小麦赤霉病抗病相关基因的分离鉴定及BSMV-VIGS功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤霉病是由禾谷镰刀菌为主引起的一种小麦真菌病害,主要发生在世界温暖湿润和半湿润地区,在我国主要发生在长江中下游地区。近年来随着气候的变暖,小麦赤霉病有向黄淮海麦区蔓延的趋势。小麦赤霉病的抗源相对狭窄,目前生产上所用的抗源主要是苏麦3号及其衍生系,由于其抗性强而且稳定,所以是进行小麦赤霉病分子标记和遗传育种研究的重要材料。随着生物技术、基因测序技术和基因操作技术的发展,在基因组学、蛋白质组学层面上对小麦赤霉病抗性相关基因的克隆和功能验证工作取得了较大进展。
     本研究对在感/抗赤霉病的小麦近等基因系Apogee/Apogee73S2转录组测序数据中挖掘出的差异表达基因进行生物信息学分析;同时利用大麦条纹花叶病毒介导的病毒基因沉默(BSMV-VIGS)技术对候选基因进行功能验证,利用分子生物学方法分析候选基因的生物学特征。获得以下主要结果:
     1.利用BSMV-VIGS技术在小麦品种宁7840叶片和穗部分别建立了基因沉默体系,成功沉默了小麦TaPDS基因,得到了目的基因沉默后的白化表型,并且该白化表型在叶部可以持续21天以上,在穗部可以持续30-40天直至小麦成熟,为利用BSMV-VIGS技术研究目的基因功能建立了良好的试验体系;同时本试验还建立了小麦叶片离体培养技术鉴定小麦赤霉病抗性的体系,为小麦赤霉病的研究提供了更加快捷、方便的方法。
     2.利用小麦赤霉病感/抗赤霉病近等基因系Apogee/Apogee73S2的转录组数据,发掘了3个与小麦赤霉病抗性相关的基因,分别是编码多聚半乳糖醛酸酶抑制蛋白的基因TaPGIP、编码ABC转运蛋白的多药抗性基因TaPDR7和编码钙/钙调素蛋白激酶的基因TaCBRLK。利用实时荧光定量PCR技术对TaPGIP、TaPDR7和TaCBRLK基因进行禾谷镰刀菌和脱氧雪腐镰刀菌烯醇(DON)处理条件下的基因表达模式分析,结果显示上述3个候选基因均受到禾谷镰刀菌和DON处理的上调表达,说明其参与禾谷镰刀菌侵染的响应,可能是小麦中具有赤霉病抗性的候选基因。
     3.通过叶部BSMV-VIGS基因沉默体系分别沉默了TaPGIP、TaPDR7和TaCBRLK基因,利用叶片离体培养方法鉴定基因沉默后小麦对赤霉病的抗性反应,结果显示,沉默目的基因之后,禾谷镰刀菌在基因沉默叶片上的生长和蔓延速度明显快于其在接种病毒空载体的叶片和野生型叶片上的生长速度;结合台盼蓝染色法鉴定禾谷镰刀菌侵染小麦叶片产生的腐生斑大小,结果显示,禾谷镰刀菌在基因沉默叶片产生的腐生斑明显大于其在接种病毒空载体的叶片和野生型叶片上产生的腐生斑。上述结果表明,分别沉默基因TaPGIP、TaPDR7和TaCBRLK后,减弱了小麦叶片对赤霉病的抗性,说明TaPGIP、TaPDR7和TaCBRLK基因可能是小麦中具有赤霉病抗性的候选基因。进一步对TaPGIP基因在小麦穗部进行基因沉默,同时接种禾谷镰刀菌鉴定目的基因沉默植株对赤霉病的抗病反应,结果显示,在小麦穗部沉默TaPGIP基因之后,禾谷镰刀菌在小麦穗部的蔓延速度明显快于其在接种病毒空载体的麦穗和野生型麦穗上的蔓延速度,产生的枯死小穗数目也明显多于接种病毒空载体的植株和野生型植株,说明在小麦穗部沉默TaPGIP基因之后,有利于赤霉菌侵染和发生,进一步证明TaPGIP基因是小麦中具有赤霉病抗性的一个候选基因。
     4.利用烟草和洋葱表皮细胞进行亚细胞定位分析,结果表明,TaPGIP被定位在烟草和洋葱表皮细胞的细胞壁上,TaPDR7和TaCBRLK被定位在烟草表皮细胞的细胞膜上。结合三个基因在植物细胞中的生理功能,可以得出上述三个候选基因抵抗禾谷镰刀菌入侵的模型:TaPGIP在感受到禾谷镰刀菌入侵的信号之后高效表达,翻译产生大量的PGIP蛋白,该蛋白与禾谷镰刀菌在入侵小麦过程中分泌的多聚半乳糖醛酸酶(PGs)结合,抑制PGs的活性,以抑制禾谷镰刀菌对小麦细胞的破坏,进而阻止禾谷镰刀菌对小麦的入侵;当禾谷镰刀菌到达小麦细胞膜并进入细胞质时,TaPDR7感受到禾谷镰刀菌的入侵信号,高效表达翻译产生具有转运功能的ABC转运蛋白,将禾谷镰刀菌入侵小麦后产生的DON运输到细胞外,以维持小麦细胞的健康状态,减轻禾谷镰刀菌的侵染对小麦细胞造成的毒害;同时, TaCBRLK也会感受禾谷镰刀菌的入侵并高效表达,翻译产生具有信号转导作用的蛋白激酶,启动植物体内的信号转导通路,从而进行信号的传递,启动植物体内的病原防御机制,以抵抗真菌病原的入侵。利用实时荧光定量PCR对在植物激素诱导条件下目的基因的表达模式进行分析,结果显示,上述三个基因可能均受到生长素(IAA)的诱导上调表达。
Fusarium head blight (FHB) was mainly caused by Fusarium graminearum Schwabe. Itwas prevailed mainly in the warm humid and subhumid regions around the world. In China,FHB had been occurred in Yangtse River Valley and along with the global warming it had atendency of spreading to Huanghuaihai region. However, the resistant resources of FHB werenarrow, Sumai3and its derived lines were major resistant resources applied in wheat genomicsstudy. Also, because of their strong and stable resistance to FHB, the cultivars were widely usedto locate major QTLs and for wheat breeding. With the development of biochemical,sequencing and gene manipulating technology, identification and functional analysis of theFHB resistance genes had achieved great progress in genomics and proteomics research.
