplankton standing stock in sediment of H1-18 station which remained to be studied further considering lack of dating data.
引文
[1]汪品先.南海晚第四纪股海洋学研究[M].青岛海大学出版社, 1992.
    [2]田正隆.南海古生产力研究进展[J].海洋科学, 2004, 28(8): 65-71.
    [3]蓝先洪,申顺喜.南黄海中部沉积岩心的地球化学特征[J].海洋地质与第四纪地质, 2000, 16 (2): 33-38.
    [4]杜俊民.南黄海中部沉积物微量元素的环境记录研究[J].海洋学报, 2004, 26(6): 49-56.
    [5]蓝先洪.南黄海中部沉积岩芯的微体古生物组合特征及古环境演化[J].海洋湖沼通报, 2004, 3:17-21.
    [6]叶曦雯.东、黄海沉积物中生物硅的分布及其环境意义[J].中国环境科学, 2004, 24(3):265-269.
    [7]赵颖翡.黄、东海柱状沉积物中生物硅含量的分析[J].中国海洋大学学报, 2005, 35(3): 423-428.
    [8] Brummer G J A, van Eijden A J M.“Blue-ocean”Paleoproductivity estimates from pelagic carbonate mass accumulation rates [J]. Mar.Micropaleontology, 1992, 19: 99-117.
    [9] Vander ZWAAN G J, JORISSEN F J, ZACHARIASSE W. A pproaches to Paleoproductivity Reconstructions [M]. Marine Micropaleontology, 1992, 19: 96-98.
    [10] Herguera J C. Last glacial paleoproductivity patterns in the eastern equatorial Pacific: benthic foraminifera records [J]. Mar. Micropaleontol, 2000, 40: 259-275.
    [11]同济大学地质系.古海洋概论[M].同济大学出版社, 1989, 192-194.
    [12]陈建芳.古海洋学研究中的地球化学新指标进展[J].地球科学进展, 2002, 17(3): 402-409.
    [13] Schmitz B. Barium,equatorial high productivity and the northward wandering of the Indian continent[J]. Paleoceanography, 1987, 2(1): 63-77.
    [14] Conley D J, Schelske C L, Stoermer E F. Modification of the biogeochemical-cycle of silica with eutrophication [J]. Marine Ecology Progress Series, 1993, 101: 179-192.
    [15] Mortlock R A, Charles C D, Froelich P N, etal. Evidence for lower productivity in the Atlantic Ocean during the last glaciation [J]. Nature, 1991, 351: 220-223.
    [16]陈建芳,郑连福, Wiesner M G,等.基于沉积物捕获器的南海表层初级生产力及输出生产力估算[J ] .科学通报, 1998 , 43(6) : 639 - 642.
    [17]翦知,王律江,Kienast M,等.南海晚第四纪表层古生产力与东亚季风变迁[J ] .第四纪研究, 1999 , 1 :32 - 40.
    [18] Wang P , Prell W L , Blum P et al . Proceedings of Ocean Drilling Program, Initial Reports Volume 184. Texas A & M University , College Station , 2000. 1~1 410
    [19]王汝建,李建.南海ODP 1143站第四纪高分辨率的蛋白石记录及其古生产力意义[J] .科学通报,2003 ,48 (1) :74—77.
    [20]王博士,赵泉鸿,翦知南海南部中上新世以来沉积有机碳与古生产力变化,海洋地质与第四纪地质,2005,25(2):73-78
    [21] Nakat suka ,T. ,Watannabe, K, Handa, N, etal, 1995. Glacial to interglacial surface nut rient variations of Bering deep basins recorded byδ13 C andδ15 N of sedimentary organic matter. Paleoceanog ra phy, 1995, 10 (6) :1047 - 1061.
    [22]贾国东,剪知,彭平安,汪品先,傅家漠.南海南部17962柱状样生物硅沉积记录及其古海洋意义[J],地球化学,2000,29(3):
    [23] Wang L , Wang P. Late Quaternary paleoceanography of the South China Sea : glacial~interglacial contrasts in an enclosed basin. Paleoceanography , 1990 , 5 (1) : 77~90
    [24]王律江,卞云华,汪品先.南海北部末次冰消期及快速气候回返事件.第四纪研究,1994 , 1 : 1~12
    [25] Miao Q, Thunell R C. Glacial2Holocene carbonate dissolution and seasurface temperatures in the South China and Sulu seas.Paleoceanography , 1994 , 9 (2) : 269~290
    [26] Voss M, Larsen B, Leivuori M, et al. Stable isotope signals of eutrophication in Baltic Sea sedimentsC[J].Journal of Marine Systems, 2000,25: 287-298
    [27] HARRIS P, FICHE Z, FERNANDEZ J M. et al. Using geochronology to reconstructthe evolution of particulate phosphorus inputs during the past century in the Papeete Lagoon[J].Oceanologica Acta. 2001, 24: 1-10
    [28] Matsuka K. Eutrophication process recorded in dinoflagellate cyst assemblagesa case of Yokohama Port, Tokyo Bay, Japan [J]. The Science of the Total Environment, 1999, 231: 17-35.
