望水白抗赤霉病主效QTL的遗传和效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上最重要的粮食作物之一,在生产上经常受到赤霉病的侵袭,造成产量和品质的下降。这种病害主要是由禾谷镰孢菌(Fusarium graminearum)引起的(有性态为Gibberella zeae).小麦对赤霉病的抗性表现为多基因控制的数量性状,可以分为五种不同类型:抗侵入性(TypeⅠ)、抗扩展性(Type II).抗毒素积累能力(Type III).降低籽粒病粒率(Type IV)和耐病性(Type V).定位在望水白6BS染色体上的QFhs.nau-6B,是一个抗赤霉病扩展的主效QTL。为了进一步分析和利用该位点的抗病性,分别以感病材料PH691和扬麦12号作为轮回亲本构建了该QTL的近等基因系。抗扩展表型鉴定表明这些近等基因系的抗病性与轮回亲本间存在显著差异,轮回亲本的遗传背景对QFhs.nau-6B的抗病效应有显著影响。此外,还分析了该QTL区段为杂合基因型单株自交后代的抗感分布,结果显示抗感按1:3分离,其抗性遗传符合单个孟德尔因子控制的隐性遗传模式。利用筛选到的13株重组体的基因型和表型,将QFhs-nau-6B定位于Xwmc398-Xgwm644区间。
     为了深入研究位于望水白染色体3BS.6BS.4BL和5AS上的四个主效QTL的抗赤霉病效应,本研究以感病品种PH691、绵阳2000-1和扬麦12号作为轮回亲本,望水白为QTL供体亲本,通过分子标记辅助选择,将这些QTL导入至感病品种中,经过连续回交获得了一批遗传背景不同和QTL组合不同的近等基因系。对这些近等基因系分别进行了抗侵入和抗扩展能力的田间评价。结果显示,QFhs.nau+-3B和QFhs.nau-6B具备显著的抗扩展能力,但不具备抗侵入效应,二者之间存在加性效应;QFhi.nau-4B与QFhi.nau-5A具备显著的抗侵入能力,但没有抗扩展效应,这两个QTL之间存在显著的加性效应。抗侵入和抗扩展QTL的累加可以提高近等基因系的综合抗病能力。
     分析中发现,望水白5AS位点决定的抗侵入能力总是和旗叶宽高度相关,窄叶的植株表现出更好的抗性。为了阐明这两个性状之间的遗传关系,从“南大2419x望水白”重组自交系群体、绵阳99-323和PH691背景近等基因系分离群体中筛选出该QTL区间的重组体,并分析了它们的基因型及其抗侵入能力和旗叶宽度。结果表明QFhi.nau-5A位于Xgwm304-Xgm415区间内;QFlw.nau-5A位于Xgwm415-Xwmc752区间。因此,抗侵入和窄叶的高度关联不是一因多效,而是由于两个QTL的紧密连锁。
Wheat is one of the most important food crops in the world, and is frequently attacked by Fusarium head blight (FHB) leading to yield reduction and poor grain quality in wheat production. This disease is caused mainly by Fusarium graminearum (telemorph Gibberella zeae). The scab resistance performs quantitative characters that are controlled by polygene. Five different types of FHB resistance have been described as follows:resistance to initial penetration by the pathogen (type I), resistance to spread of FHB syptoms within an infected spike (type Ⅱ), resistance to the accumulation of toxin (type III), reducing fusarium-damaged kernal (type IV), and tolerance to disease (type V). QFhs.nau-6B has been located in Wangshuibai6BS chromosome as well as a major effect type Ⅱ resistance QTL to FHB. For further analysis and exploit this QTL, NILs of QFhs.nau-6B was developed in PH691and Yangmai12background. The results revealed that all of NILs performed much better resistance than recurrent parent, affected by background differences simultaneously. In order to determine genetic mode of QFhs.nau-6B, we analyzed a distribution of resistance and susceptible in progenies of heterozygous plant. The results manifested that the resistance segregation was1:3, so QFhs.nau-6B was a single recessive Mendelian inheritance factor. Using13recombinants in PH691background, QFhs.nau-6B was precisely mapped in the interval of Xwmc398-Xgwm644through genotyping and phenotyping.
     In order to further study on four major QTLs from Wangshuibai chromosome3BS,6BS,5AS, and4BL for resistance to FHB, this research using susceptible materials PH691, Mianyang2000-1, and Yangmai12as recurrent parents, Wangshuibai as donor parent, near-isogenic lines (NILs) of different genetic backgrounds and different QTL combinations had been developed, with the help of molecular markers assisted selection. Field evaluation of type I and type Ⅱ resistance were implemented in all of above NILs. The survey results showed that QFhs.nau-3B and QFhs.nau-6B had type Ⅱ resistance but no type I resistance; however, QFhi.nau-4B and QFhi.na.u-5A had type I resistance but no type II resistance. There was a certain degree additive effect between the same types of QTLs. Furthermore, field resistance could be improved after pyramiding different types of resistance QTLs.
     The effect of resistance to initial penetration on chromsome5AS was highly correlated with flag leaf width (FLW), so the lines with narrow leaf performed much better rsistance than recurrent parent. In order to elucidate the genetic relationship between the pair of traits, recombinants were selected from Nanda2419xWangshuibai RILs, PH691background NILs, and Mianyang99-323background NILs, and analyzed their genotypes and phenotypes. Finally, QFhi.nau-5A was located in the interval of Xgwm304-Xgwm415; meanwhile, QFlw.nau-5A was placed in the interval of Xgwm415-Xbarc752. Therefore, the two traits usually both found in the same lines because of two tightly linked loci.
