小麦TaMYB3R1抗逆功能与转Hpal_(10-42)小麦对赤霉病和蚜虫抗性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物对防卫反应转录调控是抗病抗虫的重要机制,可以由病原物侵染和害虫侵袭以及生物与非生物激发子处理来诱发。用来自水稻白叶枯病菌的蛋白质激发子Hpalxoo处理拟南芥,可以诱发AtMYB44的活性;AtMYB44通过调控乙烯信号通路而参与植物抗虫的能力;通过表观遗传和基于水杨酸信号通路的交叉互作,来调节抗病性。鉴于转录调控对抗病虫作用以及在小麦上的有关研究还刚刚起步、有很大的挖掘潜力这一现状,本研究基于ESTs数据库,对小麦的MYB家族基因进行了生物信息学鉴定。同时,对其中的一个受ABA诱导的MYB3R转录因子进行了克隆与功能研究,确定了其在非生物胁迫中的作用。另外,以Hpalxoo的一个功能片段为目的基因构建了小麦转基因载体,通过基因枪的方法导入扬麦16号品种,经过筛选及PCR实验,证实了目的基因已整合进小麦基因组,同时对转基因小麦的抗病性进行了初步测定。
     1.基于ESTs数据库的小麦MYB家族基因鉴定
     MYB蛋白是高等植物中最大的一类转录因子家族,参与了植物生长发育过程中的多种代谢途径。在拟南芥和水稻中,已经对MYB蛋白进行了全基因组水平的系统鉴定和研究。小麦由于没有完整的基因组信息,关于这类转录因子的研究较少。本研究中,利用拟南芥和水稻MYB蛋白的信息,结合生物信息学手段,从小麦ESTs数据库中进行了MYB基因的发掘和鉴定。结果共鉴定到含有MYB结构域的218条序列,包含了MYB家族的MYB1R、R2R3MYB、MYB3R以及MYB4R成员。通过电子延伸和ORF查找的方法对R2R3MYB基因进行了全长ORF的搜寻,共得到36条具有完整ORF的cDNA序列。为了初步了解这些MYB蛋白的生物学功能,我们利用小麦、拟南芥及水稻中MYB蛋白序列进行了系统发育树分析,对小麦中的MYB蛋白进行了功能聚类;同时对拟南芥和水稻中的同源基因进行了查找。小麦中的MYB基因与拟南芥中的同源基因有相似的根、茎、叶和花组织特异性表达模式。基于MEME服务器,我们对小麦、拟南芥及水稻中的R2R3MYB蛋白进行了功能域的搜寻,预测到8个功能域,并进一步分析了这些功能域在小麦MYB蛋白中的分布模式。
     2.小麦TaMYB3Rl的克隆与功能研究
     干旱、低温和盐胁迫是限制农作物生长和产量的重要环境因素。发掘和鉴定植物中参与这些胁迫过程的关键调控因子,不仅有利于阐明植物应对这些胁迫的机制,而且还能为基因工程改良农作物提供优秀的基因资源,达到增产的目的。在本研究中,根据第一章的鉴定结果,我们选取了一个受ABA诱导的MYB3R片段做为研究对象,采用RT-PCR和RACE策略成功获得了该基因的全长,命名为TaMYB3R1。多重序列比对发现TaMYB3R1同其他的植物和动物MYB3R蛋白具有保守的R1、R2和R3重复序列。进一步的进化树分析显示TaMYB3R1属于植物MYB3R蛋白,并且同R2R3MYB蛋白相比,与植物的MYB3R蛋白和动物MYB蛋白具有更高的同源性,可以归为一个分支,这也显示MYB3R蛋白在植物和动物进化过程中的保守功能。洋葱表皮细胞的亚细胞定位实验证明该蛋白定位于细胞核。酵母细胞转录激活活性分析显示该转录因子能激活lacZ报告基因的表达,并且C端(221-605)具有转录激活作用,而N端(1-220)不具有这种转录激活作用。实时荧光定量分析显示该基因受激素ABA和JA以及干旱、低温和高盐胁迫诱导表达。另外,拟南芥过表达TaMYB3Rl的植株表现出对干旱及盐胁迫的耐受性,且TaMYB3R1同时影响了依赖ABA和不依赖ABA两条信号通路基因的表达,表明TaMYB3R1参与拟南芥不同的渗透胁迫响应过程。
     3.转pUbi::Hpa110-42小麦的产生及其对赤霉病和蚜虫抗性的初步测定
     麦蚜和赤霉病是世界范围内小麦上的顽虫、顽病,严重影响小麦产量和品质。传统的遗传育种方法由于有限的抗源,往往不能得到理想的抗性品种。而植物基因工程技术的出现,使得我们能够在更广阔的范围内寻找优秀的抗源,并整合植物产生优质、高产和抗病虫的品种。我们前期研究表明,激发子harpins能启动植物不同的生长与防卫信号通路,进而在植物上引起多种有益的表型,包括促进植物生长、抗旱以及抗病虫等。本研究采用实验室前期已进行深入研究的Hpal10-42为目的基因,选用单子叶植物中高效表达的Ubi启动子构建小麦转化载体,采用基因枪的方法将pUbi::Hpal10-42转入扬麦16号品种,并经过筛选和温室内繁育得到了T1代植株。对T1代植株进行了生长性状(包括株高和分蘖)的调查以及病虫害的抗性测定。赤霉病抗性鉴定结果初步表明温室内的转基因株系表现为发病程度轻、扩展慢。对蚜虫抗性效果测定显示出与野生型植株相比,转基因株系表现对蚜虫一定程度的抗定殖作用。
Transcriptional regulation is an important mechanism for plants response to pathogens and insects. The process could be activated by infection of pathogens, attack of insects or treatments by biotic or abiotic stimuli. Arabidopsis transcription factor AtMYB44was induced by exogenous application of harpin, an effector from rice pathogen Xanthomonas oryzae. AtMYB44regulate insect resistance and pathogen resistance by activating the ethylene signal pathway and salicylic acid signal pathway respectively. As the important role of transcriptional regulation and few related studies conducted on wheat, a computational pipeline was designed for identification of MYB transcription factors based on wheat ESTs database. Meanwhile, an ABA-induced MYB3R gene was isolated from Triticum aestivum L, and its functions were studied in detail. Experiments confirmed its roles in wheat against abiotic stress. Moreover, in previous work, a fragment of harpin (an effector from Xanthomonas oryzae) was confirmed to have many beneficial phenotypes on plants by exogenous application. The fragment was chosen as transgene, constructed for wheat transformation vector and delivered into Yangmai16cultivar by bombardment. After selection and PCR detection, the transgene was confirmed to integrate into wheat genome.
