水热合成过渡金属氟化物和氧化物及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文致力于复合氟化物的水热合成与性质表征,研究了合成条件的影响以及化合物的磁学性质,并在深入理解这些因素的基础上找到了一些水热合成复合氟化物的有效方法。
     在第1章介绍了有关复合氟化物的相关基本理论知识,对复合氟化物的最新研究进展进行了总结;在第2章中,介绍了水热合成3个钾冰晶石型氟化物,同时介绍了具有锥冰晶石结构化合物K_5V_3F_(14)的合成以及磁性研究;在第3章中,介绍了冰晶石结构的六氟合钒酸盐A_3VF_6(A=K, Na, NH4)以及六氟合铁酸盐A_3FeF_6(M=K, Na, NH4)复合氟化物的水热合成与表征,并详细讨论了合成条件的改变对产物结晶的影响。在第4章中,介绍了Aurivillius结构氟氧化物的水热合成,并详细讨论了合成条件的改变对产物的影响;第5章介绍了钙钛矿结构的AgMO_3(M=Nb, Ta)和BaTaO_3以及烧绿石结构的化合物Cd_2Ta_2O_7的水热合成,结构与表征,并讨论了反应物摩尔比,反应温度和时间等对产物的影响。
     本论文详细的阐述了上述化合物的合成条件和方法、结构特点以及性质,并仔细考察了各种影响产物水热稳定性的因素,为进一步研究复合氟氧化物水热合成和性质表征奠定了基础。
Fluoride compounds are usually prepared by tranditional high temperature solid-state methods which require calcination of fluoride raw materials at temperature in excess of 1000℃with frequent grindings. Aothough these methods are adequate for the synthesis of X-ray pure specimens, it is often difficult to control the total oxygen content in the mixed valence systems because of the high temperature used in products of the formation of undesirable phases. Particle size reduction by milling can introduce chemical impurities into the ceramic product, which may severely influence the final properties of fluoride compounds.
     Soft chemical methods, such as the use of sol-gel precursors or molten salts as reaction media, have been adopted for the synthesis of oxide, but these methods involve often complex operating procedures. Hydrothermal technique has been widely applied to the synthesis of metastable phases and microporous solids. This method provides an attractive alternative to the synthesis fo complex oxides and fluorides, since it is carried out under relatively mild conditions (autogeneous pressure and~240℃) with controllable particle size distribution of the product. Hydrothermal method, involving heating metal salts, fluorides iin a liquid elevated temperature and pressure, offers an alternative synthesis route for the multicomponent ceramic oxides prepared using the traditional, high-temperature methods of solid-state chemistry: the use fo a solvent would permit rapid mixing fo several chemical elements, leading to homogeneous products, and also offers the potential for control of crystal growth leading to particles of desired morphologies, something rather difficult to achieve when using the high temperatures that must be employed in solid-state reactions. In particular, the hydrothermal method has great scope for the preparation of multinary fluoride phases, i.e. containing two ro more metals, where the rapid mixing fo the constituent elements would provide a great synthetic advantage, as well as potentially leading to the discovery of new materials. In this study, we focus on the hydrothermal crystal growth of fluoride compounds. In the system that has been prepared by traditional methods, a more soft synthesis route is explored and the results are compared with those obtained by other synthesis methods for the purpose to establish the relationship between the synthesis method and properties of final crystalline products.
     The complex fluorides K_2NaVF_6, (NH_4)_2VF6 and (NH_4)_2NaVOF_5 with elpasolite-type structure have been synthesized under mild hydrothermal conditions. The details of hydrothermal synthesis conditions deeply discussed. We know that V2O3 is good source of V. F anions is not only a reaction material but also act as a mineralizer in the process. We found that the reducing agent K2S2O3 and (NH_4)_2S2O3 played an ed an important role for the compounds of K_2NaVF_6 and (NH_4)_2NaVF6 respectively, and also they can bring A site cations for the target products. From the experiment we concluded that the reaction condition of compound K_2NaVF_6 as follow: the molar ratio of raw material is V2O3 :NaF :(NH_4)_2S2O3 :NH4HF2 :HF=0.5:1:2:0.1,the temperature is 180℃, the reaction time is 3 days. The synthesis reaction conditions of compound (NH_4)_2NaVF6 as follows: raw materials molar ratio of V_2O_3 :NaF :(NH_4)_2S_2O_3 :NH_4HF_2 :HF=0.5:1:1:7:0.1, reaction temperature is 180℃, the reaction time is 3 days.
