360ka以来西太平洋暖池核心区古环境演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西太平洋暖池以年均28℃等温线为界,是全球海气交换最强烈的地区,也是许多重要水团、洋流的汇集地。大洋暖池的变化制约着亚洲、太平洋区域,甚至全球气候变化和某些重要自然灾害的形成,是气候异常的源地之一,揭示西太平洋暖池的变化规律对于了解全球气候变化具有重要意义。为了了解西太平洋暖池的古环境演化过程,本文选取了位于西太暖池核心区Ontong Java海台上的97322-4(00o01.7321′S,159o14.6625′E,水深:2362m)站位柱状样沉积物为材料,进行了浮游有孔虫G. ruber与N. dutertrei壳体δ18O、δ13C的地球化学分析和有孔虫群落组合特征的分析,并结合前人研究成果对比重建了360ka以来西太平洋暖池核心区的古环境演化过程,填补了该区域古海洋研究分辨率较低的空白。
     通过与LR04标准氧同位素曲线的对比发现97322-4孔氧同位素地层到达MIS10期,共出现了四个冰期-间冰期旋回,次表层水变化幅度明显高于表层水,这说明次表层水对于环境的变化更为敏感,表明西太平洋暖池核心区的环境变化更多的发生在次表层水之中,即暖池的内部。97322-4孔在四个冰消期时均出现了浮游有孔虫壳体δ~(13)C低值事件,可能反应了亚南极模态水(SAMW)和南极中层水(AAIW)对于低纬热带海区的影响,这一事件也为冰消期δ13C低值事件在热带太平洋地区存在的普遍性提供了新的证据,同时也进一步证明了南极高纬地区对低纬热带海区的影响。
     次表层种N. dutertrei壳体的δ13C值、底栖有孔虫丰度与U+B相对百分含量变化定性的反映了97322-4孔的古生产力变化过程,指示出研究区的古生产力存在冰期高,间冰期低的变化趋势,其驱动机制可能受控于温跃层深度类ENSO式的变动。
     97322-4孔的上层水体结构变化,并没有体现出明显的冰期-间冰期旋回特征,大致可以分为两个变化阶段:MIS10期~MIS7期,这一阶段温跃层整体呈变浅趋势;MIS7期以后,温跃层呈现出变深的趋势。
     97322-4孔浮游有孔虫组合表现出十分强烈的热带特征,热带-亚热带的代表属种在种群中占绝对的优势,97322-4孔浮游有孔虫群落组合的波动比较频繁,但是并没有严格的遵循冰期-间冰期旋回交替的规律。岁差和半岁差周期存在较普遍,说明该区的有孔虫丰度变动存在着明显的热带驱动。高纬驱动的斜率和偏心率周期也有体现,说明高纬驱动对该区也有影响作用。
Western Pacific Warm Pool, an average 28℃isotherm as the boundary, is theregion of the world's most intense air-sea exchange, but also is the gathering place ofmany important water masses and ocean currents. Changes in the WPWP influencethe climate change of Asia, Pacific and even global and the formation of someimportant natural disasters. It is one of the sources of climate anomalies. Revealingthe variation rule of the WPWP is very significant to understanding the global climatechange. In order to understand the paleoenviroment evolution of the WPWP, weselected in the core 97322-4 (00 o 01.7321 'S, 159 o 14.6625' E, water depth: 2362m)located in Ontong Java platform in the core of the WPWP as the researching materialsto analyse theδ18O,δ13C of planktonic foraminifera G. ruber and N. dutertrei and theforaminiferal assemblages and compare with the results of previous studies. Finally,we rebuilt the paleoenvironmental evolution course of the WPWP since 360ka andfilled the gaps of lower research resolution in this area.