     1. Large-scale in silico identification of MYB family genes from wheat expressed
     sequence tags
     The MYB proteins constitute one of the largest transcription factor families in plants and much has been done about their structures, functions and evolution especially in model plants Arabidopsis and rice. However, wheat as a major crop, with no available genome sequence information yet, is less studied in this transcription factor family. Despite that, expressed sequence tags (ESTs) as an important resource, provided us an opportunity for large scale gene identification. In this study, a total of218sequences were identified and confirmed as putative MYB proteins consisting of MYB1R, R2R3-type MYB, MYB3R and MYB4R types. Thirty-six R2R3-type MYB genes with complete open reading frames (ORFs) were obtained. The putative orthologs in rice and Arabidopsis were assigned based on the phylogenetic tree. Tissue specific expression patterns analysis confirmed the realibility of orthologs' prediction and could transfer the gene information from Arabidopsis to wheat. Moreover, the motifs flanking the MYB domain were analyzed by MEME web server. The distribution of motifs among wheat MYB proteins was described and this could facilitate the subfamily classification.
     2. Cloning and functional analysis of TaMYB3Rl gene in wheat(Triticum aestivum L.)
     Abiotic stress seriously affects crop growth and productivity. To better understand the mechanisms plants use to cope with drought, cold and salt stress, it is necessary to isolate and characterize important regulators response to these stresses. In this study, a novel MYB3R gene was isolated from wheat (Triticum aestivum L.)and designated as TaMYB3R1based on its conserved three repeats in MYB domain. The sequence of TaMYB3R1protein shares high degree of identity to other plant MYB3R proteins. Subcellular localization experiment in onion epidermal cells proved that TaMYB3Rl localized in the nucleus. Trans-activation essays in yeast cells confirmed that TaMYB3R1was a transcriptional activator, and only C-terminal region was able to activate the expression of β-galactosidase. The expression of TaMYB3Rl was induced by exogenous applications of phytohormone ABA and MeJA treatment and also under abiotic stress. In addition, TaMYB3R1-overexpressed Arabidopsis were more tolerance to drought and salt stresses. Moreover, TaMYB3R1influenced expression of both ABA-dependent and ABA-independent responsive genes, implicating TaMYB3R1in diverse osmotic stress-response mechanisms in Arabidopsis.
     3. Generation of Hpal10.42transgenic wheat and test of resistance to FHB and aphids
     The production and quality of wheat is seriously affected by pest wheat-aphids and pathogen Fusarium graminearum, both of which are worldwide threat and hard to control. It is difficult to obtain the resistant cultivars to aphids or F. graminearum by traditional breeding because of limited resistant sources. With the development of plant genetic engineering techniques,we can use a variety of sources besides plants and integrated them into plants,produced transgenic plants with high quality, production and resistance.Our previous studies indicated that effector harpins could elicit different plant growth and defense signal pathways by exponent application, thereafter cause many beneficial phenotypes of plants, including promoting growth, tolerance to drought and also resistance to pests and pathogens. In present study, we constructed wheat transformation vector by using a fragment of harpins Hpal10-42as the transgene, then delivered it into wheat cultivar Yangmail6by bombardment. After selection and reproduction, we successfully obtained T1transgenic plants. We next recorded the phenotypes including height and number of tillers, and tested resistance to aphids and F. graminearum. The results showed that compared to wild plants, transgenic plants had less symptoms and the pathogen developed more slowly after inoculation with F. graminearum; as to aphids, transgenic plants had less number of aphids colonized, this gave hinds that the resistance is acquired by prohibiting the colonization.
引文
1. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell,15,63-78.
    2. Agarwal, M., Hao, Y., Kapoor, A., Dong, C.H., Fujii, H., Zheng, X. and Zhu, J.K. (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. JBiol Chem,281,37636-37645.
    3. Altenhoff, A.M. and Dessimoz, C. (2009) Phylogenetic and functional assessment of orthologs inference projects and methods. PLoS Comput Biol,5, e1000262.
    4. Andreasson, E., Jenkins, T., Brodersen, P., Thorgrimsen, S., Petersen, N.H., Zhu, S., Qiu, J.L., Micheelsen, P., Rocher, A., Petersen, M. et al. (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J,24,2579-2589.
    5. Asai, T., Tena, G, Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel, F.M. and Sheen, J. (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature,415,977-983.
    6. Bailey, T.L., Williams, N., Misleh, C. and Li, W.W. (2006) MEME:discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res,34, W369-373.
    7. Baker, C.J., Orlandi, E.W. and Mock, N.M. (1993) Harpin, An Elicitor of the Hypersensitive Response in Tobacco Caused by Erwinia amylovora, Elicits Active Oxygen Production in Suspension Cells. Plant Physiol,102,1341-1344.
    8. Belbahri, L., Boucher, C., Candresse, T., Nicole, M., Ricci, P. and Keller, H. (2001) A local accumulation of the Ralstonia solanacearum PopA protein in transgenic tobacco renders a compatible plant-pathogen interaction incompatible. Plant J,28,419-430.
    9. Bevan, C.S.a.M. (1998) The regulation of transcription factor activity in plants. Trends in plant science,3,378-383.
    10. Bouarab, K., Melton, R., Peart, J., Baulcombe, D. and Osbourn, A. (2002) A saponin-detoxifying enzyme mediates suppression of plant defences. Nature,418,889-892.