     In this article, we combined transcriptome sequencing and bioinformatics analysis toexplore the resistance relevant genes in scab sensitive and resistance near-isogenic linesApogee and Apogee73S2infected with Fusarium graminearum. Barely stripe mosic virusinduced by gene silencing (BSMV-VIGS) was practiced to verify the candidate genesdiscovered in the transcriptome database and their biochemical characteristics were ensured inthe present study. The results were as follows:
     1. BSMV-VIGS system had been successfully established in wheat leaves and spikes usingTaPDS as a report gene. The photobleaching phenotype could last more than21days in wheatleaf and30to40days in spike, which made a good establishment to study the target genesresistance to other diseases. Meanwhile, we also established the detached leaf culture systemwhich made the identification of FHB easier and faster.
     2. Three FHB resistance candidate genes, i.e. TaPGIP3encoding a polygalacturonaseinhibiting protein, TaPDR7encoding a pleiotropic drug resistance protein and TaCBRLKencoding a CaM binding protein kinase were identified in FHB sensitive and resistancenear-isogenic lines Apogee and Apogee73S2. Real time PCR was used to analyze theirexpression patterns under the treatment of Fusarium graminearum and trichothecenedeoxynivalenol (DON), the results showed that all of the three genes were up-regulated after treatments of either Fusarium graminearum or DON, which indicated that they might be thecandidate genes in the FHB resistance.
     3. The FHB resistance of the three target genes had been verified using the detached leafculture after silencing each of the genes by BSMV-VIGS appraoch. The results showed thatgrowth and spread of Fusarium graminearum were much faster compared to the leaves infectedwith BSMV::00and wild type after silencing the genes in wheat leaves. Typan blue wasadopted to check the scab spots make by the invasion of Fusarium graminearum, it was testedthat, scab spots produced in the gene silencing leaves were much larger than those in the leavesinfected with BSMV::00and wild type. All of the findings accounted for the FHB resistance ofthe three genes. In the experiment of silencing TaPGIP in wheat spikes, after infecting withFusarium graminearum, the hypha grew faster in the TaPGIP silencing spike comparing to thespikes inoculated with BSMV::00and wild type, besides, the dried-up spikelets were more thanspikelets inoculated with BSMV::00and wild type. All of the results conferred that TaPGIPmight be a candidate FHB resistance gene in wheat.
     4. Sub-cellular location with tobacco and onion epidermis cells showed that TaPGIP waslocated on the cell wall of tobacco and onion epidermis cells, while TaPDR7and TaCBRLKwere located on the plasmid membrane of tobacco epidermis cells. According to thephysiological function of the three genes and their locations in plant cells, we drew a model onhow the three genes worked during the invasion of Fusarium graminearum: TaPGIP which waslocated on the cell wall was able to percept stimulus of Fusarium graminearum and then washighly expressed to translate plenty of PGIP proteins to combine with PGs produced byFusarium graminearum in order to inhibit the invasion of Fusarium graminearum; whenFusarium graminearum reached to the membrane, however, TaPDR7could be up-regulted byFusarium graminearum and translated enough ABC transporters to transport DON outside ofthe cell to keep the stage of cell health, then mitigated damage caused by Fusariumgraminearum invasion; in the mean time, TaCBRLK could be up-regulated to translate huge ofCaM binding protein kinases to transduce signals inside plant cells to activate the antiviraldefense systems in plants to defend against Fusarium graminearum. Real time PCR waspracticed to analysis the expression patterns of the three genes under the treatment of planthormones, the results implied that all of the three genes were up-regulated by indole acetic acid(IAA).
引文
程顺和,张勇,张伯桥,高德荣等.控制小麦赤霉病流行的主要因素分析.江苏农业学报,2003,19(1):55-58
    高力,陈飞,周立人等.小麦品种望水白的抗赤霉病遗传分析.麦类作物学报,2005,25(5):5-9
    韩永梅.小麦赤霉病FgCPKA基因敲除及功能研究.呼和浩特,内蒙古师范大学,2011
    黄小红.四川省小麦赤霉病病菌的种群结构研究.雅安,四川农业大学,2005
    黄晓敏,刘宗镇,姚泉洪等.不同抗赤性小麦品种叶肉原生质体对DON的敏感.上海农业学报,1991,7(增刊):8-15
    康振生,黄丽丽,韩青梅等.禾谷镰刀菌侵染引致小麦穗部组织细胞壁成分变化的细胞化学研究.植物病理学报,2007,37(6):623-628
    康振生.我国植物真菌病害的研究现状和发展策略.植物保护,2012,36(3):9-12
    李又芳,余毓君.小麦品种温州红和尚对赤霉病抗性指标的单体分析.华中农业大学学报,1988,7(4):327-331
    林凡云,陆琼娴,杨慧勇等.小麦与赤霉病菌互作的分子机理研究进展.麦类作物学报,2007,27(5):934-938
    刘迪.小麦条锈抗病相关基因的分离和功能分析.北京:中国农业科学院,2008
    刘光欣,陈佩度,周波等.小麦-大赖草易位系对赤霉病抗性的聚合.麦类作物学报,2006,26(3):34-40
    刘思衡,巫升鑫,李始明等.选育抗赤霉病超亲品种苏麦3号的实验研究(简报).福建稻麦科技,1996,14(1):62-66
    牛颜冰,郭失迷,申林炎等. RNA沉默在分析植物基因功能方面的研究.生命科学,2005,17(4):351-354
    任丽娟,许雯,沈晓蓉等.中国春-苏麦3号7A代换系抗赤霉病基因的RAPD分析.农业生物技术学报,2000,8(3):216
    任丽娟,张旭,周淼平等.小麦抗纹枯病和赤霉病QTL定位研究.麦类作物学报,2007,27(3):416-420
    尚毅. DON诱导的小麦TaPDR1基因的克隆和特征分析以及二穗短柄草多倍体中PDR1基因的系统进化.南京:南京农业大学,2009
    陶小荣,周雪平,崔晓峰等.病毒诱导的基因沉默及其在植物基因功能研究中的应用.生物化学与生物物理进展,2004,31(9):777-783
    万育民,乔伟.小麦赤霉病的发病原因与防治措施.种子科技,2012(6):45-46
    王广金,孙光祖,李学湛等.小麦赤霉病毒素对小麦抗病突变体及其亲本细胞超微结构的影响.植物病理学报,1997,27(3):215-219
    王友红,张鹏飞,陈建群.植物抗病基因及其作用机理.植物学通报,2005,22(1):92-99
    吴竹筠. Nicotiana paniculata中TMV抗性基因定位.武汉:华中农业大学硕士论文,2012