     By oxygen isotope analysis, 97322-4 reached MIS10 period, with fourglacial-interglacial cycles. That the rate of change in sub-surface water wassignificantly higher than the surface water indicated that the subsurface water is moresensitive to changes in the environment and water temperature changes is more severe,which suggested that the WPWP environmental changes mostly occurred in thesub-surface water. Planktonic foraminiferalδ~(13)C minimum events in fourdeglaciation may reflect the impact of the Subantarctic Mode Water (SAMW) andAntarctic Intermediate Water (AAIW) on the low-latitude tropical sea. This event proved the 13C minimum events in deglaciation is universal in the tropical Pacific, but also provided further evidence for the Antarctic influence to the tropics.Subsurface water’s carbon isotope , benthic foraminiferal abundance, U + B(%)qualitatively reflected the paleoproductivity change process of the hole 97322-4, which indicating that the glacial has high productivity and the interglacial has the low productivity. Its driving mechanism may be controlled by the ENSO-like alteration of the thermocline depth.
     The structure of upper water in 97322-4 didn’t present the glacial-interglacial cycle characteristics. Changes can be divided into two stages: MIS10-MIS7, in this phase the thermocline was shallower; after MIS7, the thermocline showing a deeper trend.
     The fluctuations of planktonic community composition in 97322-4 hole were more frequent, but did not strictly follow the glacial - interglacial cycles. Precession and semiprecession cycle were more common, indicating that the abundance of foraminifera in the area were influenced by the tropical driving. The slope and the eccentricity cycles are also reflected in the area, suggesting that the high latitudes also played the role of driver.
引文
Anderson, R.F, Ah, S., Bradtmiller, L.I., Nielsen, S.H.H., Fleisher, M.Q., Anderson, B.E., andBurckle, L.H., 2009, Wind-Driven Upwelling in the Southern Ocean and the DeglacialRise in Atmospheric CO2: Science, v 323, p. 1443-1448.
    Andreasen, D.J., and Ravelo, A.C., 1997, Tropical Pacific Ocean thermocline depthreconstructions for the last glacial maximum: Paleoceanography, v 12, p. 395-413.
    Anklin, M., Barnola, J., Beer, J., Blunier, T., Chappellaz, J., Clausen, H., Dahl-Jensen, D.,Dansgaard, W., De Angelis, M., and Delmas, R., 1993, Climate instability during the lastinterglacial period recorded in the GRIP ice core: Nature, v 364, p. 203-207.
    Bard, E., 2001, Comparison of alkenone estimates with other paleotemperature proxies:Geochemistry Geophysics Geosystems, v 2, p.1002 -1012.
    Barrows, T.T., and Juggins, S., 2005, Sea-surface temperatures around the Australian margin andIndian Ocean during the Last Glacial Maximum: Quaternary Science Reviews, v 24, p.1017-1047. Be A. W, H., 1977, An ecological, zoogeographic and taxonomic review of recent planktonicforaminifera: Oceanic Micropaleontology, v 1, p. 1-100
    Beaufort, L., de Garidel-Thoron, T., Linsley, B., Oppo, D., and Buchet, N, 2003, Biomass burningand oceanic primary production estimates in the Sulu Sea area over the last 380 kyr andthe East Asian monsoon dynamics: Marine Geology, v 201, p. 53-65.
    Beaufort, L., de Garidel-Thoron, T, Mix, A.C., and Pisias, N.G, 2001, ENSO-hke forcing onoceanic primary production during the Late Pleistocene: Science, v 293, p. 2440-2444.
    Bond, G.C., and Lotti, R., 1995, Iceberg discharges into the North Atlantic on millennial timescales during the last glaciation: Science, v 267, p. 1005.
    Cane, M.A., and Molnar, P., 2001, Closing of the Indonesian seaway as a precursor to east Africanaridircation around 3-4 million years ago: Nature, v 411, p. 157-162.
    Cannariato, K.G, and Ravelo, A.C., 1997, Pliocene-Pleistocene evolution of eastern tropicalPacific surface water circulation and thermocline depth: Paleoceanography, v 12, p.805-820.
    Chaisson, and W, G, 1995, Planktonic foraminiferal assemblages and paleoceanographic changein the trans-tropical Pacific Ocean : A comparison of west (Leg 130) an east (Leg 138),latest Miocene to Pleistocene: Proceedings of the Ocean Drilling Program. Scientificresults: College Station, TX, ETATS-UNIS, Ocean Drilling Program, p. 970.