    11. Boulikas, T. (1994) Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem,55,32-58.
    12. Boutrot, F., Chantret, N. and Gautier, M.F. (2008) Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics,9,86.
    13. Braun, E.L. and Grotewold, E. (1999) Newly discovered plant c-myb-like genes rewrite the evolution of the plant myb gene family. Plant Physiol,121,21-24.
    14. Brito, B., Aldon, D., Barberis, P., Boucher, C. and Genin, S. (2002) A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solanacearum hrp genes. Mol Plant Microbe Interact,15,109-119.
    15. Brownfield, L., Hafidh, S., Borg, M., Sidorova, A., Mori, T. and Twell, D. (2009) A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet,5, el000430.
    16. Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T. and Pink, D. (2003) The molecular analysis of leaf senescence--a genomics approach. Plant Biotechnol J,1, 3-22.
    17. Byrne, M.E., Barley, R., Curtis, M., Arroyo, J.M., Dunham, M., Hudson, A. and Martienssen, R.A. (2000) Asymmetric leavesl mediates leaf patterning and stem cell function in Arabidopsis. Nature, 408,967-971.
    18. Carol Potenza, L.A.a.C.S.-G. (2004) Targeting transgene expression in research, agricultural, and environmental applications:Promoters used in plant transformation In Vitro Cellular & Developmental Biology,40,1-22.
    19. Carrasco, J.L., Ancillo, G., Castello, M.J. and Vera, P. (2005) A novel DNA-binding motif, hallmark of a new family of plant transcription factors. Plant Physiol,137,602-606.
    20. Chen, C. and Chen, Z. (2000) Isolation and characterization of two pathogen-and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol Biol,42, 387-396.
    21. Chen, C. and Chen, Z. (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol,129,706-716.
    22. Chen, L., Qian, J., Qu, S., Long, J., Yin, Q., Zhang, C., Wu, X., Sun, F., Wu, T., Hayes, M. et al. (2008) Identification of specific fragments of HpaG Xooc, a harpin from Xanthomonas oryzae pv. oryzicola, that induce disease resistance and enhance growth in plants. Phytopathology,98, 781-791.
    23. Chen, R.M., Ni, Z. F., Nie, X. L., Qin, Y. X., Dong, G. Q., Sun, Q. X. (2005) Isolation and characterization of genes encoding Myb transcription factor in wheat (Triticum aestivem L.). Plant sci,169,1146-1154.
    24. Chen, W., Provart, N.J., Glazebrook, J., Katagiri, F., Chang, H.S., Eulgem, T., Mauch, F., Luan, S., Zou, G., Whitham, S.A. et al. (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell,14, 559-574.
    25. Chen, W.J. and Zhu, T. (2004) Networks of transcription factors with roles in environmental stress response. Trends Plant Sci,9,591-596.
    26. Cheng, H., Song, S., Xiao, L., Soo, H.M., Cheng, Z., Xie, D. and Peng, J. (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet,5, e1000440.
    27. Cheong, Y.H., Chang, H.S., Gupta, R., Wang, X., Zhu, T. and Luan, S. (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol,129,661-677.
    28. Cheong, Y.H., Moon, B.C., Kim, J.K., Kim, C.Y., Kim, M.C., Kim, I.H., Park, C.Y., Kim, J.C., Park, B.O., Koo, S.C. et al. (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol,132,1961-1972.
    29. Chern, M., Fitzgerald, H.A., Canlas, P.E., Navarre, D.A. and Ronald, P.C. (2005) Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact,18,511-520.
    30. Choi, J.J., Klosterman, S.J. and Hadwiger, L.A. (2004) A Promoter from Pea Gene DRR206 Is Suitable to Regulate an Elicitor-Coding Gene and Develop Disease Resistance. Phytopathology, 94,651-660.
    31. Cominelli, E., Galbiati, M., Vavasseur, A., Conti, L., Sala, T., Vuylsteke, M., Leonhardt, N., Dellaporta, S.L. and Tonelli, C. (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol,15,1196-1200.
    32. Correa, L.G., Riano-Pachon, D.M., Schrago, C.G., dos Santos, R.V., Mueller-Roeber, B. and Vincentz, M. (2008) The role of bZIP transcription factors in green plant evolution:adaptive features emerging from four founder genes. PLoS One,3, e2944.
    33. Dai, X., Xu, Y, Ma, Q., Xu, W., Wang, T., Xue, Y. and Chong, K. (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol,143,1739-1751.
    34. De Vos, M., Denekamp, M., Dicke, M., Vuylsteke, M., Van Loon, L., Smeekens, S.C. and Pieterse, C.M. (2006) The Arabidopsis thaliana Transcription Factor AtMYB102 Functions in Defense Against the Insect Herbivore Pieris rapae. Plant Signal Behav,1,305-311.
    35. de Wit, P.J. (1992) Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopathol,30,391-418.
    36. Degrave, A., Fagard, M., Perino, C., Brisset, M.N., Gaubert, S., Laroche, S., Patrit, O. and Barny, M.A. (2008) Erwinia amylovora type three-secreted proteins trigger cell death and defense responses in Arabidopsis thaliana. Mol Plant Microbe Interact,21,1076-1086.
    37. Dehesh, K., Smith, L.G., Tepperman, J.M. and Quail, P.H. (1995) Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2. Plant J,8,25-36.
    38. Delessert, C., Kazan, K., Wilson, I.W., Van Der Straeten, D., Manners, J., Dennis, E.S. and Dolferus, R. (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J,43,745-757.
    39. Deluca, T.F., Wu, I.H., Pu, J., Monaghan, T., Peshkin, L., Singh, S. and Wall, D.P. (2006) Roundup: a multi-genome repository of orthologs and evolutionary distances. Bioinformatics,22, 2044-2046.
    40. Desikan, R., Hancock, J.T., Ichimura, K., Shinozaki, K. and Neill, S.J. (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol,126,1579-1587.
    41. Despres, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D. and Fobert, P.R. (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell, 15,2181-2191.
    42. Doebley, J. and Lukens, L. (1998) Transcriptional regulators and the evolution of plant form. Plant Cell,10,1075-1082.
    43. Dong, H., Delaney, T.P., Bauer, D.W. and Beer, S.V. (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J,20,207-215.