引文
安霞(2011)小麦抗赤霉病主效QTL Qfhs.nau-3B的精细定位。南京农业大学硕士论文
    陈利锋主编(2002)农业植物病理学(南方本)。中国农业出版社
    曹勇(2008)小麦抗赤霉病相关基因EST的定位及抗赤霉病QTL近等基因系的选育。南京农业大学硕士论文
    李国强(2012)小麦抗赤霉病主效QTL QFhi.nau-4B近等基因系的选育和精细定位。南京农业大学博士论文
    林峰(2005)南大2419×望水白重组自交系群体中抗赤霉病QTL的定位。南京农业大学博士论文
    陆维忠,程顺和,王裕中主编(2002)小麦赤霉病研究。科学出版社
    刘宗镇,汪志远,赵文俊(1985)小麦品种资源抗赤霉病性研究。上海农业学报1:75-84
    刘思衡,黄梅兰,杨伟健,林长强(1988)小麦抗赤霉病性与产量性状的相关分析。福建农学院学报17:127-132
    陆维忠,周杨,刘芬兰,林一波(1991)小麦抗赤霉病体细胞无性系变异的诱导与选育。江苏农业科学4:13-14
    唐明智(2009)小麦抗赤霉病QTL QFhi.nau-5A的近等基因系选育及精确定位。南京农业大学硕士论文
    薛树林(2007)小麦高密度PCR分子标记遗传图谱的构建及抗赤霉病QTL近等基因系的选育。南京农业大学博士论文
    汪瑶(2009)小麦抗赤霉病QFhs.nau-3B近等基因系的选育、精确定位及关联分析。南京农业大学硕士论文
    俞刚,陈利锋,姚红燕(2003)脱氧雪腐镰孢菌烯醇在小麦赤霉病病程中的作用。植物病理学报33:40-43
    赵冬梅(2006)小麦产量相关性状的分子遗传分析及抗赤霉病侵染QTL的分子标记开发。南京农业大学博士学位论文
    张乐庆,潘雪萍,陈焕玉(1993)小麦抗赤霉病(抗扩展)品种轮回选择研究。华南农业大学学报14:55-60
    周淼平,任丽娟,张旭,Olga-E Scholten,黄益洪,马鸿翔,陆维忠(2004)小麦赤霉病抗性QTL分析。作物学报8:739-744
    庄巧生主编(2002)中国小麦品种改良及系谱分析。中国农业出版社
    邹明烈,柏贵华,赵寅槐,王苏(1988)小麦品种不同株高等基因系赤霉病抗性比较。江苏农业学报4:1-5
    Agorio A, Vera P (2007) ARGONAUTE4 is required for resistance to Pseudomonas syringae in. Arabidopsis. The Plant Cell 19:3778-3790
    Alexander NJ, Hohn TM, McCormick SP (1998) The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Appl Environ Microb 64:221-225
    Alexander NJ (2008) The TRI101 story:engineering wheat and barley to resist Fusarium head blight. World Mycotoxin Journal 1:31-37
    Alonso BC, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an under exploited resource for plant genetics. Trends Plant Sci 5:22-29
    Alwala S, Suman A, Arro JA, Veremis JC, Kimbeng CA (2006) Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci 46:448-455
    Andaya VC, Tai TH. (2007) Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice(Oryza sativa L.). Mol Breeding 20:349-358
    Anderson J, Stack R, Liu S, Waldron B, Fjeld A, Coyne C, Moreno-Sevilla B, Fetch J, Song Q, Cregan P. (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102:1164-1168
    Arnholdt SB (2004) Stress-induced cell reprogramming:A role for global genome regulation. Plant Physiol 136:2579-2586
    Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977-982
    Asea G, Vivek BS, Bigirwa G, Lipps PE, Pratt RC (2009) Validation of consensus quantitative trait loci associated with resistance to multiple foliar pathogens of maize. Phytopathology 99:540-547
    Ayliffe M, Singh R, Lagudah E (2008) Durable resistance to wheat stem rust needed. Curr Opin Plant Biol 11:187-192
    Bai GH and Shaner GE (1994) Wheat scab:Perspective and control. Plant Dis 78:760-766
    Bai GH and Shaner GE (2004) Management and resistance in wheat and barley to Fusarium head blight. Ann Rev Phytopathol 42:135-161
    Bai GH, Kolb FL, Shaner G, Domier LL (1999) Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 89: 343-348
    Bai GH, Guo PG, Kolb FL (2003) Genetic relationships among head blight resistant cultivars of wheat assessed on the basis of molecular markers. Crop Sci 43:498-507
    Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859-868
    Ban T (1993) Estimate of the scab resistance in Japanese indigenous Agrpyron (Elymus) species. In Li ZS, Xin ZY (eds.) Proc.8th Intl. Wheat Genet. Symp. Beijing, China 977-982
    Barhoom S, Sharon A (2004) cAMP regulation of "pathogenic" and "saprophytic" fungal spore germination. Fungal Genet Biol 41:317-326
    Bassam BJ, Gaetano-Anolle G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80-83
    Benschop JJ, Mohammed S, O'Flaherty M, Heck AJR, Slijper M, Menke FKH (2007) Quantitaitve phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics 6:1198-1214
    Bernardo A, Bai G, Guo P, Xiao K, Guenzi AC, Ayoubi P (2006) Fusarium graminearum induced changes in gene expression between Fusarium head blight resistant and susceptible wheat cultivars. Funct Integr Genomic 7:69-77
    Berthiller F, Dall C, Schuhmacher R, Lemmens M, Adam G, Krska R (2005) Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaiminnated wheat by liquid chromatography-tandem mass spectrometry. J Agr Food Chem 53:3421-3425
    Bluhm BH, Zhao X, Flaherty JE, Xu JR, Dunkle LD (2007) RAS2 regulates growth and pathogenesis in Fusarium graminearum. Mol Plant Microbe Interact 20:627-636
    Bogacki P, Oldach KH, Williams KJ (2008) Expression profiling and mapping of defence response genes associated with the barley- Pyrenophora teres incompatible interaction. Mol Plant Microbe Interact 9:645-660
    Boutigny AL, Florence RF, Barreau C (2008) Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur J Plant Pathol 121:411-423
    Bovill WD, Home M, Herde D, Davis M, Wildermuth GB, Sutherland MW (2010) Pyramiding QTL increases seedling resistance to crown rot (Fusarium pseudograminearum) of wheat (Triticum aestivum). Theor Appl Genet 121:127-136
    Bowen JK, Templeton MD, Sharrock KR, Crowhurst RN, Rikkerink EHA (1995) Gene inactivation of the plant pathogen Glomerella cingulata: Three strategies for the disruption of the pectin lyase gene pnlA. Mol Gen Genet 246:196-205
    Bossolini E, Krattinger SG, Keller B (2006) Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor Appl Genet 113:1049-1062
    Bossolini E, Wicker T, Knobel PA, Keller B (2007) Comparison of orthologous loci from small grass genomes Brachypodium and rice:implications for wheat genomics and grass genome annotation. Plant J 49:704-717
    Borlaug NE (1968) Wheat breeding and its impact on world food supply. In: Finlay KW, Shepherd KW (eds) Proc 3rd Int Wheat Genet Symp, Austral Acad Sci, Canberra 5-15
    Boyko A, Filkowski J, Kovalchuk I (2005) Homologous recombination in plants is temperature and day-length dependent. Mut Res 572:73-83
    Boyko A, Hudson D, Bhomkar P, Kathiria P, Kovalchuk I (2006b) Increase of homologous recombination frequency in vascular tissue of Arabidopsis plants exposed to salt stress. Plant Cell Physiol 47:736-742.
    Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins F, Kovalchuk I (2010a) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS One 5:9514
    Bruins M B M, Karsa I, Schepers J (1993) Phytotoxicity of deoxynivalenol to wheat tissue with regard to in vitro selection for Fusarium head blight resistance. Plant Sci 94: 195-206
    Brunner S, Hurni S, Streckeisen P, Mayr G, Albrecht M, Yahiaoui N, Keller B (2010) Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. The Plant J 64:433-445
    Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding 128:1-26
    Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat, Resistance to fungal spread (Type II resistance). Theor Appl Genet 104:84-91
    Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M (2003) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet 107:503-508
    Buerstmayr H, Ban T, Anderson J (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding 128:1-26
    Buerstmayr M, Lemmens M, Steiner B, Buerstmayr H (2011) Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha × T. aestivum population. Theor Appl Genet 123:293-306
    Carem V, Rechia FR, Aierakoqski MR (1998) Xyloglucanoctasaccharide XXLGOL derived from the seeds of hymenaea courbaril acts as a signaling molecule. Plant Physiol 116:1013-1021
    Chen J, Griffey CA, Maroof MAS, Stromberg EL, Biyashev RM, Zhao W, Chappell MR, Pridgen TH, Dong Y, Zeng Z. (2006) Validation of two major quantitative trait loci for Fusarium head blight resistance in Chinese wheat line W14. Plant Breeding 125:99-101
    Chen Y, Singh S, Rashid K, Dribnenki P, Green A (2008) Pyramiding of alleles with different rust resistance specificities in Linum usitatissimum L. Mol Breeding 21:419-430
    Chen YS, Chao Q, Tan GQ, Zhao J, Zhang MJ, Ji Q, Xu ML. (2008) Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor Appl Genet 117:1241-1252
    Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier M, Magdelenat G, Gonthier C, Couloux A, Budak H, Breen J, Pumphrey M, Liu SX, Kong XY, Jia JZ, Gut M, Brunel D, Anderson JA, Gill BS, Appels R, Keller B, Feuillet C (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. The Plant Cell 22:1686-1701
    Chu C, Niu Z, Zhong S, Chao S, Friesen TL, Halley S, Elias EM, Dong Y, Faris JD, Xu SS (2011) Identification and molecular mapping of two QTLs with major effects for resistance to Fusarium head blight in wheat. Theor Appl Genet 123:1107-1119
    Cox TS, Raupp WJ, Gill BS (1993) Leaf rust-resistance genes, Lr41, Lr42 and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci 34:339-343
    Copenhaver GP, Nickel K, Kuromori T (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468-2474.