    Chaisson, W.P, and Ravelo, A.C., 2000, Pliocene development of the east-west hydrographicgradient in the equatorial Pacific: Paleoceanography, v 15, p. 497-505.
    Chen, M.-T, and Prell, W.L., 1998, Faunal distribution patterns of planktonic foraminifers insurface sediments of the low-latitude Pacific: Palaeogeography, Palaeoclimatology,Palaeoecology, v 137, p. 55-11.
    CLIMAP, 1981, Seasonal reconstructions of the earth's surface at the Last Glacial Maximum,Geological Society of America Map Chart Series, MC-36.
    Coffin, M.F, and Eldholm, O., 1994, Large Igneous Provinces - Crustal Structure, Dimensions,and External Consequences: Reviews of Geophysics, v 32, p. 1-36.
    Coleman, P., and Kroenke , L., 1981, Subduction without volcanism in the Solomon Islands arc:Geo-Marme Letters, v. l,p. 129-134. Corliss,
    B.H., and Chen, C, 1988, Morphotype Patterns of Norwegian Sea Deep-Sea BenthicForaminifera and Ecological Implications: Geology, v. 16, p. 716-719.
    Curry.W.B, Dup lessy.J.C, and Labeyrie.L.D, 1988, Change in the distribution of 513C of deepwater XCO2 between the last glaciation and the Holocene.: Paleoceanography, v. 3, p.337-341.
    Davies, H.L., and Price, R.C., 1987, Basalts from the Solomon and Bismarck Seas: Geo-MarineLetters, v. 6, p. 193-202.
    de Garidel-Thoron, T., Rosenthal, Y, Bassinot, K, and Beaufort, L., 2005, Stable sea surfacetemperatures in the western Pacific warm pool over the past 1.75 million years: Nature, v.433, p. 294-298.
    De La Rocha, C.L., and DePaolo, D.J., 2000, Isotopic evidence for variations in the marinecalcium cycle over the Cenozoic: Science, v 289, p. 1176.
    de Stigter, H.C., Jorissen, F.J., and van der Zwaan, G.J., 1998, Bathymetric distribution andmicrohabitat partitioning of live (Rose Bengal stained) benthic foraminifera along a shelfto bathyal transect in the southern Adriatic Sea: Journal of Foraminiferal Research, v 28,p. 40-65.
    Druffel, E.R.M., 1997, Geochemistry of corals: Proxies of past ocean chemistry, ocean circulation,and climate: Proceedings of the National Academy of Sciences of the United States ofAmerica, v 94, p. 8354-8361.
    Emiliani, C, 1955, Pleistocene Temperatures: Journal of Geology, v 63, p. 538-578.
    Farrell, J., Murray, D., McKenna, V, and Ravelo, A., 1995, Upper ocean temperature and nutrientcontrasts inferred from Pleistocene planktonic foraminifer |Al8O and |Al3C in theeastern equatorial Pacific, Volume 138, Ocean Drilling Program, p. 289-319.
    Fitton, J.G, Godard, M., Mahoney, J.J., and Herzberg, C, 2004, Origin of the Ontong Java Plateau:Geochimica Et Cosmochimica Acta, v 68, p. A581-A581.
    Goldstein, S.J., Lea, D.W., Chakraborty, S., Kashganan, M., and Murrell, M.T., 2001,Uranium-series and radiocarbon geochronology of deep-sea corals: implications forSouthern Ocean ventilation rates and the oceanic carbon cycle: Earth and PlanetaryScience Letters, v 193, p. 167-182.
    Hall, R., 2002, Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:computer-based reconstructions, model and animations: Journal of Asian Earth Sciences,v 20, p. 353-431.
    Hasselmann, K., Ross, D.B., Muller, P., and Sell, W., 1976, Parametric Wave Prediction Model:Journal of Physical Oceanography, v 6, p. 200-228.
    Hayes, J., 1993, Factors controlling 13C contents of sedimentary organic compounds: Principlesand evidence: Marine Geology, v 113, p. 111-125.
    Hemleben, C, Spindler, M., and Erson, O.R., 1989, Modern planktonic foraminifera, p. 220-257.
