高压辊磨预处理在铁矿氧化球团固结中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压辊磨预处理具有明显改善铁矿氧化球团质量和降低生产能耗等作用,在铁矿氧化球团生产中已经开始得到推广应用。关于高压辊磨在铁矿氧化球团生产中的作用研究较多的是对生球质量改善方面,对其在铁矿氧化球团固结中的作用及机理研究较少,认识尚不深入。研究高压辊磨在铁矿氧化球团固结中的作用对加快其在铁矿氧化球团生产中的应用具有重大意义,有助于我国钢铁生产行业技术进步。
     本文分别以袁家村赤铁精矿和峨口磁铁精矿为研究对象,在研究高压辊磨对铁矿氧化球团固结强度的影响基础上,运用X射线衍射分析、激光粒度分析、光学显微结构分析等现代技术手段,从高压辊磨后铁精矿的比表面积、晶格缺陷程度、微细颗粒含量,以及分散程度与铁精矿球团固结强度的关系等方面,并结合高压辊磨对铁精矿球团氧化动力学、宏观或微观结构的影响,系统地研究了高压辊磨预处理在铁精矿氧化球团固结中的作用机理,取得以下结论:
     (1)高压辊磨预处理具有显著提高赤铁矿氧化球团固结强度的作用,能明显降低预热焙烧温度和缩短预热焙烧时间,但是对磁铁矿氧化球团的固结强度没有明显的提高作用。
     (2)高压辊磨后铁精矿性能与铁矿氧化球团固结强度的关系研究发现,高压辊磨预处理后,原料分散程度差及微细颗粒含量增大是影响铁矿氧化球团固结强度的主要原因。
     (3)赤铁精矿在高压辊磨机对辊的高压下形成坚硬的料饼,大量坚硬的颗粒聚合体保留到铁矿球团中,提高了铁矿球团颗粒接触面积;同时,赤铁精矿中微细颗粒,特别是-0.005mm粒级含量的增大,提高了铁矿球团的紧密程度和矿物颗粒的表面活性,促进了固相结晶反应,有利于Fe203微晶键的形成及高温再结晶过程,从而提高了预热焙烧球团冷态强度。
     (4)磁铁矿球团氧化动力学研究结果表明,在850℃-1000℃温度范围内,磁铁矿球团氧化反应过程受内扩散控制,高压辊磨不能改变氧化过程的控制环节,仅能使磁铁矿球团氧化反应的表观活化能提高10.58 kJ/mol。高压辊磨后铁精矿分散程度差和微细颗粒含量的增大,一方面促进了固相结晶反应,另一方面也加快了磁铁矿球团表面颗粒的氧化反应和致密氧化层的形成,阻碍了氧气的扩散,从而降低了磁铁矿球团的氧化程度,导致焙烧球团致密壳层的形成和内应力的提高,不利于磁铁矿氧化球团冷态强度的提高。
The quality of iron ore oxide pellet is developed and the consuming energy in production is reduced obviously by using High Pressure Roll Grinding (HPRG) which has been applied widely in iron ore oxide pellet production. Majority of the research in function of HPRG in iron ore oxide pellet are related to the improvement of green ball quality, but less to the function of HPRG in consolidation of iron ore oxide pellet with few points. Study of the function of HPRG in consolidation of iron ore oxide pellet has profound significance for the application of HPRG in the production of iron ore oxide pellet and promotes the progress of production of iron and steel industry.
     The function and mechanism of HPRG as material-pretreating technology in the consolidation of iron ore oxide pellet were researched systematically in this dissertation, using Yuanjiacun hematite concentrate and Ekou magnetite concentrate as raw materials and the modern analytic technologies of X-ray diffractometry, laser-size, Optical Microstructure, etc, in terms of the relationship of characteristics of iron ore concentrate after being pretreated by HPRG, such as the specific surface area, lattice distortion extent, particle-size distribution, the content of fine particles, the dispersion extent and the consolidation characteristics of preheated and roasted pellets, as well as the effects of HPRG on the Macrostructure and Microstructure of preheated and roasted pellets, Oxidation dynamics of magnetite pellet, with the results as following:
     (1) The research results revealed that the compression of hematite preheated and roasted pellets was obviously developed by HPRG, but not for the magnetite preheated and roasted pellet.