    44. Dong, H.P, Peng, J., Bao, Z., Meng, X., Bonasera, J.M., Chen, G., Beer, S.V. and Dong, H. (2004) Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol,136,3628-3638.
    45. Dong, H.P., Yu, H., Bao, Z., Guo, X., Peng, J., Yao, Z., Chen, G., Qu, S. and Dong, H. (2005) The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta,221,313-327.
    46. Du, H., Zhang, L., Liu, L., Tang, X.F., Yang, W.J., Wu, Y.M., Huang, Y.B. and Tang, Y.X. (2009) Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry (Mosc),74,1-11.
    47. Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C. and Lepiniec, L. (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci,15,573-581.
    48. Durrant, W.E. and Dong, X. (2004) Systemic acquired resistance. Annu Rev Phytopathol,42, 185-209.
    49. Durrant, W.E., Rowland, O., Piedras, P., Hammond-Kosack, K.E. and Jones, J.D. (2000) cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell,12,963-977.
    50. Ekengren, S.K., Liu, Y., Schiff, M., Dinesh-Kumar, S.P. and Martin, G.B. (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J,36,905-917.
    51. El-Maarouf, H., Barny, M.A., Rona, J.P. and Bouteau, F. (2001) Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Lett,497,82-84.
    52. Eulgem, T. (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci,10, 71-78.
    53. Eulgem, T., Weigman, V.J., Chang, H.S., McDowell, J.M., Holub, E.B., Glazebrook, J., Zhu, T. and Dangl, J.L. (2004) Gene expression signatures from three genetically separable resistance gene signaling pathways for downy mildew resistance. Plant Physiol,135,1129-1144.
    54. Fang, J., Haasl, R.J., Dong, Y. and Lushington, GH. (2005) Discover protein sequence signatures from protein-protein interaction data. BMC Bioinformatics,6,277.
    55. Fermin, G., Tennant, P., Gonsalves, C., Lee, D. and Gonsalves, D. (2005) Comparative development and impact of transgenic papayas in Hawaii, Jamaica, and Venezuela. Methods Mol Biol,286,399-430.
    56. Fitzgerald, H.A., Chern, M.S., Navarre, R. and Ronald, P.C. (2004) Overexpression of (At)NPR1 in rice leads to a BTH-and environment-induced lesion-mimic/cell death phenotype. Mol Plant Microbe Interact,17,140-151.
    57. Fobert, P.R. and Despres, C. (2005) Redox control of systemic acquired resistance. Curr Opin Plant Biol,8,378-382.
    58. Friedrich, L., Lawton, K., Dietrich, R., Willits, M., Cade, R. and Ryals, J. (2001) NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant Microbe Interact,14,1114-1124.
    59. Gibly, A., Bonshtien, A., Balaji, V., Debbie, P., Martin, G.B. and Sessa, G. (2004) Identification and expression profiling of tomato genes differentially regulated during a resistance response to Xanthomonas campestris pv. vesicatoria. Mol Plant Microbe Interact,17,1212-1222.
    60. Gigolashvili, T., Berger, B., Mock, H.P., Muller, C., Weisshaar, B. and Flugge, U.I. (2007) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J,50,886-901.
    61. Gigolashvili, T., Engqvist, M., Yatusevich, R., Muller, C. and Flugge, U.I. (2008) HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol,177,627-642.
    62. Glazebrook, J. (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol,43,205-227.
    63. Gonzalez, A., Mendenhall, J., Huo, Y. and Lloyd, A. (2009) TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Dev Biol,325,412-421.
    64. Gonzalez, A., Zhao, M., Leavitt, J.M. and Lloyd, A.M. (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J,53,814-827.
    65. Gramzow, L., Ritz, M.S. and Theissen, G. (2010) On the origin of MADS-domain transcription factors. Trends Genet,26,149-153.
    66. Greve, K., La Cour, T., Jensen, M.K., Poulsen, F.M. and Skriver, K. (2003) Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins:RING-H2 molecular specificity and cellular localization. Biochem J,371,97-108.
    67. Gu, K., Yang, B., Tian, D., Wu, L., Wang, D., Sreekala, C., Yang, F., Chu, Z., Wang, G.L., White, F.F. et al. (2005) R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice. Nature,435,1122-1125.
    68. Gu, Y.Q., Yang, C., Thara, V.K., Zhou, J. and Martin, G.B. (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase.Plant Cell,12,771-786.
    69. Hahlbrock, I.E.S.a.K. (1998) Pathogen defence in plants a paradigm of biological complexity. Trends Plant Sci,3,86-90.
    70. Hahlbrock, K., Bednarek, P., Ciolkowski, I., Hamberger, B., Heise, A., Liedgens, H.,Logemann, E., Nurnberger, T., Schmelzer, E., Somssich, I.E. et al. (2003) Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proc Natl Acad Sci U S A,100 Suppl 2,14569-14576.
    71. Hammond-Kosack, K.E. and Parker, J.E. (2003) Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol,14,177-193.
    72. He, S.Y. (1998) Type III protein secretion systems in plant and animal pathogenic bacteria. Annu Rev Phytopathol,36,363-392.
    73. He, S.Y., Huang, H.C. and Collmer, A. (1993) Pseudomonas syringae pv. syringae harpinPss:a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell, 73,1255-1266.
    74. Hernandez, G., Ramirez, M., Valdes-Lopez, O., Tesfaye, M., Graham, M.A., Czechowski, T., Schlereth, A., Wandrey, M., Erban, A., Cheung, F. et al. (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol,144,752-767.
    75. High, S.M., Cohen, M.B., Shu, Q.Y. and Altosaar, I. (2004) Achieving successful deployment of Bt rice. Trends Plant Sci,9,286-292.
    76. Hooker, T.S., Millar, A.A. and Kunst, L. (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol,129,1568-1580.
    77. Ito, M. (2005) Conservation and diversification of three-repeat Myb transcription factors in plants. J Plant Res,118,61-69.