     The chiolite-type compound of K_5V_3F_(14) was prepared for the first time from hydrothermal system, and deeply discussed the molar ratio of the reaction materials, the reaction conditions: the reaction temperature is 180℃, reaction time is 3 days, during the synthesis processes, the reducing agent of K2S_2O_3 was the critical role because of the raw material of V_2O_3 can be easily oxide by oxygen.
     The hexafluoride vanadium(III) K_3VF_6, Na_3VF_6 and (NH_4)_3VF_6 with cryolite-type were prepared for the first time under the mild hydrothermal synthesis. Deeply discussed the molar ratio of the reaction materials, reaction temperature and reaction time that influence the products. Thermal stability of of (NH_4)_3VF_6 and (NH_4)_3FeF_6 were studies by TG-DTA in air. They decomposed in two steps at the first step and losses the compound of NH_4F, and the second step they loss NH_4F.
     The perovskite-type oxide compounds of AgMO_3(M = Nb, Ta), BaTaO_3 and the pyrochlore-type compound of Cd_2Ta_2O_7 were prepared for the first time under the hydrothermal synthesis. Deeply discussed the reaction temperature, molar ratio of the reaction materials and reaction time that influence the products. The photocatalytic properties of the two compounds of AgNbO_3 and AgTaO_3 were investigated, the results shown that they have good photocatalytic properties for photodegradation of dyes.
引文
[1] Hagenmuller P. Solid Inorganic Fluorides: physics and chemistry Acadamic Press Florida, 1985
    [2] liu L, Baselt W A. Element. Oxide and Silicates. Oxtord Univ. Press New York, 1986.
    [3] Sorokin N I. Polarizability of Fluoride Ions in Fluorides with Fluorite-Type Structure [J]. Crytallography Reports.,
    [4] Mazej Z, Tressaud A, and Darriet J. A new variety of PdF2 synthesised by low-temperature reaction in anhydrous HF [J]. Journal of Fluorine Chemistry, 2001, 110: 139-143.
    [5] Baur W H. Structural Crystallography and Crystal Chemistry [J]. Acta Cryst, 1976, B32: 2200-2204.
    [6] Demetriou D Z, Catiow C R A, Chadwick A V, et al. The anion disorder in the perovskite fluoride KCaF3 [J]. Slid State Ionics, 2005, 17-18: 1571-1575.
    [7] Horai. Kazumi, Arakawa. Masanori, Takeuchi. Hideo. Evidence for Fluorine Distrotion in KCdF3 Doped with Mn2+ Derived from Ligand Fluorine ENDOE Measurement [J]. Journal of the Physical Society of Japan, 1977, 43: 2095.
    [8] Karamyan A A. The vibrational spectrum and the dispersion of optical constants for the crystals NaCOF3 and NaNiF3 [J]. Physica Status Solidi (a), 2006, 16: 419-424.
    [9] Barchmann B, Müller B G..über Komplexe Fluoride des zweiwertigen Palladiums [J]. Zeitschrift für anorganische und allgemeine Chemie, 2004, 616: 7-13.
    [10] Sowa H. Pressure-Induced Fm-3m R-3 Phase Transition in NaSbF6 [J]. Acta Cryst, 1997, B53: 25-31.
    [11] Fukushima E. Crytal Physics, Diffraction, Theoretical and General Crystallography [J]. Acta Cryst, 1971, A27: 65-67.
    [12] Ruchaud N, Mirambet C, Fournes L, et al. Dtermination of the Cationic Arrangement in Sn2F6 from neutron powder diffraction [J]. Zeitschrift für anorganische und allgemeine Chemie, 2004, 590: 173-180.
    [13] Hoppe R, Siebert G. Neuseüber Hexafluoromanganate(IV). MIIMnF6 mit M=Mg, Ca, Zn, Cd, Hg, Ni, Cu, Ag [J]. Zeischrift für anorganische Chemie., 1970, 376: 261-267.
    [14] Siebert G, Hoppe R. Tern?re Fluoride mit vierwertigem Chrom: M’’CrF6mit M’’= Ba, Sr, Ca, Mg, Zn, Cd, Hg, Ni. Professor Hermann Specker zum 60. Geburtstage am 14. Juli 1872 gewidmet [J]. Zeitchrift für anorganische Chemie, 1972, 391: 126-136.
    [15] Fischer J, Keib G, Weiss R. Structure crystalline du fluorotitanate de cuivre tetrahydraté, CuTiF6·4H2O [J]. Acta Cryst, 1967, 22: 338-340.