     (2) The study of the relationship between the characteristics of iron ore concentrate after being pretreated by HPRG and the consolidation characteristics of iron ore oxide pellet revealed that when raw materials of hematite and magnetite were pretreating respectively, the bad dispersion of pretreated materials and the increase of fine particles were the main reasons that affect the compression of iron ore oxide pellet.
     (3) The iron ore concentrate was compacted hardly under high pressure roller and consequently massive compact particle-particle unites were remained in iron ore pellet, which promoted the increase of particle-particle contact areas; meanwhile the development of size distribution and increase of fine particles content, especially for the-0.005mm both contributed to the compact extent of iron ore pellet and surface-activation, promoting the solid phase reactivity, all of which contributed to the formation, growth and contact of fine Fe2O3, as well as to the crystallization process of Fe2O3 under high temperature, promoting the increase of compression.
     (4) The result of oxidation dynamics of magnetite pellet revealed that the oxidation process of magnetite pellet was controlled by the oxygen diffusion in pellet and it was not changed by HPRG, but the apparent activation energy of magnetite oxidation increased 10.58 kJ/mol between 850℃-1000℃. The increase of compaction of magnetite pellet and the bad dispersion of pretreated materials both not only promoted the solid phase reactivity, but also promoted the oxidation rate of magnetite and the formation of compact layer on the magnetite pellet surface, restricting the diffusion of oxygen. Therefore the oxidation extent of magnetite pellet was lowered, promoting the double layer formation and the increase of internal stresses of magnetite roasted pellet, which limited the compression increase of magnetite oxidized pellet.
引文
[1]王筱留.钢铁冶金学(炼铁部分).北京:冶金工业出版社,2008:56~79
    [2]傅菊英,姜涛,朱德庆.烧结球团学.长沙:中南工业大学出版社,1995:281~309
    [3]傅菊英,朱德庆.铁矿氧化球团基本原理、工艺及设备.长沙:中南大学工业出版社,2005,4:2-3,30~32,227~233
    [4]刘文权.对我国球团矿生产发展的认识和思考.钢铁,2006,25(3):10~13
    [5]李慧敏.含硼复合添加剂强化巴西赤铁矿球团及机理研究:[硕士论文].中南大学.2009:3~5
    [6]赵云.全球球团矿产量不断增长.世界金属报,2007,9:5~11
    [7]叶匡吾.欧盟高炉炉料结构述评和我国球团生产的进展.烧结球团,2004,29(4):4~7
    [8]BHP Research New Castle Laboratories "Properties of World Iron Ore, Pellets and HBI".1996 (7):34~45
    [9]王维兴.我国大高炉炼铁技术发展.中国钢铁企业网,http://www.chinasie.cn, 2008