    Cumagun CJR, Bowden RL, Jurgenson JE, Leslie JF, Miedaner T (2004) Genetic mapping of pathogenicity and aggressiveness of Gibberella zeae(Fusarium graminearum) toward wheat. Phytopathology 94:520-526
    Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG, Pietro AD, Walton JD, Ma LJ, Baker SE, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang YL, DeCaprio D, Gale LR, Gnerre S, Goswami RS, Hammond-Kosack K, Harris LJ, Hilburn K, Kennell JC, Kroken S, Magnuson JK, Mannhaupt G, Mauceli E, Mewes H-W, Mitterbauer R, Muehlbauer G, Miinsterko, Ntter M, Nelson D, O'Donnell K, Ouellet T, Qi WH, Quesneville H, M. Roncero IG, Seong KY, Tetko IV, Urban M, Waalwijk C, Ward TJ, Yao JQ, Birren BW, Kistler HC (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317: 1400-1402
    Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brule-Babel A (2006) Fine mapping Fhbl, a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 112:1465-1472
    Cuthbert PA, Somers DJ, Brule-Babel A (2007) Mapping of Fhb2 on chromosome 6BS:a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:429-437
    Darvasi A, Soller M (1995a) Optimum spacing of genetic markers for determining linkage between marker loci and quantitative trait loci. Theor Appl Genet 89:351-357
    Darvasi A, Soller M (1995b) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141:1199-1207
    Darvishzadeh R, Poormohammad KS, Dechamp GG, Gentzbittel L, Sarrafi A (2007) Quantitative trait loci associated with isolate specific and isolate nonspecific partial resistance to Phoma macdonaldii in sunflower. Plant Pathol 56:855-861
    Debolt S (2010) Copy number variation shapes genome diversity in Arabidopsis over immediate family generational scales. Genome Biol Evol 2:441-453
    Desmond OJ, Manners JM, Stephens AE, Maclean DJ, Schenk PM, Gardiner DM, Munn AL, Kazan K (2008) The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Mol Plant Pathol 9:435-445
    Dyer RB, Plattner RD, Kendra DF, Brown DW (2005) Fusarium graminearum TRI14 is required for high virulence and DON production on wheat but not for DON synthesis in vitro. J Agr Food Chem 53:9281-9287
    Desjardins AE, Maragos CM, Proctor RH (2006) Maize ear rot and moniliformin contamination by cryptic species of Fusarium subglutinans. J Agr Food Chem 54:7383-7390
    Ding L, Xu H, Kong Z, Yang L, Zhang L, Xue S, Jia H, Ma Z (2011) Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways and altered secondary metabolism. PLoS ONE 6:e19008
    Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol 169:753-763
    Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T (2004) Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Funct Integr Genomic 4:59-66
    Doege K J, Coulter SN, Meek LM (1997) A human-specific polymorphism in the coding region of the aggrecan gene: Variable number of tandem repeats produce a range of core protein sizes in the general population. J of Biol Chem 272:13974-13979
    Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Schondelmaier J, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P (2007) Identification of QTL for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115:617-625
    Dyer RB, Kendra DF, Brown DW (2006) Real-time PCR assay to quantify Fusarium graminearum wildtype and recombinant mutant DNA in plant material. J Microbiol Meth 67:534-542
    Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) "Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038-1042
    Ellis MH, Rebetzke GJ, Azanza F, Richards RA, Spielmeyer W (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet 111:423-430
    Eulgem T (2005) Regulation of the Arabidopsis defense transcriptiome. Trends Plant Sci 10:71-78
    Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164-1171
    Ferrari S, Sella L, Janni M, De Lorenzo G, Favaron F, D'Ovidio R (2011) Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum. Plant Biol 14: 31-38
    Fischer SG, Lerman LS (1980) Separation of random fragments of DNA according to properties of their sequences. Proc Natl Acad Sci USA 77:4420-4424
    Foolad MR, Zhang LP, Khan AA, Nino-Liu D, Lin GY (2002) Identification of QTLs for early blight (Alternaria solanfi resistance in tomato using backcross populations of a Lycopersicon esculentum L. hirsutum cross. Theor Appl Genet 104:945-958
    Fridman E, Pleban T, Zamir D. (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484bp within an invertase gene. Proc Natl Acad Sci USA 97:4718-4723
    Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357-1360
    Fujita D, Yoshimura A, Yasui H (2010) Development of near-isogenic lines and pyramided lines carrying resistance genes to green rice leafhopper (Nephotettix cincticeps Uhler) with the Taichung 65 genetic background in rice (Oryza sativa L.). Breeding Sci 60: 18-27
    Fukuoka S, Okuno K (2001) QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet 103:185-190
    Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998-1001
    Gaffoor I, Brown DW, Plattner R, Proctor RH, Qi W, Trail F (2005) Functional analysis of the polyketide synthase genes in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Eukaryot Cell 4:1926-1933
    Gahan LJ, Ma YT, Cobble MLM, Gould F, Moar WJ, Heckel DG (2005) Genetic basis of resistance to Cry lAc and Cry 2Aa in Heliothis virescens (Lepidoptera Noctuidae). J Econo Entomol 98:1357-1368
    Galloway LF, Etterson JR (2007) Transgenerational plasticity is adaptive in the wild. Science 318:1134-1136
    Gardiner DM, Kazan K, Manners JM (2009) Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Mol Plant Microbe Interact 22: 1588-1600
    Gardiner DM, Kazan K, Manners JM (2009a) Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet Biol 46:604-613
    Gardiner DM, Osborne S, Kazan K, Manners JM (2009b) Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology 155:3149-3156
    Gervais L, Dedryver F, Morlais JY, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961-970
    Gilsinger J, Kong L, Shen X, Ohm H (2005) DNA markers associated with low Fusarium head blight incidence and narrow flower opening in wheat. Theor Appl Genet 110: 1218-1225
    Goyal A, Bandopadhyay R, Sourdille P, Endo TR, Balyan HS, Gupta PK (2005) Physical molecular maps of wheat chromosomes. Funct Integr Genomic 5:260-263
    Gupta A, Lipps PE, Campbell KG (2000) Finding quantitative trait locus associated with Fusarium head blight of wheat using simple sequence repeat markers. National Fusarium Head Blight Forum:28-32
    Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5-18
    Hammer JE, Holden DW (1997) Linking approaches in the study of fungal pathogenesis:A commentary. Fungal Genet Biol 21:11-16
    Hammond KE, Parker JE (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotech 14:177-193
    Handa H, Namiki N, Xu D, Ban T (2008) Dissecting of the FHB resistance QTL on the short arm of wheat chromosome 2D using a comparative genomic approach: from QTL to candidate gene. Mol Breeding 27: 71-84
    Hao CY, Perretant M, Choulet F, Wang LF, Paux E, Sourdille P, Zhang XY, Feuillet C, Balfourier F (2010) Genetic diversity and linkage disequilibrium studies on a 3.1Mb genomic region of chromosome 3B in European and Asian bread wheat(Triticum aestivum L.) populations. Theor Appl Genet 121:1209-1225