    徐建荣,叶华智.小麦近缘属对赤霉病菌的抗性评.四川农业大学学报,1993,16(3):322-327
    徐雍皋,徐敬友,方中达.禾谷镰刀菌(Fusarium graminearum Schw.)菌丝融合和细胞核数目的观察.南京农业大学学报,1990,13(1):125-126
    杨在东.小麦抗赤霉病近等基因系的转录组分析及抗病相关基因的克隆.泰安:山东农业大学硕士论文,2013
    姚丹青,张微微,原丽华等. VIGS:植物功能基因组学研究的革命.植物分子育种,2009,7(1):155-161
    俞大绂.中国镰刀菌属(Fusarium)菌种的初步名录.植物病理学报
    张凯鸣,马鸿翔,陆维忠,蔡志翔,陈怀谷,袁生.小麦赤霉病与DON积累的抗性及其相关SSR位点差异.作物学报,2006,32(12):1788-1795
    张宁宁.小麦蛋白激酶类基因及TabZIP20的功能验证.杨凌:西北农林科技大学,2011
    张秀娟.拟南芥类受体蛋白激酶CRK45对生物和非生物胁迫的响应.呼和浩特:内蒙古农业大学,2013
    张旭,任丽娟,周淼平,高力等.三个小麦赤霉病抗源的抗性QTL定位.麦类作物学报,2006,26(3):28-33
    张勇,程顺和,马有志等.小麦抗赤霉病基因的SSR标记筛选.扬州大学学报(农业与生命科学版),2004,25(4):12-15
    张云龙.簇毛麦丝氨酸/苏氨酸蛋白激酶基因Stpk-V2、Stpk-V3的克隆与分析.泰安:山东农业大学,2012
    赵丹,赵继荣,黄茜,李宁,张增艳.利用BSMV-VIGS技术快速分析小麦TNBL1基因的抗黄矮病功能.作物学报,2011,37(11):2106-2110
    Alexandersson E, Becker JVW, Jacobson D, Nguema-Ona E, Steyn C, Denby KJ, Vivier MA.Constitutive expression of a grapevine polygalacturonase-inhibiting protein affects geneexpression and cell wall properties in uninfected tobacco. BMC Research Notes,2011,4:493-501
    Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ,Ebert PR, Kazan K. Antagonistic interaction between abscisic acid andjasmonate-ethylene signaling pathways modulates defense gene expression and diseaseresistance in Arabidopsis. Plant Cell,2004,16:3460-3479
    Audenaert K, Meyer GB, Hofte MM. Abscisic acid determines basal susceptibility of tomato toBotrytis cinerea ans suppresses salicylic acid-dependent signaling mechanisms. PlantPhysiol,2002,128:491-501
    Bai GH, Shaner G. Management and resistance in wheat and barley to Fusarium head blight.Annu Rev Phytopathol,2004,42:135-161
    Bari R, Jones JDG. Role of plant hormones in plant defense responses. Plant Mol Biol,2009,69:473-488
    Bennypaul HS, Mutti JS, Rustgi S, Kumar N, Okubara PA, Gill KS. Virus-induced genesilencing (VIGS) of genes expressed in root, leaf, and meiotic tissues of wheat. FunctIntegr Genomics,2012,12:143-156
    Bernardo A, Bai G, Guo P, Xiao K, Guenzi AC, Ayoubi P. Fusarium graminearum-inducedchanges in gene expression between Fusarium head blight-resistance and susceptiblewheat cultivars. Funct Integr Genomics,2007,7:742-744
    Bezier A, Lambert B, Baillieul F. Cloning of a grapevine Botrytis-responsive gene that washomology to the tobacco hypwesensitivity-related hsr203. J Exp Bot,2002,53:2279-2280
    Bollina V, Kumaraswammy KG, Kushalappa CA, et al. Mass spectrometry–basedmetabolomics application to identify quantitative resistanse–related metabolites in barleyagainst Fusaurium Head Blight. Mol Plant Pathol,2010,11(6):769–782
    Bollina V, Kushalappa AC, Choo TM, Dion Y, Rioux S. Identification of metabolites related tomechanisms of resistance in barley against Fusarium graminearum, based on massspectrometry. Plant Mol Biol,2011,77:355–370
    Bovet L, Eggmann T, Bettex MM, Polier J, Kammer P, Marin E, Feller U, Martinoia E.Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant CellEnviron,2003,26:371-381
    Brenchley R, Spannagl M, Pfeifer M, L.A.Baker G. et al. Analysis of the bread wheat genomeusing whole-genome shotgun sequenceing. Nature,2012,491:705-710
    Bruun-Rasmussen M, Madsen CT, Jessing S, Albrechtsen M. Stability of Barley stripe mosaicvirus-induced gene silencing in barley. Mol Plant Microbe In,2007,20:1323–1331
    Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, SchneiderB, Lemmens M. Molecular mapping of QTLs for Fusarium head blight resistance inspring wheat. II. Resistance to fungal. Theor Appl Genet,2003,107:503-508
    Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP. Efficient Virus-Induced Gene Silencingin Arabidopsis. Plant Physiol,2006,142:21-27
    Smith B, Anderson JC, Martin GB, Dinesh-Kumar SP. Applications and advantages ofvirus-induced gene silencing for gene function studies in plants. Plant J,2004,39:734-746
    Cahid C, Steven RS. Evaluating the ability of the barley stripe mosaic virus-induced genesilencing system to simultaneously silence two wheat genes. Szeged Hungary,2008,36:217-222
    Campbell EJ, Schenk PM, Kazan K, Penninckx IAMA, Manners JM. Pathogen-responsiveexpression of a putative ATP-Binding Cassette transporter gene conferring resistance tothe diterpenoid sclareol is regulated by multiple defense signaling pathways inArabidopsis. Plant Physiol,2003,133:1272-1284
    Cary JW, Rajasekaran K, Yu J, Brown RL, Bhatnagar D, Cleveland TE. Transgenic approachesfor pre-harvest control of mycotoxin contamination in crop plants. World MycotoxinJ,2009,2(2):203-214
    Chen XF, Faris JD, Hu JG, Stack RW, Adhikari T, Elias EM, Kianian SF, Cai XW. Saturationand comparative mapping of a major Fusarium head blight resistance QTL in tetraploidwheat. Mol Breeding,2007,19:113–124
    Cheng Y, Cui L, Yan LJ, Jackson AO, Liu ZY, Han CG, Yu JL, Li DW. A high throughputbarley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots.PloS One,2011,6(10):1-21
    Cole SPC, Bhardwaj G, Gerlach JH. Overexpression of a transporter gene in amultidrug-resistance human lung-cancer cell lines. Science,1992,258:1650-1654
    Constantin GD, Krath BN, MacFarlane SA, et al. Virus-induced gene silencing as a tool forfunctional genomics in a legume species. Plant J,2004,40:622-631.