    78. Ito, M., Araki, S., Matsunaga, S., Itoh, T., Nishihama, R., Machida, Y., Doonan, J.H. and Watanabe, A. (2001) G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors. Plant Cell,13,1891-1905.
    79. Jang, Y.S., Sohn, S.I. and Wang, M.H. (2006) The hrpN gene of Erwinia amylovora stimulates tobacco growth and enhances resistance to Botrytis cinerea. Planta,223,449-456.
    80. Jensen, L.J., Julien, P., Kuhn, M., von Mering, C., Muller, J., Doerks, T. and Bork, P. (2008) eggNOG:automated construction and annotation of orthologous groups of genes. Nucleic Acids Res,36, D250-254.
    81. Jiang, C., Gu, J., Chopra, S., Gu, X. and Peterson, T. (2004) Ordered origin of the typical two-and three-repeat Myb genes. Gene,326,13-22.
    82. Jiang, C, Gu, X. and Peterson, T. (2004) Identification of conserved gene structures and carboxy-terminal motifs in the Myb gene family of Arabidopsis and Oryza sativa L. ssp. indica. Genome Biol,5, R46.
    83. Jin, H., Cominelli, E., Bailey, P., Parr, A., Mehrtens, F., Jones, J., Tonelli, C., Weisshaar, B. and Martin, C. (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J,19,6150-6161.
    84. Jin, H. and Martin, C. (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol,41,577-585.
    85. Johnson, C., Boden, E. and Arias, J. (2003) Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell,15, 1846-1858.
    86. Jung, C., Seo, J.S., Han, S.W., Koo, Y.J., Kim, C.H., Song, S.I., Nahm, B.H., Choi, Y.D. and Cheong, J.J. (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol,146,623-635.
    87. Kang, Y.H., Kirik, V., Hulskamp, M., Nam, K.H., Hagely, K., Lee, M.M. and Schiefelbein, J. (2009) The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis. Plant Cell,21,1080-1094.
    88. Kariola, T., Palomaki, T.A., Brader, G. and Palva, E.T. (2003) Erwinia carotovora subsp. carotovora and Erwinia-derived elicitors HrpN and PehA trigger distinct but interacting defense responses and cell death in Arabidopsis. Mol Plant Microbe Interact,16,179-187.
    89. Katagiri, F. (2004) A global view of defense gene expression regulation--a highly interconnected signaling network. Curr Opin Plant Biol,7,506-511.
    90. Kaufmann, K., Muino, J.M., Jauregui, R., Airoldi, C.A., Smaczniak, C., Krajewski, P. and Angenent, G.C. (2009) Target genes of the MADS transcription factor SEPALLATA3:integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol,7, e1000090.
    91. Kirsch, C., Logemann, E., Lippok, B., Schmelzer, E. and Hahlbrock, K. (2001) A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Petroselinum crispum. Plant J,26,217-227.
    92. Kirubakaran, S.I. and Sakthivel, N. (2007) Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli. Protein ExprPurif,52,159-166.
    93. Klempnauer, K.H., Gonda, T.J. and Bishop, J.M. (1982) Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb:the architecture of a transduced oncogene. Cell,31,453-463.
    94. Knight, H. and Knight, M.R. (2001) Abiotic stress signalling pathways:specificity and cross-talk. Trends Plant Sci,6,262-267.
    95. Koshino-Kimura, Y., Wada, T., Tachibana, T., Tsugeki, R., Ishiguro, S. and Okada, K. (2005) Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis. Plant Cell Physiol,46,817-826.
    96. Kranz, H., Scholz, K. and Weisshaar, B. (2000) c-MYB oncogene-like genes encoding three MYB repeats occur in all major plant lineages. Plant J,21,231-235.
    97. Lai, L.B., Nadeau, J.A., Lucas, J., Lee, E.K., Nakagawa, T., Zhao, L., Geisler. M. and Sack, F.D. (2005) The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage. Plant Cell,17,2754-2767.
    98. Laloi, C., Mestres-Ortega, D., Marco, Y., Meyer, Y. and Reichheld, J.P. (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol,134,1006-1016.
    99. Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J. and Ward, E. (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J,16,223-233.
    100. Lee, D.K., Geisler, M. and Springer, P.S. (2009) LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2 function in lateral organ separation and axillary meristem formation in Arabidopsis. Development,136,2423-2432.
    101. Lee, M.M. and Schiefelbein, J. (2001) Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis. Development,128,1539-1546.
    102. Lee, M.W., Qi, M. and Yang, Y. (2001) A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death. Mol Plant Microbe Interact,14,527-535.
    103. Levy, M., Wang, Q., Kaspi, R., Parrella, M.P. and Abel, S. (2005) Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J,43,79-96.
    104. Li, C., Lv, J., Zhao, X., Ai, X., Zhu, X., Wang, M., Zhao, S. and Xia, G. (2010) TaCHP-a wheat zinc finger protein gene down-regulated by ABA and salinity stress plays a positive role in stress tolerance. Plant Physiol.
    105. Li, J., Brader, G. and Palva, E.T. (2004) The WRKY70 transcription factor:a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell,16,319-331.
    106. Li, L., Stoeckert, C.J., Jr. and Roos, D.S. (2003) OrthoMCL:identification of ortholog groups for eukaryotic genomes. Genome Res,13,2178-2189.
    107. Li, S.F., Milliken, O.N., Pham, H., Seyit, R., Napoli, R., Preston, J., Koltunow, A.M. and Parish, R.W. (2009) The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. Plant Cell,21,72-89.
    108. Li, Z.K., Sanchez, A., Angeles, E., Singh, S., Domingo, J., Huang, N. and Khush, G.S. (2001) Are the dominant and recessive plant disease resistance genes similar? A case study of rice R genes and Xanthomonas oryzae pv. oryzae races. Genetics,159,757-765.
    109. Lin, Y. and Schiefelbein, J. (2001) Embryonic control of epidermal cell patterning in the root and hypocotyl of Arabidopsis. Development,128,3697-3705.
    110. Lippold, F., Sanchez, D.H., Musialak, M., Schlereth, A., Scheible, W.R., Hincha, D.K. and Udvardi, M.K. (2009) AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiol,149,1761-1772.