    Harris LJ, Desjardins AE, Plattner RD, Nicholson P, Butler G, Young YC, Weston G, Proctor RH, Hohn TM (1999) Possible role of trichothecene mycotoxins in virulence of Fusarium graminearum on maize. Plant Dis 83:954-960
    Haberle J, Holzapfel J, Schweizer G, Hartl L (2009) A major QTL for resistance against Fusarium head blight in European winter wheat. Theor Appl Genet 119:325-332
    Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34:437-447
    Hilton AJ, Jenkinson P, Hollins TW, Parry DW (1999) Relationship between cultivar height and severity of Fusarium ear blight in wheat. Plant Pathol 48:202-208
    Hittalmani, S, Parco A, Mew TV, Zeigler RS and Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100:1121-1128
    Holzapfel J, Voss HH, Miedaner T, Korzun V, Haberle J, Schweizer G, Mohler V, Zimmermann G, Hartl L (2008) Inheritance of resistance to Fusarium head blight in three European winter wheat populations. Theor Appl Genet 117:1119-1128
    Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22:115-122
    Hu K, Qiu D, Shen X, Li X, Wang S (2008) Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Mol Plant 1:786-793
    Hu K, Wang S (2009) Rice disease resistance resources and genetic improvement. In strategies and practice for developing green super rice. Edited by Zhang Q. Science Press: 35-57
    Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang Q, Kumaravadivel N, Bennett J and Khush GS (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313-320
    Ilgen P, Hadeler B, Maier FJ, Schafer W (2009) Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection. Mol Plant Microbe Interact 22:899-908
    Ittu M, Saulescu NN, Hagima I, Ittu G, Mustatea P (2000) Association of Fusarium head blight resistance with gliadin loci in a winter wheat cross. Crop Sci 40:62-67
    Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays:a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:25-31
    Jackowiak H, Packa D, Wiwart M, Perkowski J (2005) Scanning electron microscopy of Fusarium damaged kernels of spring wheat. Int J Food Microbiol 98:113-123
    Jayatilake DV, Bai GH, Dong YH (2011) A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7 A of wheat. Theor Appl Genet 122:1189-1198
    Jauhar P, Peterson T, Xu S (2009) Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome 52:467-483
    Jia G, Chen PD, Qin GJ, Bai GH, Wang X, Wang SL, Zhou B, Zhang SH, Liu DJ (2005) QTLs for Fusarium head blight response in a wheat DH population of wangshuibai/Alondra's. Euphytica 146:183-191
    Jenczmionka NJ, Maier FJ, Losch AP, Schafer W (2003) Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmkl. Curr Genet 43:87-95
    Jiang GL, Dong Y, Shi JR, Ward RW (2007) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ9306. II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor Appl Genet 116:3-13
    Johnson R (1981) Durable resistance: definition of, genetic control, and attainment in plant breeding. Phytopathology 71:567-568
    Jones JD and Dangl JL (2006) The plant immune system. Nature 44:323-329
    Jones N, Ougham H, Thomas H, Pasakinskiene I (2009) Markers and mapping revisited: finding your gene. New Phytol 183:935-966
    Kang Z and Buchenauer H (1999) Immunocytochemical localization of Fusarium toxins in infected wheat. Physiol Mol Plant P 55:275-288
    Kang Z and Buchenauer H (2002) Immunocytochemical localization of β-1,3-glucanase and chitinase in Fusarium culmorum-infected wheat spikes. Physiol Mol Plant P 60: 141-153
    Kang Z and Buchenauer H (2002) Studies on the infection process of Fusarium culmorum in wheat spikes: Degradation of host cell wall components and localization of trichothecene toxins in infected tissue. Eur J Plant Pathol 108:653-660
    Karp A, Seberg O, Buiatti M (1996) Molecular techniques in the assessment of botanical diversity. Ann of Bot 78:143-149
    Klahr A, Zimmermann G, Wenzel G, Mohler V (2007) Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica 154:17-28
    Kliebenstein DJ, Rowe HC (2009) Anti-rust antitrust. Science 323:1301-1302
    Kolmer JA (1996) Genetics of resistance to wheat leaf rust. Annual Reviews Phytopathology 34:435-455
    Konieczny A and Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific markers. The Plant J 4:403-410
    Kou Y, Wang S (2010) Broad-spectrum and durability:understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181-185
    Kovalchuk I, Kovalchuk O, Kalck V, Boyko V, Filkowski J, Heinlein M, Hohn B (2003) Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 423: 760-762
    Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360-1362
    Kruger WM, Pritsch C, Chao S, Muehibauer GJ (2002) Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum. Mol Plant Microbe Interact 15:445-455
    Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, Jiang J, Buell CR, Baker B (2009) Identification of miniature inverted repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae:new functional implications for MITEs. Genome Res 19:42-56
    Kumar S, RW Stack, TL Friesen, JD Faris (2007) Identification of a novel Fusarium head blight resistance quantitative trait locus on chromosome 7A in tetraploid wheat. Phytopathology 97:592-597
    Kunkel BN, Brooks DM (2002) Cross talking between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325-331
    Lagudah ES, Drattinger SG, Herrera FS, Singh RP, Huerta EJ, Spielmeyer W, Brown GG, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yrl8/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889-898
    Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174-181
    Lee SC, Hwang IS, Choi HW, Hwang BK (2008) Involvement of the pepper antimicrobial protein CaAMPl gene in broad spectrum disease resistance. Plant Physiol 148:1004-1020
    Lee J, Jurgenson JE, Leslie JF, Bowden RL (2008) Alignment of genetic and physical maps of Gibberella zeae. Appl Environ Microb 74:2349-2359
    Lemmens M, Scholz U, Berthiller F, Dall C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterhazy A, Krska R, Ruckenbauer P (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant Microbe Interact 18:1318-1324
    Lessa EP, Applebaum G (1993) Screening techniques for detecting allelic variation in DNA sequences. Mol Ecol 2:119-129
    Li CJ, Zhu HL, Zhang CQ, Lin F, Xue SL, Cao Y, Zhang ZZ, Zhang LX, Ma ZQ (2008) Mapping QTLs associated with Fusarium-damaged kernels in the Nanda 2419 x wangshuibai population. Euphytica 163:185-191
    Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system base on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455-461
    Li GM, Yang B, Quiros CF (2003) Gene for gene alignment between Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet 107:168-180
    Li T, Bai G, Wu S, Gu S (2011) Quantitative trait loci for resistance to Fusarium head blight in a Chinese wheat landrace Haiyanzhong. Theor Appl Genet 122:1497-1502
    Li Z, Pan J, Guan Y, Tao Q, He H, Si L, Cai R (2007) Development and fine mapping of three co-dominant SCAR markers linked to the M/m gene in the cucumber plant (Cucumis sativus L.). Theor Appl Genet 117:1253-1260
    Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A (2008) The adult plant rust resistance loci Lr34/Yrl8 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155-1166