    Crouzet J, Trombik O, Fraysse AS, Boutry M. Organization and function of the plantpleiotropic drug resistance ABC transporter family. FEBS Lett,2006,580:1123-1130
    Cuthbert PA, Somers DJ, Brulé-Babel A. Mapping of Fhb2on chromosome6BS: a genecontrolling Fusarium head blight Weld resistance in bread wheat (Triticum aestivum L.).Theor Appl Genet,2007,114:429–437
    D’Ovidia R, Raiola A, Capodicase C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E,O’Sullivan D, De Lorenzo G. Characterization of the complex locus of bean encodingpolygalacturonase-inhibiting proteins reveals subfunctionalization for defense againstfungi and insects. Plant Physiol,2004,135:2424-2435
    De Lorenzo G, D’Ovidio R, Cervone F. The role of polygalacturonase-inhibiting proteins(PGIPs) in defense against pathogenic fungi. Annu Rev Phytopathol,2001,39:313-335
    De Lorenzo G, Ferrari S. Polygalacturonase-inhibiting proteins in denfense againstphytopathogenic fungi. Curr Opin Plant Biol,2002,5:295-299
    Del Blanco A, Frohberg RC, Stack RW. Detection of QTL lingked to Fusarium head blightresistance in Sumai3-derived North Dakota bread wheat lines. Theor Appl Genet,2003,106:1027-1031
    Di R, Blechl A, Macky RD, Tortora A, Turner NE. Expression of the N-terminal99aminoacids of yeast ribosomal protein L3in transgenic wheat confers resistance to Fusariumhead blight. Mol Plant Breeding,2007,5
    Ding LN, Xu HB, Yi HY, Yang LM, Kong ZX, Zhang LX, Xue SL, Jia HY, Ma ZQ. Resistanceto hemi-biotrophi F. graminearum infection is associated with coordinated and orderedexpression of diverse defense signaling pathways. PloS One,2011
    Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG. The tomato Cf-2disease resistance locus comprises two functional genes encoding leucine-rich repeatproteins. Cell,1996,84:451-459
    Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, Schondelmaier J,Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P. Identification ofQTLs for resistance to Fusarium head blight, DON accumulation and associated traits inthe winter wheat variety Arina. Theor Appl Genet,2007,115:617–625
    Ducos E, Fraysse S, Boutry M. NtPDR3, an iron-deficiency inducible ABC transporter inNicotiana tabacum. FEBS Lett,2005,579:6791-6795
    Eichhorn H, Klinghammer M, Becht P, Tenhaken R. Isolation of a novel ABC-transporter genefrom soybean induced by salicylic acid. J Exp Bot,2006,10:2193-2201
    Faivre-Rampant O, Gilroy EM, Hrubikova K, Hein I, Millam S, Loake GJ, Birch P, Taylor M,Lacomme C. Potato Virus X-Induced Gene Silencing in Leaves and Tubers of Potato.Plant Physiol,2004,134:1308-1316
    F. de Jong C, Laxalt AM, Bargmann BOR, M. de Wit PJG, Joosten MHAJ, Munnik T.Phosphatidic acid accumulation is an early response in the Cf-4/Avr4interaction. Plant J,2004,39:1-12
    Federici L, Di Matteo A, Fernandez-Recio J, Tsernoglou D, Cervone F. Polygalacturonaseinhibiting proteins: players in plant innate immunity. Trends Plant Sci,2006,11:65-70
    Ferrari S, Galletti R, Vairo D, Cervone F, De Lorenzo G. Antisense expression of theArabidopsis thaliana AtPGIP gene reduces polygalacturonase-inhibiting proteinaccumulation and enhances susceptibility to Botrytis cinerea. Mol Plant Microbe In,2006,19:931-936
    Ferrari S, Vairo D, Ausubel FM, Cervone F, De Lorenzo G. Tandemly duplicated Arabidopsisgenes that encode polygalacturonase-inhibiting proteins are regulated coordinately bydifferent signal transduction pathways in response to fungal infection. Plant Cell,2003,15:93-106
    Ferrari S, Sella L, Janni M, De Lorenzo G, Favaron F, D’Ovidio R. Transgenic expression ofpolygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to theflower pathogene Fusarium graminearum. Plant Biology,2011, ISSN1435-8603
    Fernández SR, Davles TGE, Coleman JOD, Rea PA. The Arabidopsis theliana ABC proteinsuperfamily, a complete inventory. J Biol Chem,2001,276:30231-30244
    Fitzmaurice WP, Holzberg S, Lindbo JA, Padgett HS, Palmer KE, Wolfe GM, Pogue GP.Epigenetic modification of plants with synthetic RNA viruses. OMICS,2002,6:137-151
    Flor H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol.,1971,9:275-296
    Gale LR, Chen LF, Hernick CA, Takamura K, Kistler HC. Population Analysis of Fusariumgraminearum from wheat fields in eastern china. Ecology and Population Biology,2001,929120:1315-1322
    Garcia, O, Bouige, P, Forestier, C, Dassa, E. Inventory and comparative analysis of rice andArabidopsis ATP-binding cassette (ABC) system. J Mol Biol,2004,343:249-265
    Gomez L, Bauer Z, Boiler T, Both the extracellular leucine-rich repeat domain and kinaseactivity of FLS2are required for flagellin binding and signaling in Arabidopsis. Plant Cell,2001,13(5):1155-1163
    Gosman N, Bayles R, Jennings P, Kirby J, Nicholson P. Evaluation and characterization ofresistance to fusarium head blight caused by Fusarium culmorum in UK winter wheatcultivars. Plant Pathol,2007,56:264–276
    Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ. Integrated metabolo-proteomicapproach to decipher the mechanisms by which wheat QTL (Fhb1) contributes toresistance against Fusarium graminearum. PLoS One,2012
    Hadfield KA, Bennett AB. Polygalacturonases: Many genes in search of a function. PlantPhysiol,1998,117:337-343.