    [16] Odenthal R H. Hoppe R.über Hexafluorotitanate (IV): MIITiF6 mit M=Zn, Cd, Mn, Co, Ni [J]. Zeitschrift für anorganische Chemie., 1971, 384: 104-110.
    [17] Taylor M A, Ceolin M, Martínez J A, et al. Study of hexafluorohafnates of transition metal [J]. J. Phys.: Condens. Matter, 1991, 3: 7047-7052.
    [18] Pierre Dugat, Malika EI-Ghozzi, Jacques Metin, et al. Crystal Structure of Li4ZrF8 and Li3Zr4F19 and Reinvestigation of the LiF-ZrF4 Phase Diagram [J]. Journal of Solid State Chemistry, 1995, 120: 187-196.
    [19] Fiz H, Müller B G, Graudejus O, Bartlett N. Einkristallunter suchungen an LiMF6 (M=Rh, Ir), Li2RhF6 und K2IrF6 [J]. Zeitschrift für anorganische und allgemeine Chemie., 2002, 628: 133-137.
    [20] Lehaire M L, Severin K. Stabilization of molecular LiF, LiFHF, and Na2SiF6 using metallamcrocyclic hosts [J]. CHIMIA., 2003, 57: 190-192.
    [21] Valeriy Koval, Yuriy Kuk. New knowledge obtaining in structural-predicate models of knowledge [J]. International Journal“Information Theories/Applications”, 2002, 12: 21-26.
    [22] Gaile J, Rüdorff W, Viebahn W. Zur Struktur der LIMIIMIIIF6-Verbindungen. Neue Verbindungen mit MIII=In und Ti [J]. Zeitschrift für anorganische und allgemeine Chemie, 2004, 430: 161-174.
    [23] Williamson R F, Baker K N, Boo W O J. Ionic and Magnetic Ordering in First Row Transition Metal Fluorides [J]. Molecular Crystals and Liquid Crystals, 1984, 107: 211-226.
    [24] Satoru Kuze, Douglas du Boulay, Nobuo Ishizawa, et al. Structure of LiCaAlF6 and LiSrALF6 at 120 and 300K by synchrotron X-ray single-crystal diffraction [J]. Journal of Solid State Chemistry, 2004, 177: 3505-3513.
    [25] Lee H W H, Stephen A. Payne and L. L. Chase. Excited-state absorption of Cr3+ in LiCaAlF6: Effects of asymmetric distortions and intensity selection rules [J]. Phys. Rev, 1989, B39: 8907-8914.
    [26] Schaffers K I and Keszler D A. Structure of LiSrAlF6 [J]. Acta Crystallographica Section C, 1991, 47: 18-20.
    [27] Koichi Watanabe. Viscosity and Dissociation Mechanism of a Cryolite Flux, Na3AlF6, during the Growth of Corundum Single Crystals [J]. Bulletin of the Chemical Society of Japan., 1993, 66: 1098-1103.
    [28] Von E. Alter und R. Hoppe. Cs2MVF6 und Rb2MVF6 (M=TI, K und Na): mit einer Bemerkungüber Na3VF6 [J]. Z. anorg. Allg. Chem, 1975, 412: 110-120.
    [29] Knappwost A. Westendorf J, Hess J. The salivary fluoride level after administration of fluorides and fluoride complex salts [J]. Dtsch Zahnarztl, 1977, 32: 487-9.
    [30] Hellwege K H and Hellwege A M. Complex fluorides and fluoride double salts[M]. Landolt-B?rnstein-Group III Condensed Matter, 1973.
    [31] Massa. W, Molinier M and Pebler J. Magneto-structural correlations in fluoromanganates(III) [J]. J. Solid State Chem. 1995, 72: 171-176.
    [32] Eibschütz, M. CsFeF4: A new planar antiferromagnet [J]. Solid State Communications., 1972, 11: 457-460.
    [33] Palacio F, Andrés M, Noort van D, et al. Weak ferromagnetism in single crystals of KMnF4·H2O and (NH4)MnF4·2H2O [J]. Journal de Physique, 1988, 12: C8-819-820.
    [34] Aleksandrov K S, B. Beznosikov V, Misyul S V. Successive Phase Transition in Crystals of K2MgF4-Type Structure [J]. Physica Status Solidi (a), 2006, 104: 529-543.