    Henderson, G.M., 2002, New oceanic proxies for paleoclimate: Earth and Planetary ScienceLetters, v 203, p. 1-13. Henderson, G.M., Hemze, C, Anderson, R.F, and Wmguth, A.M.E., 1999, Global distribution ofthe Th-230 flux to ocean sediments constrained by GCM modelling: Deep-Sea ResearchPart I-Oceanographic Research Papers, v 46, p. 1861-1893.
    Herguera, J.C., and Berger, W.H., 1991, Paleoproductivity from Benthic Foraminifera Abundance- Glacial to Postglacial Change in the West-Equatorial Pacific: Geology, v. 19, p.1173-1176.
    Horz, K.H., Worthington, T.J., Winn, K., and Stoffers, P., 2004, Late Quaternary tephra in the NewIreland Basin, Papua New Guinea: Journal of Volcanology and Geothermal Research, v.132, p. 73-95.
    Imbrie, J., and Kipp, N.G, 1971, A new micropaleontological method for quantitativepaleoclimatology: application to a late Pleistocene Caribbean core: The late Cenozoicglacial ages, v. 71, p. 181.
    Johnson, G.C., Sloyan, B.M., Kessler, W.S., and McTaggart, K.E., 2002, Direct measurements ofupper ocean currents and water properties across the tropical Pacific during the 1990s:Progress in Oceanography, v. 52, p. 31-61.
    Johnson, R., 1979a, Geotectonics and volcanism in Papua New Guinea: a review of the lateCainozoic: BMR Journal of Australian Geology and Geophysics, p. 181-207.
    1979b, Geotectonics and volcanism in Papua New Guinea: a review of the late Cainozoic:BMR Journal of Australian Geology and Geophysics, v 4, p. 181-207.
    Kamenov, G.D., Perfit, M.R., Mueller, PA., and Jonasson, I.R., 2008, Controls on magmatism inan island arc environment: study of lavas and sub-arc xenoliths from theTabar-Lihir-Tanga-Feni island chain, Papua New Guinea: Contributions to Mineralogyand Petrology, v 155, p. 635-656.
    Klump, J., Hebbeln, D., and Wefer, G, 2001, High concentrations of biogenic barium in Pacificsediments after Termination I - a signal of changes in productivity and deep waterchemistry: Marine Geology, v 177, p. 1-11.
    Kroenke, L.W., Wessel , P., and Sterling, A., 2004, Motion of the Ontong Java Plateau in thehot-spot frame of reference: 122 Ma-present: Geological Society, London, SpecialPublications, v 229, p. 9-20.
    Kucera, M., Weinelt, M., Kiefer, T, Pflaumann, U., Hayes, A., Chen, M.T., Mix, A.C., Barrows,T.T., and Cortijo, E., 2005, Reconstruction of sea-surface temperatures from assemblagesof planktonic foraminifera: multi-technique approach based on geographicallyconstrained calibration data sets and its application to glacial Atlantic and Pacific Oceans:Quaternary Science Reviews, v 24, p. 951-998.
    Lea, D.W., Pak, D.K., and Spero, H.J., 2000, Climate impact of late quaternary equatorial Pacificsea surface temperature variations: Science, v 289, p. 1719-1724.
    Lmsley, B.K., and Dunbar, R.B., 1994, The Late Pleistocene History of Surface Water δ13Cin the Sulu Sea: Possible Relationship to Pacific Deepwater δ13C Changes:Paleoceanography, v 9, p. 317-340.
    Lorius, C, Jouzel, J., Ritz, C, Merlivat, L., Barkov, N.I., Korotkevich, Y.S., and Kotlyakov, V.M.,1985, A 150,000-Year Climatic Record from Antarctic Ice: Nature, v 316, p. 591-596.
    Loubere, P., and Bennett, S., 2008, Southern Ocean biogeochemical impact on the tropical ocean:Stable isotope records from the Pacific for the past 25,000 years: Global and PlanetaryChange, v 63, p. 333-340.
    Lukas, R., Yamagata, T, and McCreary, J.P, 1996, Pacific low-latitude western boundary currentsand the Indonesian throughflow: Journal of Geophysical Research-Oceans, v 101, p.12209-12216.