    Lin F, Kong ZX, Zhu HL, Xue SL, Wu JZ, Tian DQ Wei JB, Zhang CQ, Ma ZQ (2004) Mapping QTL associated with resistance to Fusarium head blight in the Nanda 2419 x wangshuibai population. I. Type II resistance. Theor Appl Genet 109:1504-1511
    Lin F, Xue SL, Zhang ZZ, Zhang CQ, Kong ZX, Yao GQ, Tian DG, Zhu HL, Li CJ, Cao Y, Wei JB, Luo QY, Ma ZQ. (2006) Mapping QTL associated with resistance to Fusarium head blight in the Nanda 2419xWangshuibai population. Ⅱ. Type I resistance. Theor Appl Genet 112:528-535
    Liu AH, Wang JB (2006) Genomic evaluation of Brassica allopolyploids revealed by ISSR marker. Genet Resour Crop Ev 53:603-611
    Liu J, Liu D, Tao W, Li W, Wang S, Chen P, Cheng S and Gao D (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breeding 119:16-24
    Liu B, Zhang S, Zhu X, Yang Q, Wu S, Mei M, Mauleon R, Leach J, Mew T, Leung H (2004) Candidate defense genes as predictors of quantitative blast resistance in rice. Mol Plant Microbe Interact 17:1146-1152
    Liu S and Anderson JA (2003) Targeted molecular mapping of a major wheat QTL for Fusarium head blight resistance using wheat ESTs and synteny with rice. Genome 46: 817-823
    Liu S, Zhang X, Pumphrey M, Stack R, Gill B, Anderson J (2006) Complex microcolinearity among wheat, rice and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to Fusarium head blight in wheat. Funct Integr Genomic 6:83-89
    Liu S, Hall M, Griffey C, McKendry A (2009) Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci 49:1955-1968
    Liu S, Pumphrey M, Gill B, Trick H, Zhang J, Dolezel J, Chalhoub B, Anderson J (2008) Toward position cloning of Fhbl, a major QTL for Fusarium head blight resistance in wheat. Cereal Res Commun 36:195-201
    Liu YG, Tsunewak IK (1991) Restriction fragment length polymorphism (RFLP) analysis in wheat II. Linkage maps of the RFLP sites in common wheat. J Gene 66:617-633
    Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782-794
    Loffler M, Schon CC, Miedaner T (2009) Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breeding 23:473-488
    Lorz H, Wenzel G (2005) Molecular marker systems in plant breeding and crop improvement. Biotechnology in agriculture and forestry, Vol.55 (series eds T. Nagata, H. Lorz and J. M. Widholm). Berlin: Springer-Verlag
    Lucht JM, Mauch-Mani B, Steiner HY, Metraux JP, Ryals J, Hohn B (2002) Pathogen stress increase somatic recombination frequency in Arabidopsis. Nature Genet 30: 311-314
    Mackey D, McFall AJ (2006) MAMPs and MIMPs:proposed classifications for inducers of innate immunity. Mol Microbiol 61:1365-1371
    Mackintosh CA, Lewis J, Radmer LE, Shin S, Heinen SJ, Smith LA, Wyckoff MN, Dill-Macky R, Evans CK, Kravchenko S, Baldridge GD, Zeyen R J, Muehlbauer GJ (2006) Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep 26:479-488
    Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann of Bot 94:481-495
    Makandar R, Essig JS, Schapaugh MA, Trick HN, and Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe Interact 19:123-129
    Makoto K, Takeshi T, Naoko T (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci, Biotech and Bioch 71:2105-2123
    Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol 149:286-296
    Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near-isogenic lines. New Phytol 177: 743-755
    Marcel TC, Aghnoum R, Durand J, Varshney RK, Niks RE (2007) Dissection of the barley 2L1.0 region carrying the 'Laevigatum' quantitative resistance gene to leaf rust using near isogenic lines (NILs) and sub-NILs. Mol Plant Microbe Interact 20:1604-1615
    Mardi M, Buerstmayr H, Ghareyazie B, Lemmens M, Mohammadi SA, Nolz R, Ruckenbauer P (2005) QTL analysis of resistance to Fusarium head blight in wheat using a wangshuibai-derived population. Plant Breeding 124:329-333
    Mason G, Noris E, Lanteri S, Acquadro A, Accotto GP, Portis E (2008) Potentiality of methylation-sensitive amplification polymorphism (MSAP) in identifying genes involved in tomato response to tomato yellow leaf curl Sardinia virus. Plant Mol Biol Rep 26:156-173
    Ma HX, Zhang KM, Gao L, Bai GH, Chen HG, Cai ZX, Lu WZ (2006a) Quantitative trait loci for resistance to Fusarium head blight and deoxynivalenol accumulation in wangshuibai wheat under field conditions. Plant Pathol 55:739-745
    Ma HX, Bai GH, Zhang X, Lu WZ (2006b) Main effects, epistasis, and environmental interactions of quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population. Phytopathology 96:534-541
    Ma W, Guttman DS (2008) Evolution of prokaryotic and eukaryotic virulence effectors. Curr Opin Plant Biol 11:412-419
    Ma ZQ, Roder MS, Sorrells ME (1996) Frequencies and sequence characteristics of di-, tri-, and tetra-nucleotide microsatellites in wheat. Genome 39:123-130
    Ma ZQ, Sorrells ME (1995) Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci 35:1137-1143
    Ma ZQ, Xue SL, Lin F, Yang SH, Li GQ, Tang MZ, Kong ZX, Cao Y, Zhao DM, Jia HY, Zhang ZZ, Zhang LX (2008) Mapping and validation of scab resistance QTLs in the Nanda2419xwangshuibai population. Cereal Res Commun 36:245-251
    Ma ZQ, Zhao DM, Zhang CQ, Zhang ZZ, Xue SL, Lin F, Kong ZX, Tian DG, Luo QY (2007) Molecular genetic analysis of five spike-related traits in wheat using the RIL and immortalized F2 populations. Mol Genet Genomic 277:31-42
    McCartney CA, Somers DJ, Fedak G, Cao W (2004) Haplotype diversity at Fusarium head blight resistance QTLs in wheat. Theor Appl Genet 109:261-271
    McCartney CA, Somers DJ, Fedak G, DePauw RM, Thomas J, Fox SL, Humphreys DG, Lukow O, Savard ME, McCallum BD, Gilbert J, Cao W (2007) The evaluation of FHB resistance QTLs introgressed into elite Canadian spring wheat germplasm. Mol Breeding 20:209-221
    McLaughlin CS, Vaughan MH, Campbell IM, Mer WC, Stafford ME, Hansen BS (1977) Inhibition of protein synthesis by trichothecenes. In:Rodricks JV, Hesseltine CW, Mehlman MA (eds) Mycotoxins in human and animal health. Pathotox Publishers, Inc. Park Forest South, Illinois:263-273
    McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley:a reemerging disease of devastating impact. Plant Dis 81:1341-1348
    Meek IB, Peplow AW, Ake CJ, Phillips TD, Beremand MN (2003) Tril encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene. Appl Environ Microb 69:1607-1613
    Meloni M, Perini D, Filigheddu R, Binelli G (2006) Genetic variation in five Mediterranean populations of Juniperus phoenicea as revealed by intersimple sequence repeat (ISSR) markers. Ann of Bot 97:299-304
    Mendgen K, Hahn M, Deising H (1996) Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Ann Rev Phytopathol 34:367-386
    Mesterhazy A (1995) Types and components of resistance to Fusarium head blight of wheat. Plant Breeding 114:377-386
    Meudt HM, Clarke AC (2007) Almost forgotten or latest practice:AFLP applications, analyses and advances. Trends Plant Sci 12:106-117
    Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129-134
    Miedaner T, Heinrich N, Schneider B, Oettler G, Rohed S, Rabenstein F (2004) Estimation of deoxynivalenol (DON) content by symptom rating and exoantigen content for resistance selection in wheat and triticale. Euphytica 139:123-132
    Miedaner T, Wilde F, Steiner B, Buerstmayr H, Korzun V, Ebmeyer E (2006) Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in a European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet 112:562-569