    Han JG, Lakshman DK, Galvez LC, Mitra S, Baenziger PS, Mitra A. Transgenic expression oflactoferrin imparts enhanced resistance to head blight of wheat caused by Fusariumgraminearum. BMC Plant Biology,2012,12-33
    Hannon GJ. RNA interference. Nature,2002,408(11):244-251
    Herron SR, Benen JAE, Scavetta RD, Visser J, Jurnak F. Structure and function of pecticenzymes: virulence factors of plant pathogens. PNatl Acad Sci USA,2000,97:8762-8769.
    Higgins CF, ABC transporters: physiology, structure and mechanism-an overview. ResMicrobiol2001,152:205-210
    Holland IB, Blight MA. ABC-ATPases, adaptable energy generators fuelling transmembranemovement of a variety of molecules in organisms from bacteria to humans. J Mol Biol,1999,293:381-399
    Hollenstein K, Dawson RJ, Locher KP. Structure and mechanism of ABC transporter proteins.Curr Opin Struct Biol,2007,17:412-418
    Holzberg S, Brosio P, Gross C, Pogue GP. Barley stripe mosaic virus-induced gene silencing ina monocot plant. Plant J,2002,30:315-327
    Hong ZM, Guo QL, Cheng WL, Tian CG, Guo TC. Identification of the TaBTF3gene inwheat(Triticum aestivum L.) and the effect of its silencing on wheat chloroplast,mitochondria and mesophyll cell development. Biochem Bioph Res Co2012,426:608-614.
    Hu DQ, Dai RQ, Wang YH, Zhang YH, Liu ZY, Fang RJ, Zhao WG, Li L, Lin Q, Li L.Molecular cloning, sequence analysis, and expression of the polygalacturonase-inhibitingprotein (PGIP) gene in mulberry. Plant Mol Biol Rep,2012,30:176-186
    Hyun SK, Kamal AHM, Kun C, Soon CJ. Defense proteins are induced in wheat spikes exposedto Fusarium graminearum. Plant Omics,2011,4(5):270-277
    Janni M, Bozzini T, Moscetti I, Volpi C, D’Ovidio R. Functional characterization of wheat Pgipgenes reveals their involvement in the local response to wounding. Plant Biology,2013,15:1019-1024
    Janni M, Sella L, Favaron F, Blechl AE, De Lorenzo G, D’Ovidio R. The expression of a beanPGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolarissorokiniana. Mol Plant Microbe In,2008,21:171-177
    Jasinski, M, Ducos, E, Martinoia, E, Boutry, M. The ATP-binding cassette transporters:structure, function, and gene family comparison between rice and Arabidopsis. PlantPhysiol,2003,131:1169-1177
    Jia HY, Cho S. Muehlbauer G.J. Transcriptome analysis of a wheat near-isogenic line paircarrying fusarium head blight-resistance and–susceptible alleles. Mol Plant Microbe In,2009,20:1366-1379
    Johal GS, Briggs SP. Reductase activity encoded by the HM1disease resistance gene in maize.Science,1992,258:985-987
    Jones DA, Thomas CM, Kosack KEH, Kurti PJB, Jones JD. Isolation of the tomato CF-9genefor resistance to cladosporium fulvum by transponson tagging. Science,1994,266:789-793
    Joubert DA, de Lorenzo G, Vivier MA. Regulation of the grapevinepolygalacturonase-inhibiting protein encoding gene: expression pattern, induction profileand promoter analysis. J Plant Res,2013,126:267-281
    Kajava AV. Structural diversity of leucine-rich repeat proteins. J Mol Biol,1998,3:519-527.
    Kang ZS, Buchenauer H. Ultrastructural and cytochemical studies on cellulose, xylan andpectin degradation in wheat spikes infected by Fusarium culmorum. Journal ofPhytopathololgy,2002a,148:263-275
    Kawalek A, Dmochowska BM, Orczy W. A new BSMV-based vector with modified βmolecule allows simultaneous and stable silencing of two genes. Cellular Mo Biol Lett,2012,17(1):107-123
    Kemp G, Bergmann CW, Clay R, Van der Westhuizen AJ. Pretorius Z.A. Isolation of apolygalacturonase-inhibiting protein (PGIP) from wheat. Mol Plant Microbe In,2003,16:955-961
    Klein M, Barbeoch LP, Frelet A, Gaedeke N, Reinhardt D, Roeber BM, Martinoia E, ForestierC. The plant multidrug resistance ABC transporter AtMRP5was involved in guard cellhormonal signaling and water use. Plant J,2003,33:119-129
    Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E, Maeshima M. Loss of AtPDR8, aplasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive celldeath upon pathogen infection. Plant Cell Physiol,2006,47:309-318.