    111. Lipsick, J.S. (1996) One billion years of Myb. Oncogene,13,223-235.
    112. Liu Qiang, Z.G-Y., Cheng Shou-Yi.. (2001) structure and regulatory function of plant transcrition factors. Chinese Science Bulletin,46,271-278.
    113. Liu, R., Chen, L., Jia, Z., Lu, B., Shi, H., Shao, W. and Dong, H. (2011) Transcription factor AtMYB44 regulates induced expression of the ETHYLENE INSENSITIVE2 gene in Arabidopsis responding to a harpin protein. Mol Plant Microbe Interact,24,377-389.
    114. Liu, Y, Schiff, M. and Dinesh-Kumar, S.P.(2004) Involvement of MEK1 MAPKK, NTF6 MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J,38,800-809.
    115. Loon, L.C.v.S., E.A. van. (2002) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology,55, 85-97.
    116. Lorenzo, O., Chico, J.M., Sanchez-Serrano, J.J. and Solano, R. (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell,16, 1938-1950.
    117. Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L. and Dietrich, R.A. (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet,26,403-410.
    118. Mandaokar, A. and Browse, J. (2009) MYB 108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol,149,851-862.
    119. Mao, X., Zhang, H., Tian, S., Chang, X. and Jing, R. (2010) TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. JExp Bot,61,683-696.
    120. Matsui, K., Umemura, Y. and Ohme-Takagi, M. (2008) AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J,55, 954-967.
    121. Matus, J.T., Aquea, F. and Arce-Johnson, P. (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol,8,83.
    122. McDowell, J.M. and Woffenden, B.J. (2003) Plant disease resistance genes:recent insights and potential applications. Trends Biotechnol,21,178-183.
    123.Meissner, R.C., Jin, H., Cominelli, E., Denekamp, M., Fuertes, A., Greco, R., Kranz, H.D., Penfield, S., Petroni, K., Urzainqui, A. et al. (1999) Function search in a large transcription factor gene family in Arabidopsis:assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell,11,1827-1840.
    124. Menke, F.L., Kang, H.G., Chen, Z., Park, J.M., Kumar, D. and Klessig, D.F. (2005) Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol Plant Microbe Interact,18,1027-1034.
    125. Michelmore, R.W. (2003) The impact zone:genomics and breeding for durable disease resistance. Curr Opin Plant Biol,6,397-404.
    126. Millar, A.A. and Gubler, F. (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell,17, 705-721.
    127. Mittler, R. and Blumwald, E. (2010) Genetic engineering for modern agriculture:challenges and perspectives. Annu Rev Plant Biol,61,443-462.
    128. Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. (2004) Reactive oxygen gene network of plants. Trends Plant Sci,9,490-498.
    129. Morimoto, R., Nishioka, E., Murai, K. and Takumi, S. (2009) Functional conservation of wheat orthologs of maize rough sheathl and rough sheath2 genes. Plant Mol Biol,69,273-285.
    130. Morohashi, K. and Grotewold, E. (2009) A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet,5, e1000396.
    131. Morran, S., Eini, O., Pyvovarenko, T., Parent, B., Singh, R., Ismagul, A., Eliby, S., Shirley, N., Langridge, P. and Lopato, S. (2010) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J.
    132. Mou, Z., Fan, W. and Dong, X. (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell,113,935-944.
    133. Muller, D., Schmitz, G. and Theres, K. (2006) Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell,18,586-597.
    134. Murray, F., Kalla, R., Jacobsen, J. and Gubler, F. (2003) A role for HvGAMYB in anther development. Plant J,33,481-491.
    135. Mysore, K.S. and Ryu, C.M. (2004) Nonhost resistance:how much do we know? Trends Plant Sci, 9,97-104.
    136. Nagaraj, S.H., Gasser, R.B. and Ranganathan, S. (2007) A hitchhiker's guide to expressed sequence tag (EST) analysis. Brief Bioinform,8,6-21.
    137. Nagaraj, S.H., Gasser, R.B. and Ranganathan, S. (2008) Needles in the EST haystack:large-scale identification and analysis of excretory-secretory (ES) proteins in parasitic nematodes using expressed sequence tags (ESTs). PLoS Negl Trop Dis,2, e301.
    138. Nakano, T., Suzuki, K., Fujimura, T. and Shinshi, H. (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol,140,411-432.
    139. Nimchuk, Z., Eulgem, T., Holt, B.F.,3rd and Dangl, J.L. (2003) Recognition and response in the plant immune system. Annu Rev Genet,37,579-609.
    140. Nomura, K., Melotto, M. and He, S.Y. (2005) Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Curr Opin Plant Biol,8,361-368.
    141. Novina, C.D. and Sharp, P.A. (2004) The RNAi revolution. Nature,430,161-164.
    142. Nurnberger, T. and Lipka, V. (2005) Non-host resistance in plants:new insights into an old phenomenon. Mol Plant Pathol,6,335-345.
    143.Okubara, P.A., Blechl, A.E., McCormick, S.P., Alexander, N.J., Dill-Macky, R. and Hohn, T.M. (2002) Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theor Appl Genet,106,74-83.
    144. Oldroyd, G.E. and Staskawicz, B.J. (1998) Genetically engineered broad-spectrum disease resistance in tomato. Proc Natl Acad Sci U S A,95,10300-10305.
    145. Olsen, A.N., Ernst, H.A., Leggio, L.L. and Skriver, K. (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci,10,79-87.
    146. Padidam, M. (2003) Chemically regulated gene expression in plants. Curr Opin Plant Biol,6, 169-177,
    147. Palaniswamy, S.K., James, S., Sun, H., Lamb, R.S., Davuluri, R.V. and Grotewold, E. (2006) AGRIS and AtRegNet. a platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol,140,818-829.
    148. Pandey, S.P. and Somssich, I.E. (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol,150,1648-1655.
    149. Parenicova, L., de Folter, S., Kieffer, M., Homer, D.S., Favalli, C., Busscher, J., Cook, H.E., Ingram, R.M., Kater, M.M., Davies, B. et al. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:new openings to the MADS world. Plant Cell,15,1538-1551.