    Miedaner T, Voss HH (2008) Effect of dwarfing Rht genes on Fusarium head blight resistance in two sets of near-isogenic lines of wheat and check cultivars. Crop Sci 48: 2115-2122
    Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267-274
    Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046-1049
    Moloney C, Griffin D, Jones PW, Bryan GJ, McLean K, Bradshaw JE, Milbourne D (2009) Development of diagnostic markers for use in breeding potatoes resistant to Globodera pallida pathotype Pa2/3 using germplasm derived from Solanum tuberosum ssp. andigena CPC 2802. Theor Appl Genet 120:679-689
    Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci USA 97:12649-12654
    Muhitch MJ, McCormick SP, Alexander NJ, Hohn TM (2000) Transgenic expression of the TRI101 or PDR5 gene increases resistance of tobacco to the phytotoxic effects of the trichothecene 4,15-diacetoxyscirpenol. Plant Sci 157:201-207
    Narayanan NN, Baisakh N, VeraCruz CM, Gnanamanickam SS, Datta K, Datta SK (2002) Molecular breeding for the development of Blast and Bacterial Blight resistance in Rice cv. IR50. Crop Sci 42:2072-2079
    Naruoka Y, Talbert LE, Lanning SP, Blake NK, Martin JM, Sherman JD (2011) Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet 123:1043-1053
    Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436-43
    Nelson RS, McCormick SM, Delannay X, Dubeacute P, Layton J, Anderson EJ, Kaniewska M, Proksch RK, Horsch RB, Rogers SG, Fraley RT, Beachy RN (1988) Virus tolerance, plant performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Nature Biotech 6:403-409
    Nicholson P, Turner JA, Jenkinson P, Jennings P, Stonehouse J, Nuttall M, Dring D, Weston G, Thomsett M (2003) Maximising control with fungicides of Fusarium ear blight (FEB) in order to reduce toxin contamination of wheat. Home Grown Cereals Authority Report No.299e
    Niks RE, Marcel TC (2009) Non-host and basal resistance:how to explain specificity? New Phytol 182:817-828
    Ohsato S, Ochiai FT, Nishiuchi T, Takahashi AN, Koizumi S, Hamamoto H, Kudo T, Yamaguchi I, Kimura M (2007) Transgenic rice plants expressing trichothecene 3-O-acetyltransferase show resistance to the Fusarium phytotoxin deoxynivalenol. Plant Cell Rep 26:531-538
    Orita M, Iwahama H, and Kanazawa H Hayashi K, and Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766-2770
    Paillard S, Schnurbusch T, Tiwari R, Messmer M, Winzeler M, Keller B, Schachermayr G (2004) QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticum aestivum L.). Theor Appl Genet 109:323-332
    Palloix A, Ayme V, Moury B (2009) Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183:190-199
    Paper JM, Scott-Craig JS, Adhikari ND (2007) Comparative protemics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Protemics 7:3171-3183
    Parlevliet JE, van Ommeren A (1988) Accumulation of partial resistance in barley to barley leaf rust and powdery mildew through recurrent selection against susceptibility. Euphytica 37:261-274
    Pajerowska-Mukhtar K, Stich B, Achenbach U, Ballvora A, Liibeck J, Strahwald J, Tacke E, Hofferbert HR, Ilarionova E, Bellin D (2009) Single nucleotide polymorphisms in the allene oxide synthase 2 gene are associated with field resistance to late blight in populations of tetraploid potato cultivars. Genetics 181:1115-1127
    Pajerowska-Mukhtar K, Mukhtar MS, Guex N, Halim VA, Rosahl S, Somssich IE, Gebhardt C (2008) Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis. Planta 228: 293-306
    Panstruga R, Parker JE, Schulze LP (2009) Snapshot:plant immune response pathways. Cell 136:978
    Parry DW, Jenkinson P, and McLeod L (1995) Fusarium ear blight (scab) in small grain cereals:A review. Plant Pathol 44:207-238
    Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Berges H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322: 101-105
    Pavet V, Quintero C, Cecchini NM, Rosa AL, Alvarez ME (2006) Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Mol Plant Microbe Interact 19:577-587
    Peplow AW, Tag AG, Gulnara F (2003) Identification of new genes positively regulated by Tri10 and a regulatory network for trichothecene mycotoxin production. Appl Environ Microbiol 69:2731-2736
    Perchepied L, Dogimont C, Pitrat M (2005) Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in a recombinant inbred line population of melon. Theor Appl Genet 111:65-74
    Phalip V, Delalande F, Carapito C (2005) Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr Genet 48:366-379
    Pivoriene O, Pasakinskiene I (2007) Genetic differences between annual and perennial ryegrass revealed by ISSR markers and their sequence characteristics. Zemdirbyste-Agriculture 94:97-204
    Pivoriene O, Pasakinskiene I, Brazauskas G, Lideikyte L, Jensen LB, Lubberstedt T (2008) Inter-simple sequence repeat (ISSR) loci mapping in the genome of perennial ryegrass. Biologija 54:17-21
    Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray:the world of quantitative disease resistance. Trends Plant Sci 14:21-29
    Ponts N, Pinson-Gadais L, Barreau C (2007) Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum. FEBS Lett 581:443-447
    Plaschke J, Ganalm W, Roder MS (1995) Detection of genetic diversity in closely elated breed wheat using microsatellite markers. Theor Appl Genet 91:1001-1007
    Pritsch C, Muehlbauer GJ, Bushnell WR, Somers DA, Vance CP (2000) Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Mol Plant Microbe Interact 13:159-169
    Pritsch C, Vance CP, Bushnell WR, Somers DA, Hohn TM, Muehlbauer GJ (2001) Systemic expression of defense response genes in wheat spikes as a response to Fusarium graminearum infection. Physiol Mol Plant P 58:1-12
    Proctor RH, McCormick SP, Alexander NJ, Desjardins AE (2009) Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Mol Microbiol 74:1128-1142
    Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8:593-601
    Pumphrey M, Bernardo R, Anderson J. (2007) Validating the Fhbl QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci 47:200-206
    Qi LL, Gill B (2001) High-density physical maps reveal that the dominant male-sterile gene Ms3 is located in a genomic region of low recombination in wheat and is not amenable to map-based cloning. Theor Appl Genet 103:998-1006
    Qi LL, Friebe B, Gill BS (2002) A strategy for enhancing recombination in proximal regions of chromosomes. Chromosome Res 10:645-654
    Quarrie SA, Steed A, Calestani C, Semikhidskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865-880
    Ramalingam J, Vera Cruz CM, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH (2003) Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant Microbe Interact 16:14-24
    Raphael C, Didier H, Sonja V (2008) Gene expression in Fusarium graminearum grown on plant cell wall. Fungal Genet and Biol 45:738-748
    Reddy MP, Sarla N, Siddiq EA (2002) Inter-simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128:9-17
    Reymond P, Grunberger S, Paul K, Muller M, Farmer EE (1995) Oligogalacturonide defense signals in plants:Large fragments interact with the plasma membrane in vitro. Proc Natl Acad Sci USA 92:4145-4149
    Ribichich KF, Lopez SE, Vegetti AC (2000) Histo-pathological spikelet changes produced by Fusarium graminearum in susceptible and resistant when cultivars. Plant Dis 84: 794-802