    Kong LR, Anderson JM, Ohm HW. Induction of wheat defense and stress-related genes inresponse to Fusarium graminearum. Genome,2005,48:29-40
    Kong LR, Anderson JM, Ohm, HW. Induction of wheat defense and stress-related genes inresponse to Fusarium graminearum. Genome,2005,48:29-40
    Kong LR, Ohm HW, Anderson JM. Expression analysis of defense-related genes in wheat inresponse to infection by Fusarium graminearum. Genome,2007,50:1038-1048
    Kreuz K, Tommasini R, Martinoia E. Old enzymes for a new job: herbicide detoxification inplants. Plant Physiol,1996,111:349-353
    Kumagai MH, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill LK. Cytoplasmicinhibition of carotenoid biosynthesis with virus-derived RNA. P Natl Acad Sci USA,2001,92:1679-1683
    Kumaraswamy KG, Kushalappa AC, Choo TM, Dion Y, Rioux S. Mass Spectrometry BasedMetabolomics to Identify Potential Biomarkers for Resistance in Barley against FusariumHead Blight (Fusarium graminearum). J Chem Ecol,2011,37:846–856
    Kumaraswamy KG, Bollina V, Kushalappa AC, Choo TM, Dion Y, Rioux S, Mamer O,Faubert D. Metabolomics technology to phenotype resistance in barley against Gibberellazeae. Eur J Plant Pathol,2011,130:29–43
    Lawrence CB, Singh NP, Qiu J, Gardner RG, Tuzun S. Constitutive hydrolytic enzymes areassociated with polygenic resistance of to tomato Alternaria solani and may function as anelicitor release mechanism. Physiol Mol Plant P,2000,57:211-220
    Lee EK, Kwon M, Ko JH, Yi H, Hwang MG, Chang S, Cho MH. Binding of sulfonylurea byAtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salttolerance. Plant Physiol,2004,134:528-538
    Lee M, Lee K, Lee J, Noh EW, Lee Y. AtPDR12contributes to lead resistance in Arabidopsis.Plant Physiol,2005,138:827-836
    Li RG, Rimmer R, Yu M, Sharpe AG, Séguin-Swartz G, Lydiate D, Hegedus DD. Two Brassicanapus polygalacturonase inhibitory protein genes are expressed at different levels inresponse to biotic and abiotic stresses. Planta,2003,217:299-308
    Li Z, Zhou MP, Zhang ZY, Ren LJ, Du LP, Zhang BQ, Xu HJ, Xin ZY. Expression of a radishdefensin in transgenic wheat confers increased resistance to Fusarium graminearum andRhizoctonia cerealis. Funct Integr Genomics,2011,11:63-70
    Li G, Yen Y. Jasmonate and ethylene signaling pathway may mediate Fusarium head blightresistance in wheat. Crop Sci,2008,48:1888-1896
    Liu HT, Gao F, Han JL, Liu DL, Sun DY, Zhou RG. The calmodulin-binding protein kinase3ispart of heat-shock signal transduction in Arabidopsis thaliana. Plant J,2008,55:760-773
    Liu SX, Zhang XL, Pumphrey MO, et al. Complex microcolinearity among wheat, rice, andbarley revealed by fine mapping of the genomic region harboring a major QTL forresistance to Fusarium head blight in wheat. Funct Integr Genomics,2006,6:83–89
    Ma M, Yan Y, Huang L, et al. Virus-induced gene silencing in wheat spikes and grains and itsapplication in functional analysis of HMW-GS encoding genes. BMC Plant Biology,2012,12(1):141
    Mackintosh CA, Lewis J, Radmer LE, Shin S, Heinen SJ, Smith LA, Wyckoff MN, Macky RD,Evans CK, Kravchenko S, Baldridge GD, Zeyen RJ, Muehlbauer GJ. Overexpression ofdenfense response genes in transgenic wheat enhances resistance to Fusarium head blight.Plant Cel Rep,2007,26:479-488
    Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J. Genetically engineered resistance toFusiarum head blight in wheat by expression of Arabidopsis NPR1. Mol Plant Microbe In2006,19:123-129
    Manfredini C, Sicilia F, Ferrari S, Pontiggia D, Salvi G, Caprari C, Lorito M, De Lorenzo G.Polygalacturonase-inhibiting protein2of Phaseolus vulgaris inhibits BcPG1, apolygalacturonase of Botrytis cinerea important for pathogenicity, and protects transgenicplants from infection. Physiol Mol Plant Pathol,2005,67:108-115
    Manisha J. Comparative redox proteomics to investigate role of Nox mediated redox signalingin Fusarium graminearum pathogenesis.2011
    Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu ü, Müller-P ber B,Schulz B. Multifunctionality of plant ABC transporters-more than just detoxifiers. Planta,2002,214:345-355
    Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interactions. Cerr OpinPlant Biol,2005,8:409-414
    McMullen M, Jones R, Gallemberg D. Scab of wheat and barley: a re-emerging disease ofdevastating impact. Plant Disease,1997,81:1340-1348
    Mentewab A, Rezeanoor HN, Gosman N, Worland AJ, Nicholson P. Chromosomal location ofFusarium head blight resistance genes and analysis of the relationship between resistanceto head blight and brown foot rot. Plant Breeding,2000,119:15-20.