    [29]陈铁梅.第四纪测年的进展与问题.第四纪研究,1995,15(2):182-191.
    [30]王兆荣,彭子成,孙卫东等.高精度热电离质谱(TIMS)铀系法洞穴沉积物(石笋)年龄的研究.沉积学报. 2000, 18(1):162-164.
    [31] Goldberg E. D, Koide M. Rates of sediment accumulation in the Indian Ocean. In Geiss J, Goldberg E D eds. Earth Sciences and Meteoritics. Amsterdam: North-Holland publishing Company 1963, 90-102
    [32] Kiishnaswamy S. L. D, Martin J M et al.Geochronology of lake sediments, Earth and Planetary Science Letters, 1971, 11: 407-414
    [33] Koide M,Soutar A,Goldberg E D. Marine geochronology with 210Pb, Earth and Planetary Science Letters, 1972, 14: 442- 446
    [34]林瑞芬,阂育顺,卫克勤,张干,虞福基,虞云龙.珠江口沉积柱样210Pb法年龄测定结果及其环境地球化学意义,地球化学, 1998,27(5):401-411
    [35]王福,王宏,李建芬,裴艳东,范昌福,商志文.渤海地区210Pb、137Cs同位素测年的研究现状,地质论评, 2006,52(4):244-250
    [36] Schaffner L C. Faunal characteristics and sediment accumulation processes in the James River estuary, Virginia[J]. Estuarine, Coastal and Shelf Science 1987, 25:211-226
    [37]潘少明,朱大奎,李炎等。河口港湾沉积物中137Cs剖面及其沉积学意义〔JJ.沉积学报,1997. 15 (4 ): 67-71
    [38]万国江,Santschi P从Sturm M等.放射性核素和纹理计年对比研究瑞士格莱芬湖近代沉积速率.1986, (3):259-270
    [39] Wang G J, Santschi P H, Sturm M et al. Natural (210Pb, 7Be) and fallout (137Cs)as geochemical tracers of sedimentation in Greifensee, Switzerland. Chemical Geology, 1987, 63:181-189
    [40] Muller P J, Suess E. Productivity, sedimentation rate, and sedimentary organic matter in the oceans. 1. Organic carbon preservation[J]. Deep-Sea Research, 1979, 26: 1347-1362.
    [41] Stein R. Surface-water paleo-productivity as inferred from sediments deposited in oxic and anoxic deepwater [A] . Bio-geochemistry of Black Shaleseds. Degens E T, Meyers P A and Brasseli S C) [C] . Selbstverlag Universitat Hamburg, Hamburg, 1986. 55-70.
    [42]房殿勇.南沙海区南部近30ka来的古生产力记录[J].科学通报, 1998, 43(18): 2005-2008.
    [43] Van Kreveld S A, Knappertsbusch M, Ottens J, et al. Bio-geniccarbonate and ice-rafteddebris (Heinrich layer) accumulation in deep sea sediments from a Northeast Atlanticpiston core [J]. Mar.Geol, 1996, 131: 21-46.
    [44]向容. 240ka以来西赤道太平洋碳酸钙沉积特征及其古海洋学意义[J].海洋与湖沼, 2000, 31(5): 535-542.
    [45] SEISSER G W. Paleoproductivity of the Indian Ocean during the Tertiary Period [J]. Global and Planetary Change, 1995, 11: 71-88.
    [46] LOUBERE P. Quantitative estimation of surface ocean productivity and bottom water oxygen concent ration using benthic foraminifera [J]. Paleoceanography, 1994, 9: 723-737.
    [47]卞云华.底栖有孔虫指示含氧量与古生产力[M].南海晚第四纪研究, 1992, 7:227-232.