    Richardson KL, Vales MI, Kling JG, Mundt CC, Hayes PM (2006) Pyramiding and dissecting disease resistance QTL to barley stripe rust. Theor Appl Genet 113:485-495
    Riedel C, Habeku A, Schliephake E, Niks R, Broer I, Ordon F (2011) Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of Barley yellow dwarf virus-PAV (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate. Theor Appl Genet 123:69-76
    Robbins MD, Casler MD, Staub JE (2009) Pyramiding QTL for multiple lateral branching in cucumber using inbred backcross lines. Mol Breeding 22:131-139
    Rittenour WR, Harris SD (2010) An in vitro method for the analysis of infection related morphogenesis in Fusarium graminearum. Mol Plant Pathol 11:361-369
    Robbins MD, Staub JE (2009) Comparative analysis of marker-assisted and phenotypic selection for yield components in cucumber. Theor Appl Genet 119:621-634
    Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007-2023
    Roy JK, Balyan HS, Prasad M, Gupta PK (2002) Use of SAMPL for a study of DNA polymorphism, genetic diversity and possible gene tagging in bread wheat. Theor Appl Genet 104:465-472
    Russell JR (1997) Discrimination between barley genotype using microsatellite markers. Genome 40:442-450
    Saur L, Morlais JY (1984) Behaviour of four wheat cultivars towards headblight caused by Fusarium roseum var. culmorum. Agronomic 11:939-943
    Scholbrock LL, Fleener BK, Bery JAM (1992) Comparison of wheat seedling leaf reactions to deoxynivalenol in relation to wheat scab (Fusarium graminearum) resistance classes. Phytopathology 82:1167
    Scholz M, Ruge WB, Habekuss A, Schrader O, Pendinen G, Fischer K, Wehling P (2009) Ryd4Hb:a novel resistance gene introgressed from Hordeum bulbosum into barley and conferring complete and dominant resistance to the Barley yellow dwarf virus. Theor Appl Genet 119:837-849
    Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111:747-756
    Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831-838
    Semagn K, Skinnes H, Bjornstad A, Maroy A, Tarkegne Y (2007) Quantitative trait loci controlling Fusarium head blight resistance and low deoxynivalenol content in hexaploid wheat population from Arina and NK93604. Crop Sci 47:294-303
    Seong KY, Zhao XH, Xu JR. (2008) Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genet Biol 45:389-399
    Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS, Dhaliwal HS, Khush GS (2001) Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet 102:1011-1015
    Shen X, Zhou M, Lu W, and Ohm H (2003 a) Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Theor Appl Genet 106: 1041-1047
    Shen X, Ittu M, Ohm H (2003b) Quantitative trait loci conditioning resistance to Fusarium head blight in wheat line F201R. Crop Sci 43:850-857
    Shi JR, Xu DH, Yang HY, Lu QX, Ban T (2008) DNA marker analysis for pyramided of Fusarium head blight (FHB) resistance QTLs from different germplasm. Genetica 133:77-84
    Shuichi Ohsato, Tetsuko Ochiai-Fukuda, Takumi Nishiuchi (2007) Transgenic rice plants expressing trichothecene 3-O-acetyltransferase show resistance to the Fusarium phytotoxin deoxynivalenol. Plant Cell Rep 26:531-538
    Singh RP, Huerta-Espino J, William HM (2005) Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk J Agri Forest 29:121-127
    Smith JSC, Chin ECL, Shu H (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.):Comparison with data from RFLPs and pedigree. Theor Appl Genet 95:163-173
    Snijders C (1990) Genetic variation for resistance to Fusarium head blight in bread wheat. Euphytica 50:171-179
    Snijders C (2004) Resistance in wheat to Fusarium infection and trichothecene formation. Toxicol Lett 153:37-46
    Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46:555-564
    Somers DJ, Isaac P, Edwards K (2004) A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.) Theor Appl Genet 109:1105-1114
    Somers DJ, Fedak G, Clarke J, Cao WG (2006) Mapping of FHB resistance QTLs in tetraploid wheat. Genome 49:1586-1593
    Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550-560
    Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi LL, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat(Triticum aestivum L.). Funct Integr Genomic 4:12-25
    Spanu PD, Abbott JC, Amselem J (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543-1546
    Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yrl8 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731-735
    Spielmeyer W, Singh RP, McFadden H, Wellings CR, Huerta-Espino J, Kong X, Appels R, Lagudah ES (2008) Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr 18:a disease resistance locus effective against multiple pathogens in wheat. Theor Appl Genet 116:481-490
    Suenaga K, Singh RP, Huerta EJ, William HM (2003) Microsatellite markers for genes lr34/yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881-890
    Srinivasachary, Gosman N, Steed A, Simmonds J, Leverington-Waite M, Wang Y, Snape J, Nicholson P (2008) Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet 116:1145-1153
    Srinivasachary, Gosman N, Steed A, Hollins T W, Bayles R, Jennings P, Nicholson P (2009) Semi-dwarfing Rht-B1 and Rht-Dl loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet 118:695-702
    Steed A, E Chandler, M Thomsett, N Gosman, S Faure, and P Nicholson (2005) Identification of type I resistance to Fusarium head blight controlled by a major gene located on chromosome 4A of Triticum macha. Theor Appl Genet 111:521-529
    Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H (2004) Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet 109:215-224
    Steiner B, Kurz H, Lemmens M, Buerstmayr M (2009) Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. Theor Appl Genet 118:753-764
    Tan MYA, Alles R, Hutten RCB, Visser RGF, Eck HJ (2009) Pyramiding of Meloidogyne hapla resistance genes in potato does not result in an increase of resistance. Potato Res 52:331-340
    Thabuis A, Palloix A, Servin B, Daubeze AM, Signoret P (2004) Marker assisted introgression of 4 Phytophthora capsici resistance QTL alleles into a bell pepper line: validation of additive and epistatic effects. Mol Breeding 14:9-20
    Tobiasen C, Aahman J, Ravnholt KS, Bjerrum MJ, Grell MN, Giese H (2007) Nonribosomal peptide synthetase (NPS) genes in Fusarium graminearum, F. culmorum and F. pseudograminearium and identification of NPS2 as the producer of ferricrocin. Curr Genet 51:43-58
    Tyagi S, Kramer FR (1996) Molecular beacons:Probes that fluoresce upon hybridization. Nature Biotechnol 14:303-308
    Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314: 1298-1301
    Uauy C, Brevis JC, Chen X, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112:97-105
    Umehara M, Sueyoshi T, Shimomura K, Iwai M, Shigyo M, Hirashima K, Nakahara T (2006) Interspecific hybrids between Allium fistulosum×Allium schoenoprasum reveal carotene-rich phenotype. Euphytica 148:295-301
    Urban M, Mott E, Farley T, Hammond-Kosack K (2003) The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Mol Plant Pathol 4:347-359
    Vergne E, Ballini E, Droc G, Tharreau D, Notteghem JL, Morel JB (2008) ARCHIPELAGO:a dedicated resource for exploiting past, present, and future genomic data on disease resistance regulation in rice. Mol Plant Microbe Interact 21: 869-878