    150. Pastori, G.M. and Foyer, C.H. (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of "redox" and abscisic acid-mediated controls. Plant Physiol,129,460-468.
    151.Paz-Ares, J., Ghosal, D., Wienand, U., Peterson, P.A. and Saedler, H. (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J,6,3553-3558.
    152. Pedley, K.F. and Martin, G.B. (2005) Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol,8,541-547.
    153. Peng, J.L., Bao, Z.L., Ren, H.Y., Wang, J.S. and Dong, H.S. (2004) Expression of harpin(xoo) in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology,94,1048-1055.
    154. Peng, J.L., Dong, H.P., Delaney, T.P., Bonasera, B.M., Beer, S.V. (2003) Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol Mol Plant Pathol,62,317-326.
    155. Perl-Treves, R., Foley, R.C., Chen, W. and Singh, K.B. (2004) Early induction of the Arabidopsis GSTF8 promoter by specific strains of the fungal pathogen Rhizoctonia solani. Mol Plant Microbe Interact,17,70-80.
    156. Peschen, D., Li, H.P., Fischer, R., Kreuzaler, F. and Liao, Y.C. (2004) Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen. Nat Biotechnol,22,732-738.
    157.Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H.B., Lacy, M., Austin, M.J., Parker, J.E. et al. (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell,103,1111-1120.
    158.Pieterse, C.M. and Van Loon, L.C. (2004) NPR1:the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol,7,456-464.
    159. Punwani, J.A., Rabiger, D.S., Lloyd, A. and Drews, G.N. (2008) The MYB98 subcircuit of the synergid gene regulatory network includes genes directly and indirectly regulated by MYB98. Plant J,55,406-414.
    160. Rabinowicz, P.D., Braun, E.L., Wolfe, A.D., Bowen, B. and Grotewold, E. (1999) Maize R2R3 Myb genes:Sequence analysis reveals amplification in the higher plants. Genetics,153,427-444.
    161. Raffaele, S., Rivas, S. and Roby, D. (2006) An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett, 580,3498-3504.
    162. Raffaele, S., Vailleau, F., Leger, A., Joubes, J., Miersch, O., Huard, C., Blee, E., Mongrand, S., Domergue, F. and Roby, D. (2008) A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell, 20,752-767.
    163. Reboutier, D., Frankart, C., Vedel, R., Brault, M., Duggleby, R.G., Rona, J.P., Barny, M.A. and Bouteau, F. (2005) A CFTR chloride channel activator prevents HrpN(ea)-induced cell death in Arabidopsis thaliana suspension cells. Plant Physiol Biochem,43,567-572.
    164. Remington, D.L.a.P., M.D. (2003) Candidate genes, quantitative trait loci, and functional trait evolution in plants. International journal of plant sciences 164, S7-S20.
    165. Remm, M., Storm, C.E. and Sonnhammer, E.L. (2001) Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol,314,1041-1052.
    166. Riechmann, J.L., Heard, J., Martin, G, Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R. et al. (2000) Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science,290,2105-2110.
    167. Romeis, T., Ludwig, A.A., Martin, R. and Jones, J.D. (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J,20,5556-5567.
    168. Rosinski, J.A. and Atchley, W.R. (1998) Molecular evolution of the Myb family of transcription factors:evidence for polyphyletic origin. JMol Evol,46,74-83.
    169. Rushton, P.J., Reinstadler, A., Lipka, V., Lippok, B. and Somssich, I.E. (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen-and wound-induced signaling. Plant Cell,14,749-762.
    170. Rushton, P.J., Somssich, I.E., Ringler, P. and Shen, Q.J. (2010) WRKY transcription factors. Trends Plant Sci,15,247-258.
    171. Santi, L., Wang, Y., Stile, M.R., Berendzen, K., Wanke, D., Roig, C., Pozzi, C., Muller, K., Muller, J., Rohde, W. et al. (2003) The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J,34,813-826.
    172. Schaffer, R., Landgraf, J., Accerbi, M., Simon, V., Larson, M. and Wisman, E. (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell,13,113-123.
    173. Seo, P.J. and Park, C.M. (2010) MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytol,186,471-483.
    174. Shin, R., Burch, A.Y., Huppert, K.A., Tiwari, S.B., Murphy, A.S., Guilfoyle, T.J. and Schachtman, D.P. (2007) The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell,19,2440-2453.
    175. Simon, M., Lee, M.M., Lin, Y., Gish, L. and Schiefelbein, J. (2007) Distinct and overlapping roles of single-repeat MYB genes in root epidermal patterning. Dev Biol,311,566-578.
    176. Singh, K., Foley, R.C. and Onate-Sanchez, L. (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol,5,430-436.
    177. Singh, K.B. (1998) Transcriptional regulation in plants:the importance of combinatorial control. Plant Physiol,118,1111-1120.
    178. Skamnioti, P. and Ridout, C.J. (2005) Microbial avirulence determinants:guided missiles or antigenic flak? Mol Plant Pathol,6,551-559.
    179. Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K. and Weisshaar, B. (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J,50,660-677.
    180. Stracke, R., Werber, M. and Weisshaar, B. (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol,4,447-456.
    181.Stuiver, M.H. and Custers, J.H. (2001) Engineering disease resistance in plants. Nature,411, 865-868.
    182. Tai, T.H., Dahlbeck, D., Clark, E.T., Gajiwala, P., Pasion, R., Whalen, M.C., Stall, R.E. and Staskawicz, B.J. (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci USA,96,14153-14158.
    183.Tian, D., Traw, M.B., Chen, J.Q., Kreitman, M. and Bergelson, J. (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature,423,74-77.
    184. Tomsett, B., Tregova, A., Garoosi, A. and Caddick, M. (2004) Ethanol-inducible gene expression: first step towards a new green revolution? Trends Plant Sci,9,159-161.
    185. Tor, M., Brown, D., Cooper, A., Woods-Tor, A., Sjolander, K., Jones, J.D. and Holub, E.B. (2004) Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. Plant Physiol,135,1100-1112.