    [48]黄宝琦.南海东北部晚第四纪古生产力变化[J].海洋地质与第四纪地质, 2000, 20(2): 65-68.
    [49] Jens Klamp.冰川结束é期之后太平洋沉积物中高浓度的生物成因钡[J].海洋地质动态, 2002, 18(4): 13-15.
    [50]房殿勇.南沙群岛海域以钡为指标的古生产力研究[J].海洋学报, 2005, 27(4): 53-58.
    [51]田正隆.以钡为指标反演海洋古生产力的研究进展[J].热带海洋学报, 2004, 23(3): 78-86.
    [52]李建如.南海南部12Ma以来的蛋白石堆积速率与古生产力变化[J].科学通报, 2002, 47(3): 235-237.
    [53] MULLERP J, SUESS E. Productivity, sedimentationrate and sedimentary organic matter in the oceans. Organic carbon preservation[J]. Deep Sea Research, 1979, 26: 1347-1362.
    [54]宁修仁,刘子琳,蔡显明.我国海洋初级生产力研究二十年[J].东海海洋, 2000, 18 (3): 13-20.
    [55]宁修仁,刘子琳,史君贤.渤黄东海初级生产力和潜在渔业生产量的评估[J].海洋学报, 1995, 17 (3): 72-84.
    [56]费尊乐,毛兴华,朱明远等.渤海生产力研究1:叶绿素a的分布特征与季节变化[J].海洋学报, 1988, 10 (1): 99-106.
    [57]费尊乐,毛兴华,朱明远等.渤海生产力研究2:初级生产力及潜在渔获量的估算[J].海洋学报, 1988, 10 (4): 481-489.
    [58]费尊乐,李宝华.叶绿素a与初级生产力之间的相关关系[J].青岛海洋大学学报,1990, 20(1): 73-80.
    [59]蔡显明,宁修仁,刘子琳.珠江口初级生产力和新生产力研究[J].海洋学报,2002,24(3):1 01-111
    [60]王增焕,李纯厚,贾晓平。应用初级生产力估算南海北部的渔业资源量[J].海洋水产研究.2005,26(3):9-15
    [61] Dymond, Suess E, Lyle M, et al. Barium in the deep-sea sediment; A geochemical proxy for paleoproductivity [J]. Paleoceanography, 1992, 7(2): 163-181.
    [62]陈木宏,黄良民,涂霞,郑范.南海放射虫与初级生产力的古海洋学转换关系[J].科学通报, 1999, 44(3): 327-333.
    [63]中国海环境手册,1988
    [64]陈大刚. 1991.黄渤海渔业生态学.北京:海洋出版社
    [65]赵传絪主编. 1990.中国渔业资源调查和区划之六—中国海洋渔业资源.杭州:浙江科技出版社.
    [66]马红波,渤海沉积物中氮的赋予形态及其在循环中的作用.中国科学院海洋研究所硕士论文,2001.
    [67]扈传昱,王正方,吕海燕.海水和海洋沉积物中总磷的测定[J].海洋环境科学, 1999, 3: 53-62.
    [68] Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and Oceanogerphy, 1992, 37(7): 1460-1482.
    [69] Herguera J C. Last glacial paleoproductivity patterns in the eastern equatorial Pacific: benthic foraminifera records [J]. Mar. Micropaleontol, 2000, 40: 259-275.
    [70]徐韧,洪君超,王桂兰等.长江口及其邻近海域的赤潮现象[J].海洋通报, 1994, 13(5): 25-29.
    [71]徐韧.长江口及其邻近海域赤潮发生的特点及管理对策初探[J].海洋开发与管理, 1994, 11(4): 36-38.
    [72]韩秀荣,王修林,孙霞等.东海近海海域营养盐分布特征及其与赤潮发生关系的初步研究[J].应用生态学报, 2003, 14(7): 1097-1001.
    [73] WANG Bao-dong, WANG Xiu-lin, ZHAN Run. Nutrient conditions in the Yellow Sea and the East China Sea[J]. Estuarine, Coastaland Shelf Science, 2003, 58: 127-136.
    [74]周伟华,袁翔城,霍文毅,殷克东.长江口邻域叶绿素a和初级生产力的分布[J]. 2004, 26(3): 143-150.
    [75]毛汉礼,甘子钧,蓝淑芳.长江冲淡水及其混合问题的初步探讨[J].海洋与湖沼, 1963, 5(3): 183-206.