    [10]孙立宴.全国球团技术协调组工作汇报.球团技术,2007(4):3~4
    [11]李蒙,任伟,陈三风.国内外球团矿生产现状和展望.中国冶金,2004,12:6~11
    [12]肖琪.团矿理论与实践.长沙:中南工业大学出版社,1989
    [13]丁宁.国内冶金矿山企业球团开发的研究和探讨.中国冶金报,2007,7:1~2
    [14]叶匡吾.高炉炉料结构与精料.烧结球团.2001,26(3):6~7
    [15]孔令坛.中国球团矿的发展.2004年球团技术研讨会论文集.大连,2004,8:11~14
    [16]乔庭明,郑志强,江巨贞等.竖炉球团配加巴西精矿的生产实践.烧结球团,2001,26(1):15~17
    [17]徐满兴.论新世纪球团矿的质量进步.烧结球团,2000,25(6):1~3
    [18]国内铁矿石市场竞争能力分析.矿业快报,2002,38(13):19
    [19]余永富.我国铁矿资源有效利用及选矿发展方向.金属矿山,2001,296(2):9~11
    [20]王亨炎.浅谈铁矿石资源对我国钢铁工业的影响及对策.国外金属矿山,2002,5:6~9
    [21]发展我国铁矿球团的原料及对策.烧结球团.2003,28(1):1~4
    [22]潘建,朱德庆.改性膨润土改善铁矿球团性能的工业试验研究.烧结球团, 2005,30(4):13~16
    [23]闫为群.国内球团生产技术的发展.江苏冶金,2007,3(35):21~24
    [24]黄柱成,张元波.以赤铁矿为主配加磁铁矿制备氧化球团的研究.钢铁,2004,4(39):9~14
    [25]孙济中译文霞飞校.溶剂性球团在LKAB公司的发展.第三届国际造块会议.长沙:《烧结球团》编辑部出版,1983,4:118~142
    [26]邓英译邓庆球校.用于球团生产的含碳添加剂.第三届国际造块会议.长沙:《烧结球团》编辑部出版,1986,5:223~224
    [27]喻辅成,徐冬华.南(昌)钢公司含铁粉尘综合利用的设想.冶金经济与管理,2009,19(3):19~21
    [28]黄典冰,孔令坛.内配碳赤铁矿球团反应动力学及其模型.钢铁,1995,30(11):1~6
    [29]H. Wuestner. Compressive Size Reduction:New Methods of Energy Saying in Cement Clinker and Slag Grinding, Zement-Kalt-Gips.1985 (12):725-727
    [30]宋瑜译查望校.LTV钢铁公司竖炉优质溶剂性球团的生产.烧结球团,1994,1:17~23
    [31]谢良贤译李之甫校.铁丹钢铁公司使用溶剂性球团矿经验.烧结球团,1994,1:17~23
    [32]A. Z. Abouzied, A. A. Negm and I. M. Kotb. Iron Ore Fluxed Pellets and Their Physical Properties. Powder Technology,1985,7:225-230
    [33]G. G. Efimenko, D. A. Kovalev, E. I. Sulimenko, M. M. Knyazhanskii and V. B. P. Ispolatov. Reduction of Higher-strength Fluxed Pellets. Steel in the USSR,1978,3:123-125
    [34]黄永君,周明顺,翟立委等.铁矿球团适宜MgO/SiO2比值的试验研究.鞍钢股份公司技术中心
    [35]周国凡,杨福.添加MgO对球团矿成球性能及强度的影响.钢铁研究,2009(2):10~12
    [36]张永明,贾彦忠.熔剂性含MgO球团矿特点及生产实践.北京科技大学.
    [37]姜鑫,张枥,穆林等.炉料结构中合理应用含MgO原料的研究.东北大学
    [38]陈铁军,张一敏.镁橄榄石用于铁矿球团的试验研究.2005(3):5~8
    [39]张春高,丙寅,金德刚.配加高镁粉的烧结试验及生产.烧结球.2004(5):23~26
    [40]神原健二郎,刘晓侦译.高炉解体研究.北京:冶金工业出版社,1980:20~25
    [41]T. Ya Malysheva, G. V. Chesnokova, A. A. Akberdin, O. A. Dolitskaya and Boron. Influence on Iron Ore Pellet Quality. Fiziko-Tekhnicheskie Problem Razrabotki Poleznykh Iskopaemykh,1996,1:3-7
    [42]A. A. Akberdin, O. A. Dolitskaya, T. Ya Malysheva, G. V. Chesnokova and A. S. S. Kim. Specific Features of Iron-ore Pellets Sintering with Additon of Boratic Ore,1999,3:23~26
    [43]刘然,薛向欣,姜涛等.硼铁矿综合利用概况与展望.矿产综合利用,2006,2:33~36
    [44]张丽清,刘素兰,朱建新等.硼铁矿资源综合利用研究现状与展望.矿产综合利用,2000,3:34~36
    [45]傅菊英,白国华,李光辉等.磁铁精矿配加硼铁矿的球团研究.球团技术,2004(1):2-6