    186. Tron, A.E., Bertoncini, C.W., Chan, R.L. and Gonzalez, D.H. (2002) Redox regulation of plant homeodomain transcription factors. J Biol Chem,277,34800-34807.
    187. Tsiamis, G., Mansfield, J.W., Hockenhull, R., Jackson, R.W., Sesma, A., Athanassopoulos, E., Bennett, M.A., Stevens, C., Vivian, A., Taylor, J.D. et al. (2000) Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease. EMBO J,19,3204-3214.
    188. Ulker, B. and Somssich, I.E. (2004) WRKY transcription factors:from DNA binding towards biological function. Curr Opin Plant Biol,7,491-498.
    189. Vailleau, F., Daniel, X., Tronchet, M., Montillet, J.L., Triantaphylides, C. and Roby, D. (2002) A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc Natl Acad Sci USA,99,10179-10184.
    190. van der Biezen, E.A. (2001) Quest for antimicrobial genes to engineer disease-resistant crops. Trends Plant Sci,6,89-91.
    191. Van der Ent, S., Verhagen, B.W., Van Doom, R., Bakker, D., Verlaan, M.G., Pel, M.J., Joosten, R.G., Proveniers, M.C., Van Loon, L.C., Ton, J. et al. (2008) MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol,146,1293-1304.
    192. van Loon, L.C.a.v.S., E.A. (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. PMPP,55,85-97.
    193. Varagona, M.J., Schmidt, R.J. and Raikhel, N.V. (1992) Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell,4,1213-1227.
    194. Wang, D., Weaver, N.D., Kesarwani, M. and Dong, X. (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science,308,1036-1040.
    195. Wang, X., Li, M., Zhang, J., Zhang, Y., Zhang, G. and Wang, J. (2007) Identification of a key functional region in harpins from Xanthomonas that suppresses protein aggregation and mediates harpin expression in E. coli. Mol Biol Rep,34,189-198.
    196. Wei, Z.M., Laby, R.J., Zumoff, C.H., Bauer, D.W., He, S.Y., Collmer, A. and Beer, S.V. (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science,257,85-88.
    197. Weigel, R.R., Pfitzner, U.M. and Gatz, C. (2005) Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis. Plant Cell,17,1279-1291.
    198. Weston, K. (1998) Myb proteins in life, death and differentiation. Curr Opin Genet Dev,8,76-81.
    199. Wilkins, O., Nahal, H., Foong, J., Provart, N.J. and Campbell, M.M. (2009) Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol,149, 981-993.
    200. Wu, X., Wu, T., Long, J., Yin, Q., Zhang, Y, Chen, L., Liu, R., Gao, T. and Dong, H. (2007) Productivity and biochemical properties of green tea in response to full-length and functional fragments of HpaGXooc a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola. J Biosci,32,1119-1131.
    201. Xie, Z. and Chen, Z. (2000) Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. Mol Plant Microbe Interact,13,183-190.
    202. Xu, Y.L., He, P., Zhang, L., Fang, S.Q., Dong, S.L., Zhang, Y.J. and Li, F. (2009) Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects.BMC Genomics,10,632.
    203. Yang, Z., Tian, L., Latoszek-Green, M., Brown, D. and Wu, K. (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol,58,585-596.
    204. Yanhui, C., Xiaoyuan, Y., Kun, H., Meihua, L., Jigang, L., Zhaofeng, G., Zhiqiang, L., Yunfei, Z., Xiaoxiao, W., Xiaoming, Q. et al. (2006) The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol,60,107-124.
    205.Yoshii, M., Shimizu, T., Yamazaki, M., Higashi, T., Miyao, A., Hirochika, H. and Omura, T. (2009) Disruption of a novel gene for a NAC-domain protein in rice confers resistance to Rice dwarf virus. Plant J,57,615-625.
    206. Yu, D., Chen, C. and Chen, Z. (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell,13,1527-1540.
    207. Zhang, S. and Liu, Y. (2001) Activation of salicylic acid-induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell,13, 1877-1889.
    208. Zhang, Y., Cao, G., Qu, L.J. and Gu, H. (2009) Characterization of Arabidopsis MYB transcription factor gene AtMYB17 and its possible regulation by LEAFY and AGL15. J Genet Genomics,36, 99-107.
    209. Zhang, Y., Fan, W., Kinkema, M., Li, X. and Dong, X. (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci U S A,96,6523-6528.
    210. Zhang, Y., Tessaro, M.J., Lassner, M. and Li, X. (2003)Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell,15,2647-2653.
    211. Zhang, Z.B., Zhu, J., Gao, J.F., Wang, C., Li, H., Zhang, H.Q., Zhang, S., Wang, D.M., Wang, Q.X., Huang, H. et al. (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J,52,528-538.
    212. Zheng, Y., Ren, N., Wang, H., Stromberg, A.J. and Perry, S.E. (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like 15.Plant Cell,21,2563-2577.
    213.Zhong, R., Lee, C., Zhou, J., McCarthy, R.L. and Ye, Z.H. (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell,20, 2763-2782.
    214. Zhou, C., Zhang, L., Duan, J., Miki, B. and Wu, K. (2005) HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell, 17,1196-1204.
    215. Zhou, J., Lee, C., Zhong, R. and Ye, Z.H. (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell,21,248-266.
    216. Zhou, J., Tang, X. and Martin, G.B. (1997) The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J,16,3207-3218.
    217. Zimmerli, L., Stein, M., Lipka, V., Schulze-Lefert, P. and Somerville, S. (2004) Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J,40,633-646.
    218. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. and Gruissem, W. (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol,136, 2621-2632.
    219. Zipfel, C. and Felix, G. (2005) Plants and animals:a different taste for microbes? Curr Opin Plant Biol,8,353-360.
    220. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G. and Boller, T. (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature,428,764-767.
    221. Zuo, J., Hare, P.D. and Chua, N.H. (2006) Applications of chemical-inducible expression systems in functional genomics and biotechnology. Methods Mol Biol,323,329-342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700