    Migocka M, Papierniak A, Warzybok A, Klobus G. CsPDR8and CsPDR12, two of the16pleiotropic drug resistance genes in cucumber, are transcriptionally regulated byphytohormones and auxin herbicide in roots. Plant Growth Regul,2012,67:171-184
    Miller SA, Chabot DMP, Oullet T, Harris LJ, Fedak G. Use of a Fusarium graminearum straintransformed with green fluorescent protein to study infection in wheat (Triticum aestivum).Can J Plant Pathol,2004,26:453-463
    Moons A. Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals,hypoxic stress and redox perturbations in rice roots. FEBS Lett,2003,553:370-376
    Oikawa A, Rahman A, Yamashita T, et al. Virus induced gene silencing of P23k in barely leafreveals morphological changes involved in secondary wall formation. J Exp Bot,2007,58(10):2617-2625
    Oliveira MB, Nascimento LB, Junior ML, Petrofeza S. Characterization of the dry beanpolygalacturonase-inhibiting protein (PGIP) gene family during Sclerotinia sclerotiorum(Sclerotiniaceae) infection. Genet Mol Res,2010,9:994-1004
    Palmer KE, Rybicki EP. Investigation of the potential of maize streak virus to act as aninfectious gene vector of maize plants. Arch Virol,2001,146:1089-1104
    Pan Q, Wendel J, Fluhr R. Divergent evolution of plant NBS-LRR resistance gene homologuesin dicot and cereal genomes. J Mol Evol,2000,50:203-213
    Pandey S, Sopory SK. Zea mays CCaMK: autophosphorylation-dependent substratephosphorylation and down-regulation by red light. J Exp Bot,2001,52:691-700
    Powell ALT, van Kan J, ten Have A, Visser J, Greve CL, Bennett AB, Labavitch JM.Transgenic expression of pear PGIP in tomato limits fungal colonization. Physiol MolPlant Pathol,2000,13:942-950
    Pritsch C, Muehlbauer GJ, Bushnell WR, Somers DA, Vance CP. Fungal development andinduction of defense response genes during early infection of wheat spikes by Fusariumgraminearum. Mol Plant Microbe In,2000,13:159-169
    Rea PA. MRP subfamily ABC transporters from plants and yeast. J Exp Bot1999,50:895-913
    Reddy ASN. Calcium: silver bullet in signaling. Plant Sci,2001,160:381-404
    Ribichich KF, Lopez SE, Vegetti AC. Histopathological spikelet changes produced byFusarium graminearum in susceptibale and resistant wheat cultivars. Plant Disease,2000,84:794-802
    Robertson D. VIGS vectors for gene silencing: many targets, many tools. Annu. Rev Plant Biol,2004,55:495-519.
    Rocha O, Ansari K, Doohan FM. Effects of trichothecene mycotoxins on eukaryotic cells: Areview. Food Addititive and Contaminants,2005,22:369-378.
    Ruiz MT, Voinnet O, Baulcombe DC. Initiation and maintenance of virus-induced genesilencing. Plant Cell,1998,10:937-946
    Salekdeh H, Mardi G, Ghaffari M, Reza M. Proteomic study of wheat spike infected byFusarium graminearum. Plant Diseases,2010
    Sánchez FR, Davies TG, Coleman JO, Rea PA. The Arabidopsis thaliana ABC proteinsuperfamily, a complete inventory. J Biol Chem,2001,276:30231-30244
    Sasabe M, Toyoda K, Shiraishi T, Inagaki Y, Ichinose Y. cDNA cloning and characterizationof tobacco ABC transporter: NtPDR1a novel elicitor-responsive gene. FEBS Lett,2002,518:164-168
    Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E,Hartl L. Molecular mapping of Fusarium head blight resistance in the winter wheatpopulation Dream/Lynx. Theor Appl Genet,2005,111:747–756
    Scofield SR, Huang L, Brandt AS, Gill BS. Development of a Virus-Induced Gene-SilencingSystem for Hexaploid Wheat and Its Use in Functional Analysis of the Lr21-MediatedLeaf Rust Resistance Pathway. Plant Physiol,2005,138:2165-2173
    Shang Y, Xiao J, Ma LL, Wang HY, Qi ZY, Chen PD, Liu DJ, Wang XE. Characterization of aPDR type ABC transporter gene from wheat (Triticum aestivum L.). Chinese Sci Bull,2009,54:3249-3257
    Shen XR, Ohm HW. Molecular mapping of Thinopyrum-derived Fusarium head blightresistance in common wheat Molecular mapping of Thinopyrum-derived Fusarium headblight resistance in common wheat. Mol Breeding,2007,20:131–140
    Shi HY, Zhang YX, Chen L. Expression and regulation of a pear polygalacturonase inhibitorprotein gene (PpPGIP1) during fruit development, under salicylic acid treatment, and indiseased fruit. Acta Physiol Plant,2013,35:3181-3189
    Shi HY, Zhu L, Zhou Y, Li G, Chen L, Li XB. A cotton gene encoding a polygalacturonaseinhibitor-like protein is specifically expressed in petals. Acta Biochim Biophys Sin,2009,41:316-324
    Shi S, Mackintosh CA, Lewis J, Heinen SJ, Radmer L, Macky RD, Baldridge GD, Zeyen R,Muehlbauer GJ. Transgenic wheat expressing a barely class II chitinase gene hasenhanced resistance against Fusarium graminearum. J Exp Bot,2008,59:2371-2378
    Smart CC, Fleming AJ. Hormonal and environment regulation of a plant PDR5-like ABCtransporter. J Biol Chem,1996,271:19351-19357
    Snedden WA, Fromm H. Calmodulin as a versatile calcium signal transducer in plants. NewPhytol,2001,151:35-66
    Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, ZhuLH, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice diseaseresistance gene, Xa21. Science,1995,270(5243):1804-1806
    Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H. Molecularmapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana.Theor Appl Genet,2004,109:215-224
    Scofield SR, Nelson RS. Resources for Virus-Induced Gene Silencing in the Grasses. PlantPhysiol,2009,149:152-157
    Stotz HU, Contos JJA, Powell ALT, Bennet AB, Labavitch JM. Structure and expression of aninhibitor of fungal polygalacturonases from tomato. Plant Mol Bio,1994,25:607-617
    Stukkens Y, Bultreys A, Grec S, Trombik T, Vanham D, Boutry M.NpPDR1, a pleiotropic drugresistance type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays amajor role in plant pathogen defense. Plant Physiol,2005,139:341-352
    Tai YS, Bragg J, Edwards MC. Virus vector for gene silencing in wheat. BioTechniques,2005,39:310-314
    Takezawa D. Elicitor and A23187-induced expression of WCK-1, a gene encodingmitogen-activated protein kinase in wheat. Plant Mol Biol,1999,40:921-933