    [35] Bittermann K. Growth of large K2MnF4 single crystals and characterization by x-ray and neutron diffraction investigation [J]. Journal of Crystal Growth, 1974, 21: 82-84.
    [36] Salam Warda A, Werner Massa, Dirk Reinen, et al. The Ordered K2NiF4-type Structure of Mixed Crystals La2-xSrxLi1/2Co1/2O4(x<0.5) and the Electronic Properties of the Constituting CoIII and CoIV Ions [J]. Journal of Solid State Chemistry, 1999, 146: 79-87.
    [37] Phakey P P. and Horney R B. Crystal Physics, Diffraction, Theoretical and General Crystallography [J]. Acta Crystallographica Section A, 1976, 32:177-182.
    [38] Courbion G., De Pape R, Teillet J, et al. Magnetization, M?ssbauer and neutron studies ofα- andβ-LiMnFeF6; Evidence of idle spin behaviour in a ferrimagnet [J]. Journal of Magnetism and Magnetic Materials, 1984, 42: 217-232.
    [39] Omaly J, Batail P, Grandjea D, et al. Structure critalline deα-NaTiF4 [J]. Acta Cryst, 1976, B32: 2106-2110.
    [40] Osvald Knop, Stanley Cameron T, Deraniyagala S P, et al. Infrared spectra of the ammonium ion in crystals. Part XIII. Crystal structure of (NH4)[AlF5(H2O)] and NH3D+ probe-ion spectra in (NH4)2[AlF5(H2O)], NH4AlF5, and (NH4)2ZnCl5, with remarks on structural filiation of AMF4 fluorides [J]. Can. J. Chem, 1985, 63: 516-525.
    [41] Peschel B and Babel D. Die Kristallstrukturen der Vanadium-Weberite Na2MIIVIIIF7 (MII=Mn, Ni, Cu) und von NaVF4 [J]. Zeitschrift für anorganische und allgemeine Chemie, 2004, 623: 1614-1620.
    [42] Tsuboi T, Silfsten P. Detection of Structural Phase Transition in BaMnF4 by Luminescence Lifetime [J]. Physica Status Solidi (a), 2006, 162: 15-19.
    [43] Eibschutz M, Holmes L and Guggenheim H J. Magnetic behavior of the two-dimensional antiferromagnetic BaFeF4 [J]. Journal De Physiqub, 1971, 32:759-760.
    [44] Ederer. Claude, Spaldin. Nicola A. BaNiF4: an electric field-switchable weak antiferromagnet [J]. Materials Science, 2006, 16: 230-235.
    [45] Ryazanov M, Korsakov I and Kuzmina N. MOCVD of ferroelectric BaMgF4 thin films [J]. Journal de Physique, 1999, 9: 471-478.
    [46] Renaudin J. Magnetic study 2D-antiferromagnets Ba2NiF6 and Ba2FeF6 by neutron diffraction and Mossbauer spectroscopy [J]. Solid State Communications, 1983, 47: 445-448.
    [47] Rocquet P and Couzi M. Structural phase transition in chiolite Na5Al3F14:II. A model for the pseudo-proper ferroelastic transition [J]. J. Phys. C: Solid State Phys, 1985, 18: 6571-6578.
    [48] Jane Brown P, Forsyth J B and Mason R. Magnetization densities and electronic states in crystals [J]. Phil. Trans. R. Soc. Lond, 1980, B290: 481-495.
    [49] McKinzie H, Dance J M, Tressaud A, et al. Etude Magnetique des composes Na5M3F14 (M=V, Fe, Co) de type chiolithe [J]. Mat. Res. Bull, 1972, 7: 673-678.
    [50] Kerro Knox and Seymour Geller. Ferrimagnetic Fluoride-Na5Fe3F14 [J]. Letter to the editor, 1958.
    [51] Horsley John A, Paul Rabinowitz, Alexander Stein, et al. Laser ChemistryExperiments with UF6 [J]. IEEE Journal of Quantum Electronics, 1980, 16: 412-420.
    [52] Tressaud A, Dance J M, Ravez J, et al. Crystal Chemistry and Magnetic Properties of Cr(II)B(III)F5 Compounds [J]. J. Mater. Res. Bull, 1966, 34: 13-20.
    [53] Férey G, Pape de R, Poulain M, Grandjean D, et al. Hardy. Structure Crystallography and Crystal Chemistry [J]. Acta Crystallographica Section B, 1977, 33: 1409-1413.
    [54] Hemon A and Courbion G. Refinement of a room-temperature foα-CaAlF5 [J]. Acta Crystallographica Section B, 1991, 47: 1302-1303.