    [76]乐肯堂.长江冲淡水路径的初步研究I.模式[J].海洋与湖沼, 1984, 15(2): 157-167.
    [77] Emerson S, Hedges J I. Processes Controlling the Organic Carbon Content of Open Ocean Sediments[J]. Paleoceanography, 1988, 3: 621-634.
    [78]陈建芳,金海燕,刘小涯,李宏亮,林以安,潘建明.黄海和东海沉积物有机质活性及营养盐再生潜力初探[J],地球化学,2005,34(4):24-28.
    [79] Treguer P, Nelson D M, Van Bennekom A J, et al. The silica balance in the world ocean: A reestimate [J]. Science, 1995, 26(8): 375-379.
    [80] Ragueneau O, Gallinari M, CorrinL, et al.The benthic silica cycle in the North east Atlantic [J]. Progressin Oceanographer, 2001, 50(1~4): 171-200.
    [81]高芳蕾,杨小强,董艺辛,梁秋.珠江三角洲PD孔沉积物的碳氮记录及其环境意义[J].海洋地质与第四纪地质, 2006, 26(2): 34-37.
    [82]魏建伟,石学法,辛春英等.南黄海粘土矿物分布特征及其指示意义[J].科学通报, 2002, 46(增刊): 30-33.
    [83]王俊.黄海春季浮游植物的调查研究[J].海洋水产研究, 2001, 22(3): 56-61.
    [84]陈绍勇.湄洲湾沉积物有机碳、铁和锰的化学成岩过程[J].热带海洋学报, 1992, 3: 54-59.
    [85] Chung C S, Hong G H, Kim S H, et al.The distributional characteristics and budget of dissolved inorganic nutrientsin the Yellow Sea[A] Hong G H, Zhang J and Chung C S. Biogeochemical Processesinthe Bohaiand Yellow Seas[C]. Seoul: Dongjin Publication Association, 1999, 4: 268-274.
    [86]毛汉礼,甘子钧,蓝淑芳.长江冲淡水及其混合问题的初步探讨[J].海洋与湖沼, 1963, 5(3): 183-206.
    [87]宋金明.中国近海生物地球化学[M].济南:山东科技出版社, 2004, 1-591.
    [88]王克,王荣,左涛,高尚武.长江口及邻近海区浮游动物总生物量分析[J].海洋与湖沼, 2004, 135(16): 568-576.
    [89]李道季,张经,黄大吉等,长江口外氧亏损[J].中国科学(D辑),2002,32:686-694.
    [90]张晓东,翟世奎,许淑梅,张爱滨,卢海建.长江口外缺氧区沉积物中氧化还原敏感性元素的/粒控效应[J].中国海洋大学学报, 2005, 35(5): 868-874.
    [91]马红波,宋金明,吕晓霞,袁华茂.渤海沉积物中氮的形态及其在循环中的作用[J].地球化学, 2003, 32(1): 49-54.
    [92] Balzer W. Organic matter degradation and biogenic element cycling In a near Shore Sediment (Kiel Bight) [J]. Limnnl Oceanonger, 1984, 29(6): 1231-1246.
    [93]马红波,宋金明,吕晓霞.渤海南部海域柱状沉积物中氮的形态与有机碳的分解[J].海洋学报, 2002, 24(5): 64-69.
    [94]吕晓霞,宋金明等.南黄海表层沉积物中氮的潜在生态学功能[J].生态学报. 2004, 24(8): 1636~1643.
    [95]洪华生,徐立,郸劳动等.台湾海峡南部沉积物中C、N、P和Si的地球化学[J].海洋生物地球化学研究论文集, 1996, 31-380.
    [96]鲍根德.太平洋西部深海沉积物中有机质、氮、磷的初步研究[J].沉积学报, 1984, 8(l): 1214-1240.
    [97]黄德佩.海洋沉积物中硫化物的测定[J].环境污染与防治, 1984, 3: 78-85.
    [98]浙江省海岸带调查资料,1986
    [99]许金树,李亮歌.台湾海峡中北部沉积物中磷的存在形态[J].海洋与湖沼, 1990, 21(1): 62-69.
    [100]李佑清,张文漫.武汉东湖底泥中磷的形态组成研究[J].环境科学与技术, 1992, 56:24-26.
    [101]黄自强,暨卫东.长江口水中总磷、有机磷、磷酸盐的变化特征及相互关系[J].海洋学报, 1994, 16(1): 51-60.