    Verhoeven KJ, Jansen JJ, Van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185: 1108-1118
    Vidavskiv F, Czosnek H, Gazit S, Levy D, Lapidot M (2008) Pyramiding of genes conferring resistance to Tomato yellow leaf curl virus from different wild tomato species. Plant Breeding 127:625-631
    Vos P, Hogers R, Bleeker M, Reijans M, Vande LT, Homes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407-4414
    Wada Y, Miyamoto K, Kusano T, Sano H (2004) Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genomic 271:658-666
    Waldron BL, Moreno-Sevilla B, Anderson JA, Stack RW, Frohberg RC (1999) RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci 39:805-811
    Wan JR, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG and Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471-481
    Wang Y, Yang L, Xu H, Li Q, Ma Z, Chu C (2005) Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 5:4496-4503
    Wang YZ (1996) Epidemiology and management of wheat scab in China In:CIMMYT (ed) Fusarium head scab:global status and future prospects. CIMMYT El Batan:97-105
    Wanyoike M, Wanjiru, Zhensheng K, Buchenauer H (2002) Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads spikes by Fusarium culmorum. Eur J Plant Pathol 108:803-810
    Waugh R, MacLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of the Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687-694
    Weber S, Stubner S, Conrad R (2001) Bacterial population colonizing and degrading rice straw in anoxic paddy soil. Appl Environ Microb 67:1318-1327
    Wei J, Wang RR (1995) Genome-and species-specific markers and genome relationships of diploid perennial species in Triticeae based on RAPD analysis. Genome 38:1230-1236
    Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206
    Werner S, Diederichsen E, Frauen M, Schondelmaier J, Jung C (2008) Genetic mapping of clubroot resistance genes in oilseed rape. Theor Appl Genet 116:363-372
    Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breeding 16: 45-55
    Wilde F, Korzun V, Ebmeyer E, Geiger H, Miedaner T (2007) Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Mol Breeding 19:357-370
    Wilde F, Schon CC, Korzun V, Ebmeyer E, Schmolke M, Hart1 L, Miedaner T (2008) Marker-based introduction of three quantitative trait loci conferring resistance to Fusarium head blight into an independent elite winter wheat breeding population. Theor Appl Genet 117:29-35
    Williams JGK, Kubelic AR, Livak KJ, Rafalsky JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531-6535
    Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169:2277-2293
    Witsenboer H, Vogel J, Michelmore RW (1997) Identification, genetic localization, and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genome 40:923-936
    Wittenberg AHJ, Van der Lee T, Cayla C, Kilian A, Visser RGF, Schouten HJ (2005) Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Genomic 274:30-39
    Xiao J, Jia X, Wang H, Zhao R, Fang Y, Gao R, Wu Z, Cao A, Wang J, Xue Z, Zhao W, Kang J, Chen Q, Chen P, Wang X (2008) A fast-neutron induced chromosome fragment deletion of 3BS in wheat landrace Wangshuibai increased its susceptibility to Fusarium head blight. Chromosome Res 19:225-234
    Xu ML, Huaracha E, Korban SS (2001) Development of sequence characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple. Genome 44:63-70
    Xu YB, Crouch JH (2008) Marker-assisted selection in plant breeding from publications to practice. Crop Sci 48:391-407
    Xue SL, Zhang ZZ, Lin F, Kong ZX, Cao Y, Li CJ, Yi HY, Mei MF, Zhao DM, Zhu HL, Xu HB, Wu JZ, Tian DG, Zhang CQ, Ma ZQ (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181-189
    Xue SL, Li GQ, Jia HY, Lin F, Cao Y, Xu F, Tang MZ, Wang Y, Wu XY, Zhang ZZ, Zhang LX, Kong ZX, Ma ZQ (2010a) Marker-assisted development and evaluation of near-isogenic lines for scab resistance QTLs of wheat. Mol Breeding 25:397-405
    Xue SL, Li GQ, Jia HY, Xu F, Lin F, Tang MZ, Wang Y, An X, Xu HB, Zhang LX, Kong ZX, Ma ZQ (2010b) Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat(Triticum aestivum L.). Theor Appl Genet 121:147-156
    Xue SL, Xu F, Tang MZ, Zhou Y, Li GQ, An X, Lin F, Xu HB, Jia HY, Zhang LX, Kong ZX, Ma ZQ (2011) Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat(Triticum aestivum L.). Theor Appl Genet 123: 1055-1063
    Yan W, Li HB, Cai SB, Ma HX, Rebetzke GJ and Li CJ (2011) Effects of plant height on type Ⅰ and type Ⅱ resistance to Fusarium head blight in wheat. Plant Pathol 60:506-512
    Yang ZP, Gilbert J, Somers DJ, Fedak G, Procunier JD, McKenzie IH (2003) Marker assisted selection of Fusarium head blight resistance genes in two doubled haploid populations of wheat. Mol Breeding 12:309-317
    Yang Z, Gilbert J, Fedak G, Somers DJ (2005) Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome 48:187-196
    Yano M, katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene constans. The Plant Cell 12:2473-2483
    Ye ZH, Zhong R, Morrison WH, Himmelsbach DS (2001) Caffeoyl coenzyme A-O-methyltransferase and lignin biosynthesis. Phytochemistry 57:1177-1185
    Youngson NA, Whitelaw E (2008) Transgenerational epigenetic effects. Annu Rev Genom Hum G 9:233-257
    Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155-160
    Yu JB, Bai GH, Cai SB, Ban T (2006) Marker-assisted characterization of Asian wheat lines for resistance to Fusarium head blight. Theor Appl Genet 113:308-320
    Yu JB, Bai GH, Zhou WC, Dong YH, Kolb FL (2008) Quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population of wangshuibai. Phytopathology 98:87-94
    Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L, Wang J, Wang M, Li Q, Yang D, He Z (2007) Functional analysis of rice NPR1-like genes reveals that OsNPRl/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J 5:313-324
    Zhang X, Zhou MP, Ren LJ, Bai GH, Ma HX, Scholten OE, Guo PG, Lu WZ (2004) Molecular characterization of Fusarium head blight resistance from wheat variety wangshuibai. Euphytica 139:59-64
    Zhang XH, Pan HY, Bai GH (2012) Quantitative trait loci responsible for Fusarium head blight resistance in Chinese landrace Baishanyuehuang. Theor Appl Genet (on line)
    Zhou WC, Kolb FL, Bai GH, Shaner G, Domier LL (2002) Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome 45:719-727
    Zhou WC, Kolb FL, Bai GH, Domier LL, Boze L, Smith N (2003) Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breeding 122:40-46
    Zhou WC, Kolb FL, Yu JB, Bai GH, Boze LK (2004) Molecular characterization of Fusarium head blight resistance in wangshuIbai with simple sequence repeat and amplified fragment length polymorphism markers. Genome 47:1137-1143
    Zhou WC, Kolb FL, Riechers DE (2005) Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome 48:770-780
    Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kudrna D, Liu Z, Prom L, Steffenson B, Toojinda T, Vivar H (1999) Does function follow form principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor Appl Genet 99:1221-1232
    Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176-183
    Zimmermann G, Baumlein H, Mock HP, Himmelbach A, Schweizer P (2006) The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiol 142:181-192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700