    [46]T. B. Klymowgky and J. Liu. Modeling of The Comminution in a Roller Press. Proceeding of the XX IMPC-Acben,1997:141~154
    [47]G. Goell and J. Hanish. Comparsion of Crushing Results Obtained by Compressive Stresses Acting upon Particle Layers, Aufbereitungs-Technik, 1987 (10):587~590
    [48]秦英伟,刘鹏君,何金贤.润磨提高球团矿质量实践.炼铁技术通讯,2007,11:8-9
    [49]吴绍军,盖国盛,孙恒虎.我国超细粉碎技术的发展状况.2003年全国粉体设备—技术—产品信息交流会,2003:247~253
    [50]刘云彩.当代高炉炼铁成就.炼铁,2001
    [51]许满兴.论新世纪球团矿的质量进步.烧结球团,2000,11(6):1-4
    [52]I. B. Klymowsky and J. Liu. Modelling of the comminution in a roller Press. Proceedings of the XXIMPC-Aaehen,1997:141~154
    [53]L. M. Tavares. Particle weakening in high-pressure roll grinding. Minerals Engineering,2005 (18):651~657
    [54]易南概,徐小荷.粉碎方式对金矿石氰化浸出效果影响的实验研究.黄金,1996,17(1):32~35
    [55]赵显东.高效节能破磨设备的进展.冶金矿山设计与建设,1999,31(5):33~36
    [56]D. W. Fuerstenaua, A. Deb and P. C. Kapure. Linear and nonlinear particle breakage processes in comminution systems. Miner Process,2004 (745): 317~327
    [57]松荣.国内外大型碎磨设备的发展现状.中国有色金属报,2005,12:1-3
    [58]刘红军,张升奇,邵彬.高压辊磨机在冶金行业的开发及应用.矿山机械,2006,34(10):36~37
    [59]王昌安,王新继,胡承凡等.辊磨预处理磁铁精矿活化机理初探.烧结球团,2005(4):16~19
    [60]张严冰,袁亦扬,周全.高压辊磨机粉碎铁精矿试验研究,烧结球团,2005(6):14~16
    [61]王昌安,王新继,胡承凡等.辊磨预处理磁铁精矿活化机理初探,烧结球团,2005(4):16~19
    [62]唐艳云.高压辊磨强化PFC镜铁矿球团工艺及机理研究:[硕士论文].中南大学,2008
    [63]王昌安.强化球团制备的工艺及机械化学机理研究:[硕士论文].中南大学,2001
    [64]张汉泉,戚岳刚.辊压机在改善铁矿球团质量中的应用,矿业工程,2005(2):37~39
    [65]李会义.浅谈高压辊磨机的运行及维护,烧结球团,2006(10):50~53
    [66]李欣,王国强.高压辊磨机磨辊强度有限元分析.建筑执槭2003(9):45~48
    [67]朱德庆,唐艳云,潘建等.巴西镜铁矿球团前的高压辊磨预处理.金属矿山,2008(4):67~70
    [68]王淀佐,邱冠周,胡岳华.资源加工学,北京:科学出版社,2005
    [69]肖忠良.机械活化硫化矿能量学研究硕士论文:[硕士论文].中南大学,2003
    [70]李蛉值.高压辊磨技术—节能降耗的有效途径.金属矿山,2004(10):248-251
    [71]王昌安,熊守安,朱德庆.高压辊磨预处理铁精粉对生球性能的影响.烧结球团.2002(11):12~15
    [72]WANG Chang-an, XIONG Shou-an, HU Chen-fan, ZHU De-qing. Mechano-chemical Activation of Concentrate for Improving Its Pelletability by High Pressure Roll Grinding.06年国际铁矿造块学术研讨会论文集,中南大学,2006:181~187
    [73]段玉震.高压辊磨机的研究及应用.矿山机械,2007,35(4):56~57
    [74]刘曙,王永清.RP-P3.6-120/50B辊压机在程潮球团生产中的使用.金属矿山,增刊,2005(8):263~268
    [75]王昌安.强化球团制备的工艺及机械化学机理研究:[硕士论文].中南大学,2001
    [76]曾凡,胡永平,杨毅.矿物加工颗粒学.徐州:中国矿业大学出版社,2001
    [77]董海刚.高钙镁电炉渣制备优质人造金红石的研究:[博士学位论文].长沙:中南大学,2010:84~85
    [78]J. Matthew and Stacom. HIGH PRESSURE ROLLER MILL. New York,1936: 32~38
    [79]陈鼎,陈振华.机械力化学.北京:化学工业出版社,2008:42~272
    [80]吴其胜.无机材料机械力化学,北京:化学工业出版社,2008:202~221
    [81]郭宇峰.钒钛磁铁矿固态还原强化及综合利用研究:[博士学位论文].长沙:中南大学,2007:30~78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700