    Martinson, D.G, Pisias, N.G, Hays, J.D., Imbrie, J., and Moore, T.C., 1987, Age dating and theorbital theory of the ice ages: Development of a high-resolution 0 to 300,000-yearchronostratigraphy* 1: Quaternary Research, v. 27, p. 1-29.
    Meyers, P.A., 1997, Organic geochemical proxies of paleoceanographic, paleolimnologic, andpaleoclimatic processes: Organic Geochemistry, v. 27, p. 213-250.
    Milankovitch, M., 1941, Canon of Insolation and the Ice Age Problem, translated from German,Isr: Program for Sci. Transl., Jerusalem.
    Molnar, P., and Cane, M.A., 2002, El Nino's tropical climate and teleconnections as a blueprint forpre-Ice Age climates: Paleoceanography, v. 17, p. -.
    Ohkouchi, N, Kawamura, K., Nakamura, T., and Taira, A., 1994, SMALL CHANGES IN THESEA-SURFACE TEMPERATURE DURING THE LAST 20,000 YEARS -MOLECULAR EVIDENCE FROM THE WESTERN TROPICAL PACIFIC:Geophysical Research Letters, v. 21, p. 2207-2210.
    Oppo, D.W., and Fairbank, R.G, 1989, Carbon isotope composition of tropical surface watersduring the past 22,000 years: Palaeogeography, v. 4, p. 333-351.
    Oppo, D.W., and Fairbanks, R.G, 1989, Carbon Isotope Composition of Tropical Surface Waterduring the Past 22,000 Years: Paleoceanography, v. 4, p. 333-351.
    Pak, D.K., and Kennett, J.P, 2002, A foraminiferal isotopic proxy for upper water massstratification: The Journal of Foraminiferal Research, v. 32, p. 319.
    Palmer, M.R., and Pearson, P.N., 2003, A 23,000-year record of surface water pH and PCO2 in thewestern equatorial Pacific Ocean: Science, v. 300, p. 480-482.
    Perfit .M, Langmuir. C, and Baekisapa M, 1987, Geochemistry and petrology of volcanic rocksfrom the Woodlark Basin: addressing questions of ridge subduction: Marine Geology,Geophysics, and Geochemistry of the Woodlark Basin-Solomon Islands, v 7, p. 113-154.
    Petterson, M.G, Babbs, T, Neal, C.R., Mahoney, J.J., Saunders, A.D., Duncan, R.A., Tolia, D.,Magu, R., Qopoto, C, Mahoa, H., and Natogga, D., 1999, Geological-tectonic frameworkof Solomon Islands, SW Pacific: crustal accretion and growth within an intra-oceanicsetting: Tectonophysics, v 301, p. 35-60.
    Petterson, M.G, Neal , C.R., and Mahoney , J.J., 1997, Structure and deformation of north andcentral Malaita, Solomon Islands: tectonic implications for the Ontong Java PlateauSolomon arc collision, and for the fate of oceanic plateaus: Tectonophysics, v 283, p.1-33.
    Philander, G, 1989, El-Nino and La-Nina: American Scientist, v 77, p. 451-459.
    Philander. S, G, H, 1990, El Nmo,La Nma,and the Southern Oscillation,Academic, p. 293.
    Pichat, S., Sims, K.W.W., Francois, R., McManus, J.F, Leger, S.B., and Albarede, F, 2004, Lowerexport production during glacial periods in the equatorial Pacific derived from(Pa-231/Th-230)(xs,0) measurements in deep-sea sediments: Paleoceanography, v 19, p.21.
    Ravelo, A., and Fairbanks, R., 1992a, Oxygen isotopic composition of multiple species ofplanktonic foraminifera: Recorders of the modern photic zone temperature gradient:Paleoceanography, v 7, p. 815-831.
    Ravelo, A., and Shackleton, N, 1995, Evidence for surface-water circulation changes at Site 851in the eastern tropical Pacific Ocean, Volume 138, Ocean Drilling Program, p. 503-514.
    Ravelo, A.C., and Fairbanks, R.G, 1992b, Oxygen Isotopic Composition of Multiple Species ofPlanktonic Foraminifera: Recorders of the Modern Photic Zone Temperature Gradient:Paleoceanography, v. 7, p. 815-831.