    [102]翁焕新.河流沉积物中磷的结合状态及其环境地球化学意义[J].科学通报, 1993, 38(13): 1219-1222.
    [103] Hisashi J. Fractionation of phosphorus and reieasabietraction in sediment mud of Osaka Bay[J]. Bull Jap Soc Sci Fish, 1983, 49(3): 447-454.
    [104] Jensen H S, Mortensen P B, Andersen F, etal. Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark[J]. Limnol Oceanogr, 1995, 40(5): 908-917.
    [105] Berner R A, Rutfenberg K C, Ingall E D,et al, The Nature of phosphorus in modern marine sediment[J]. NATO ASI Series, 1993, 14: 365-378.
    [106]徐明德,韦鹤平,李敏,黄晓琛.长江口泥沙和沉积物中磷酸盐存在形态的研究[J].环境监测, 2006, 25(1): 52-60.
    [107] Baturin G N. Disseminated phosphorus in oceanic sediments-Areview [J]. Marine Geology, 1988, (84): 95-104.
    [108]董方,刘素美,张经.北黄海与渤海沉积物中磷形态的分布特征[J].海洋环境科学, 2001, 20(2): 18-23.
    [109]陈中原,周长振,杨文达等.长江口外现代水下地貌和沉积[J].东海海洋, 1986, 14(2): 28-37.
    [110] Sundby B, Gobeil C, Silverberg N. The phosphorus cycle in coastal marine sediments [J].Limnology and Oceanography, 1992, 37(6): 1129-1145.
    [111] Krom M D, Berner R A. Adsorption of phosphate in anotic marine sediments [J]. Limnol Oceanogr, 1980, 25(5): 787-806.
    [112] Gomez E, Durillon C, Rofes G, et al. Phosphate adsorption and release from sediments of In-ackish lagoons and pH, O2, and loading influence[J]. Water Research, 1999, 33: 2437-2447.
    [113] Frossard E,Frossard M,Hedley M J,Reactions controlling the cycling of Pinsoils[A].In:TiesserH,ed.PhosphorusintheGlobalEnvironment:Transfers,CyclesandManagement[C].Chichester:Wileyand SonsLtd,1995
    [114]扈传昱,潘建明,刘小涯.珠江口沉积物中磷的赋存形态[J].海洋环境科学,2001,20(4):21-25
    [115] Sonzogni W C, Chapra S C, Am strong D E, et al. Bioavailability of phosphoms inputs to lakes [J]. Journal of Environmental Quality, 1982, 11(4): 555-563.
    [116]杨逸萍,胡明辉,陈海龙等.九龙江口生物可利用磷的行为与入海通量[J].台湾海峡,1998, 17(3): 269-274.
    [117]侯立军,陆健健,刘敏,许世远.长江口沙洲表层沉积物磷的赋存形态及生物有效性[J].环境科学学报, 2002, 26(3): 416-420.
    [118]赵一阳,鄢明才.黄河!长江!中国浅海沉积物化学元素丰度比较[J].科学通报, 1992(13): 1202-1204.
    [119]冯强,刘素美,张经.黄、渤海区沉积物中磷的分布[J].海洋环境科学, 2001, 20(2): 24-27.
    [120]杨光复.三峡工程对长江口区沉积结构及地球化学特征的影响-海洋科学集刊(三峡工程对长江口区生态与环境影响调查研究专辑[M].北京:科学出版社, 1992, 69-108.
    [121]杨守业,李从先,张家强.苏北滨海平原冰后期古地理演化与沉积物物源研究[J].古地理学报, 2000, 2(2): 65-71.
    [122]孙有斌,高抒,鹿化煜.前处理方法对北黄海沉积物粒度的影响[J].海洋与湖沼, 2001, 32(6): 665-670.
    [123]宋金明.《中国近海沉积物海水界面化学》.北京:海洋出版社, 1997, 118-122.
    [124] Ralzm W. Organic matter degradation and biogenic element cycling in a nearshore sediment (Kiel Bight) [J]. Jimnnl Oceanngr, 1984, 29(6): 1231-1246.
    [125]申顺喜,李安春,袁巍.南黄海中部的低能沉积环境, 1996, 27(5):45-55.
    [126] SONG Jin-ming, M A H, LU Xiao-xia. Nitrogen forms and decomposition of organic caroon in the south Bohai Sea cot sediments [J]. Acta Oceanlogica S inica, 2002, 21(I): 87-95.