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecularevolutionary genetics analysis using maximum likelihood, evolutionary distance, andmaximum parsimony methods. Mol Biol Evol,2011,28:2731-2739
    Teycheney PY, Tepfer M. Virus-specific spatial differences in the interference with silencing ofthe chs-A gene in non-transgenic petunia. Gen Virol,2001,82:1239-1243
    Thaler JS, Bostock RM. Interactions between abscisic-acid-mediated responses and plantresistance to pathogens and insects. Ecology,2004,85:48-58
    Tomassini A, Sella L, Raiola A, D’Ovidio R, Favaron F. Characterization and expression ofFusarium graminearum exdo-polygalacturonases in vitro and during wheat infection.Plant Pathol,2009,58:556-564
    Trombik T, Jasunski M, Crouzet J, Boutry M. Identification of a cluster IV pleiotropic drugresistance transporter gene expressed in the style of Nicotiana plumbaginifolia. Plant MolBiol,2008,66:165-175
    Twardo E, Formentin E, Segalla A, Giacometti GM, Marin O, Zanetti M, Schiavo FL, ZorattiM, Szabò I. Dual localization of plant glutamate recptor AtGLR3.4to plastids andplasmamembrane. Biochim Biophys Acta,2011,1807:359-367
    Van der Biezen EA, Jones J D. Plant disease-resistance proteins and the gene-for-gene concept.Trends Biochem Sci,1998,23:454-456
    van der Br le S, Muller A, Fleming AJ, Smart CC. The ABC transporter SpTUR2confersresistance to the antifungal diterpene sclareol. Plant J,2002,30:649-662
    van der Br le S, Smart CC. The plant PDR family of ABC transporters. Planta,2002,216:95-106
    Van Eck L, Schultz T, Leach JE, Scofield SR, Peairs FB, Botha AM, Lapitan NL. Virus-inducedgene silencing of WRKY53and an inducible phenylalanine ammonia-lyase in wheatreduces aphid resistance. Plant Biotechnology J,2012,8:1023-1032
    Várallyay F, Giczey GM, Burgyán J. Virus-induced gene silencing of Mlo genes inducedpowdery mildew resistance in Triticum aestivum. Archives of Virology,2012,157(7):1345-1350
    Waldron BL, Maldron-Sevilla B, Andeerson JA. RFLP mapping of QTL for Fusarium headblight resistance in wheat. Crop Sci,1999,39:805-811
    Walter S, Nicholson P, Doohan FM. Action and reaction of host and pathogen during Fusariumhead blight disease. New Phytol,2010,185:54-66
    Wang L, Liang SP, Lu YT. Characterization, physical location and expression of the genesencoding calcium/calmodulin-dependent protein kinases in maize (Zea mays L.). Planta,2001,213:556-564
    Wang XJ, Zhu XP, Tooley P, Zhang XG. Cloning and functional analysis of three genesencoding polygalacturonase-inhibiting proteins from Cpsicum annuum and transgenicCaPGIP1in tobacco in relation to increased resistance to two fungal pathogens. Plant MolBiol,2013,81:379-400
    Wang Y, Yang LM, Xu HB, Li QF, Ma ZQ, Chu CC. Differential proteomic analysis of proteinsin wheat spikes induced by Fusarium graminearum. Proteomics,2005,5,4496–4503
    Wanyoike MW, Kang Z, Buchenauer H. Importance of cell wall degrading enzymes producedby Fusarium graminearum during infection of wheat heads. Eur J of Plant Pathol,2002,108:803-810
    Williamson B, Johnston DJ, Ramanathan V, Mcnicol RJ. A polygalacturonase inhibitor fromimmature raspberry fruits: a possible new approach to grey mould control. ISHS ActaHorticulturae,352.
    Xiang Y, Song M, Wei ZY, Tong JH, Zhang LX, Xiao LT, Ma ZQ, Wang Y. A jacalin-relatedlection-like gene in wheat is a component of the plant defence system. J Exp Bot,2011,62:5471-5483
    Xiao J, Jin XH, Jia XP, Wang HY, Cao AZ, Zhao WP, Pei HY, Xue ZK, He LQ, Chen QG,Wang, X.E. Transcriptome-based discovery of pathways and genes related to resistanceagainst Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics,2013,14:197-216
    Xu X, Nicholson P. Community ecology of fungal pathogens causing wheat head blight. AnnuRev Phytopathol,2009,47:83-103
    Yang F, Jacobsen S, J rgensen HJ, Collinge DB, Svensson B, Finnie C. Fusarium graminearumand its interactions with cereal heads: studies in the proteomics era. Frontier in PlantProtomics,2012,30
    Yang L, Ji W, Zhu YM, Gao P, Li Y, Cai H, Bai X, Guo DJ. GsCBRLK, acalcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant toleranceto salt and ABA stress. J Exp Bot,2010,61:2519-2533
    Yao CL, Conway WS, Ren RH, Smith D, Ross GS, Sams CE. Gene encodingpolygalacturonase inhibitor in apple fruit is developmentally regulated and activated bywounding and fungal infection. Plant Mol Bio,1999,39:1231-1241.
    Zhang L, Liu BF, Liang SP, Jones RL, Lu YT. Molecular and biochemical characterization of acalcium/calmodulin-binding protein kinase from rice. Biochem J,2000,368:145-157
    Zhang L, Lu YT. Calmodulin-binding protein kinases in plants. Trends in Plant Sci,2003,8:123-127
    Zhang XL, Shen XR, Hao YF, Cai JJ, Ohm HW, Kong LR. A genetic map of Lophopyrumponticum chromosome7E, harboring resistance genes to Fusarium head blight and leafrust. Theor Appl Genet,2011,122:263-270
    Zhang R, Huang JJ, Zhu J, Xie XL, Tang Q, Chen XH, Luo J, Lou ZY. Isolation andcharacterization of a novel PDR-type ABC transporter gene PgPDR3from Panax ginsengC.A. Meyer induced by methyl jasmonate. Mol Biol Rep,2013,40:6195-6204
    Zhang R, Zhu J, Cao HZ, An YR, Huang JJ, Chen XH, Mohammed N, Afrin S, Luo ZY.Molecular cloning and expression analysis of PDR-1like gene in ginseng subjected to saltand cold stress or hormonal treatment. Plant Physiol Bioch,2013,71:203-211
    Zhou WC, Kolb FL, Yu JB, Bai GH, Boze LK, Domier LL. Molecular characterization ofFusarium head light resistance in Wangshuibai with simple sequence repeat and amplifiedfragment length polymorphism makers. Genome,2004,42:1137-1143
    Zhu XL, Li Z, Xu HJ, Zhou MP, Du LP, Zhang ZY. Overexpression of wheat lipid transferprotein gene TaLTP5increases resistance to Cochilobolus sativus and Fusariumgraminearum in transgenic wheat. Funct Integr Genomics,2012,12:481-488

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700