    Ravelo, A.C., Fairbanks, R.G, and Philander, S.G.H., 1990, Reconstructing Tropical AtlanticHydrography Using Planktontic Foraminifera and an Ocean Model: Paleoceanography, v.5, p. 409-431.
    Reverdin, G., Frankignoul, C, Kestenare, E., and Mcphaden, M.J., 1994, Seasonal Variability inthe Surface Currents of the Equatorial Pacific: Journal of Geophysical Research-Oceans,v. 99, p. 20323-20344.
    Rosman, K.J.R., and Taylor, P.D.P, 1998a, Isotopic compositions of the elements 1997: Pure andApplied Chemistry, v. 70, p. 217-235.
    1998b, Isotopic compositions of the elements 1997: Journal of Analytical AtomicSpectrometry, v. 13, p. 45n-55n.
    Rytuba, J., McKee, E., and Cox, D., 1993, Geochronology and geochemistry of the Ladolam golddeposit, Lihir Island, and gold deposits and volcanoes of Tabar and Tatau, Papua NewGuinea: US Geological Survey Bulletin, v 2039, p. 119-126.
    Saito, T., Thompson, PR. and Breger, D., 1981. System index of recent and Pleistocene planktonicforaminifera. University of Tokyo Press, Tokyo, pp. 1-190.
    Sato, K., Oda, M., Chiyonobu, S., Kimoto, K., Domitsu, H., and Ingle, J.C., 2008, Establishmentof the western Pacific warm pool during the Pliocene: Evidence from plankticforaminifera, oxygen isotopes, and Mg/Ca ratios: Palaeogeography PalaeoclimatologyPalaeoecology, v 265, p. 140-147.
    Schnetger, B., Brumsack, H.J., Schale, H., Hinrichs, J., and Dittert, L., 2000, Geochemicalcharacteristics of deep-sea sediments from the Arabian Sea: a high-resolution study:Deep-Sea Research Part Ii-Topical Studies in Oceanography, v 47, p. 2735-2768.
    Schulz, H., von Rad, U, and Erlenkeuser, H., 1998, Correlation between Arabian Sea andGreenland climate oscillations of the past 110,000 years: Nature, v 393, p. 54-57.
    Schulz, M., and Mudelsee, M., 2002, REDFIT: estimating red-noise spectra directly fromunevenly spaced paleoclimatic time series: Computers & Geosciences, v 28, p. 421-426.
    Shackleton, N, and Kennett, J., 1975, Paleotemperature history of the Cenozoic and the initiationof Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and281: Initial reports of the deep sea drilling project, v 29, p. 743-755.
    Sinton, J.M., Ford, L.L., Chappell, B., and McCulloch, M.T., 2003, Magma genesis and mantleheterogeneity in the Manus back-arc basin, Papua New Guinea: Journal of Petrology, v44, p. 159-195.
    Spero, H.J., Jang, N.A., and Adkins, J.F, 2003a, Geochemistry of the deep water coral Isidella;Intermediate depth and surface ocean chemical recorder: Geochimica Et CosmochimicaActa, v 67, p. A443-A443.
    Spero, H.J., and Lea, D.W., 2002, The cause of carbon isotope minimum events on glacialterminations: ScienceChina-Earth v 296, p. 522-525.
    Spero, H.J., Mielke, K.M., Kalve, E.M., Lea, D.W., and Pak, D.K., 2003b, Multispecies approachto reconstructing eastern equatorial Pacific thermocline hydrography during the past 360kyr: Paleoceanography, v 18, p. 1022.
    Taylor, B., 1979, Bismarck Sea: Evolution of a back-arc basin: Geology, v 7, p. 171-174.