    [127]吕晓霞,宋金明,李学刚,袁华茂,詹天荣,李宁,高学鲁.北黄海沉积物中氮的地球化学特征及其早期成岩作用[J].地质学报, 2005, 79(1):31-38.
    [128]蓝先洪,张训华,张志.南黄海沉积物的物质来源及运移研究[J].海洋湖沼通报, 2005,53-59.
    [129]黄菊英,刘广远,鲍永恩,韩庚辰,刘娟.黄海表层沉积物中总磷的地球化学特征[J]. 2002, 21(3): 53-56.
    [130]海洋监测规范. GB 17378. 1998.第4部分:海水分析.
    [131]石学法,刘焱光,任红,王慧艳,陈春峰.南黄海中部沉积物粒径趋势分析及搬运作用[J].科学通报, 2002, 6: 1103-1106.
    [132]汤毓祥,邹娥梅,李兴宰等.南黄海环流的若于特征[J].海洋学报, 2000, 22(1): 1-16.
    [133] Hu D X. Some striking features of circulation in Huanghai Sea and Easl China Sea[J]. Oceanology of China Sea, 1994, 1: 27-38.
    [134]林荣根,吴景阳.黄河口沉积物中无机磷酸盐的存在形态[J].海洋与湖沼, 1992, 23 (2): 23-30.
    [135]郑丽波,叶瑛,周怀阳等.东海特定海区表层沉积物中磷的形态!分布及其环境意义[J].海洋与湖沼, 2003, 34(3): 274-281.
    [136]林承坤.黄海粘土沉积物的来源与分布[J].地理研究, 1992, 11(2): 41-51.
    [137] Shou Ye Yanga b, Hoi Soo Jungb, Dhong Il Limb, Cong Xian Lia. A review on the provenance discrimination of sedimentsin the Yellow Sea[J]. Earth-Science Reviews, 2003, 63: 93-120.
    [138] Vaithiyanathan P, Jha P K, Subramanian V. Phosphorus distribution in these dements of the hooghly(Ganges)estuary, India[J]. Estuarine, Coastaland Shelf Science, 1993, 37(6): 603-614.
    [139] Weng H X, BobJ, Presley, et al. Distribution of sedimentary phosphorusin gulf of mexico estuaries[J]. Marine Environmental Research, 1994, 37: 375-392.
    [140] Krom M. D., Bomer R. A. Adsorption of phosphate in anoxic marine sediments Limnology and Oceanogerphy, 1980, 25: 797一806.
    [141]李凤业,高抒,贾建军,赵一阳.黄、渤海泥质沉积区现代沉积速率[J].海洋与湖沼, 2002, 4: 165-172.
    [142] De Master D J, McKee B A, Nittrouer C A, et al. Rates of sediment accumulation and
    [143] particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea [J]. Continental Shelf Research, 1985,4:143-158.
    [144]顾新根,袁骥.长江口羽状峰海区浮游植物的生态研究[J].中国水产科学, 1995, (2)1:1-15
    [145]黄海水产研究所资源调查室.黄渤海浮游生物概况及其与渔业的关系[J].海洋水产研究丛刊, 1961, 6: 34-48.
    [146]赵保仁,任广法,曹德明,杨玉玲.长江口上升流海区的生态环境特征[J].海洋与湖沼,2001,(3):13-16
    [147]郭玉洁,杨则禹.长江口区浮游植物的数量变动及生态分析[J].海洋科学集刊,1992,33:167-189.
    [148]郭玉洁,潘友联.长江口区初级生产力的研究[A].中国科学院海洋研究所.海洋科学集刊,(33)[C].北京:科学出版社,1992.191~20.
    [149]王云龙,袁骐,沈新强.长江口及邻近水域春季浮游植物的生态特征[J].中国水产科学, 2005, 12(3): 300-306.
    [150]农业部渔业局,中国专属经济区生物资源及其环境调查图集,第二册,河北,气象出版社,2002, 1-4.
    [151]全国海洋综合调查报告第八册, 1965
    [152]黄邦钦,刘媛,陈纪新,王大志,洪华生,吕瑞华,黄凌风,林以安,魏皓.东海、黄海浮游植物生物量的粒级结构及时空分布[J].海洋学报, 2006, 28(2):156-164.
    [153] Brummer G J A, van Eijden A J M.“Blue-ocean”Paleoproductivity estimates from pelagic carbonate mass accumulation rates [J]. Mar.Micropaleontology, 1992, 19: 99-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700