    Thompson, L., Yao, T, Davis, M., Henderson, K., Mosley-Thompson, E., Lin, P.N., Beer, J., Synal,H.A., Cole-Dai, J., and Bolzan, J., 1997, Tropical climate instability: The last glacialcycle from a Qinghai—Tibetan ice core:Science,v 276,P 1 821
    Thompson,L G,Mosley—Thompson,E,Davis,M,Lin,P.N,Henderson,K A,Cole—Dai,J, Bolzan,J,and Liu,K B,1 995,Late glacial stage and Holocene tropical ice core records from Huascaran,Peru:Science,v 269,P 46
    Thunell,R C,Qingmin,M,Calvert,s E,and Pedersen,TF,1992,Glacial—Holocene Biogenic Sedimentation Patterns in the South China Sea:Productivity Variations and Surface Water pC02:Paleoceanography,v 7,P 143—162
    Urey,H C,1947,The Thermodynamic Properties of Isotopic Substances:Journal ofthe Chemical Society,P 562—581
    Yan,X H,Ho,C R,Zheng,Q,and Klemas,V,1 992,Temperature and Size Variabilities of the Western Pacific Warm Pool:Science,v 258,P 1643—1645
    Zhang,J Y,Wang,P.X,Li,Q Y,Cheng,XR,Jin,H Y,and Zhang,s Y,2007,Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A:Marine Micropaleontology,v 64,P 121—140
    陈宜瑜,陈泮勤,葛全胜,张雪芹,2002,全球变化研究进展与展望:地学前缘,P 11—1 8
    郝诒纯等1988冲绳海槽第四纪微体古生物群及其地质意义地质出版社,北京,1-459 PP
    金海燕,翦知湣,成鑫荣,2006,赤道西太平洋暖池中更新世过渡期的古海洋变化:海洋地质与第四纪地质,v 26,P 71—80
    金海燕,翦知湣,刘东升,2003a,西太平洋翁通爪哇海台晚第四纪浮游有孔虫群与古温度变化:海洋地质与第四纪地质,v 23,P 65—71
    ,2003b,西太平洋翁通爪哇海台晚第四纪浮游有孔虫群与古温度变化:海洋地质与第四纪地质,v 23,P 65—71
    李铁刚,苍树溪,刘振夏,程振波,MA Hall,YSaito,s Beme,2002,冲绳海槽末次冰消期浮游有孔虫6~(13)c的宽幅低值事件:科学通报
    李铁刚,赵京涛,孙荣涛,南青云,2008a,250kaB P以来西太平洋暖池中心区0ntong Java海台古生产力演化:第四纪研究,P 447—457
    ,2008b,250kaBP以来西太平洋暖池中心区——0ntong Java海台古生产力演化:第四纪研究,v 28,P 447—457
    路波,2010,25万年来西太平洋暖池核心区古海洋学研究:青岛,中国科学院海洋研究所
    刘传联,张拭颖,金海燕,翦知湣,2005,暖池区1 53Ma以来上层海水变化的颗石藻证据:同济大学学报(自然科学版),v 33,P 1172—1176
    孙荣涛,2006,黑潮流溪与暖池区晚更新世以来的古环境研究:青岛,中国科学院海洋研究所
    田军,2002,南海ODPIl43站有孔虫稳定同位素揭示的上新世至更新世气候变化:上海同济大学
    汪品先,张纪军,赵泉鸿,等1988东海底质中的有孔虫和介形虫海洋出版社,北京
    向荣,阎军,2000,240ka以来西赤道太平洋碳酸钙沉积特征及其古海洋学意义:海洋与湖沼, P 535—542
    谢树成,梁斌,郭建秋,易轶,R P.Evershed,D Maddy,FM Chambers,2003,生物标志化合物与相关的全球变化:第四纪研究,P 521—528
    许靖华,1984,古海洋学的历史与趋向:海洋学报(中文版),P 830—842
    张江勇,汪品先,成鑫荣,金海燕,张拭颖,2007,赤道西太平洋晚第四纪古生产力变化:0DP 807A孔的记录:地球科学(中国地质大学学报),v 32,p 303—312
    赵京涛,李铁刚,常风鸣,李军,2008,西太平洋暖池核心区MIs 7期以来的古生产力变化:类ENs0式过程的响应:海洋学报(中文版),v 30,p 87—94
    郑守仪,郑执中,王喜堂,等1978山东打渔张灌区第四纪有孔虫及其沉积环境的初步探讨海洋科学集刊,v 13,p 16—78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700