    [55] Brown L D. Predicting bond lengths in inorganic crystals [J]. Acta Crystallographica Section B, 1977, 33: 1305-1310.
    [56] Parida S C, Reddy R G. Thermaldynamic properties of CaTiF5 [J]. Journal of Chemical Thermaldynamics, 2007, 39: 888-892.
    [57] Body M, Silly G, Legein C, et al. Structure investigation ofβ-CaAlF5 by coupling powder XRD, NMR, EPR and spectroscopic parameter calculations [J]. Journal of Solid State Chemistry, 2005, 178: 3655-3661.
    [58] Von der Mühll, Régnault Daut, et al. Sturcture crystalline de SrFeF5 [J]. Journal of Solid State Chemistry, 1973, 8: 206-212.
    [59] Silva E N, Ayala A P, Moreira R L, et al. Dielectric behaviour and phase transition of SrAlF5 single crystals [J]. J. Phys.: Condense. Matter, 2006, 18: 2511-2523.
    [60] Bukovec P, Hoppe R. Zur Kenntnis von BaMnF5: eine Jahn-Teller-verzerrte Variante von BaGaF5= Sur BaMnF5: une varante déformée Jahn-Teller de BaGaF5 on BaMnF5: a Jahn-Teller distorded varant of BaGaF5 [J]. Eitchrift für anorganische und allgemeine Chemie, 1984, 509: 138-144.
    [61] Vlasse M, Matejka G, Tressaud A and Wanklyn B M. The crystal structure of K2FeF5 [J]. Acta Crystallographica Section B, 1977, B33: 3377-3380.
    [62] Dance J M, Mur J, Darriet J, et al. Magnetic properties of the dimeric iron(III) fluoride: Cs3Fe2F9 [J]. Journal of Solid State Chemistry, 1978, 63: 446-451.
    [63] Le Bail A.β-Ba3AlF9, a Complex Structure Determined from Conventional X-ray Powder Diffraction [J]. Journal of Solid State Chemistry., 1993, 103: 287-291.
    [64] Pavel Goudochnikov and Andrew J Bell. Correlations between transition temperature, tolerance factor and cohesive energy in 2+: 4+ perovskites [J]. J. Phys.: Condens. Matter, 2007, 19: 17620-13.
    [65]焦正宽等.磁电子学[M].杭州:浙江大学出版社2005.
    [66] Shaheen R, Bashir J, Rundlor H, et al. The crystal structure of CaLaMnFeO6 double perovskite [J]. Materials Letters, 2005, 59: 2296-2299.
    [67] Nagase M, Lindén J, Suematsu H, et al. Layered (Cu, Fe) oxide of double perovskite structure. II. Extension of solid solubility of copper in (Ba, La)Y(Cu0.5+xFe0.5-x)2O5+δvia high-pressure heat treatment [J]. Physical ReviewB, 1999, 59: 1377-1382.
    [68] Retuerto M, Alonso J A, Garcia-Hernandez M, et al. Synthesis, structure and magnetic properties of the new double perovskite Ca2CrSbO6 [J]. Solid State Cmmunications, 2006, 139: 19-22.
    [69] Rammeh N,Ehrenberg H, Fuess H, et al. Structure and magnetic properties fo the double-perovskites Ba2(B,Re)2O6 (B=Fe, Mn Co and Ni) [J]. Physica Status Solidi (c), 2006, 3: 3225-3228.
    [70] Mugavero S J, Puzdrijakova III IV, Smith M D, et al. Sm2NaIrO6, a monoclinically distorted double perovskite [J]. Acta Cryst, 2005, E61: i3-i5.
    [71] Augsburger M S, Viola M C, Pedregosa J C, et al. Preparation, crystal and magnetic structure of two new double perovskites: Ca2CoTeO6 and Sr2CoTeO6 [J]. Journal of Materials Chemistry, 2005, 15: 993-1001.
    [72] Sakai Maiko, Masuno Atsunobu Kan, Daisuke Hashisaka, et al. Multiferroic thin film of Bi2NiMnO6 with ordered double-perovskite structure [J]. Applied Physics Letters, 2007, 90: 072903-3.
    [73]Matthew Davis J, Samuel Mugavero J, Katarzynal Glab I, et al. The crystal growth and characterization of the lanthanide-containing double perovskite Ln2NaIrO6 (Ln= La, Pr, Nd) [J]. Solid State Sciences, 2004, 6: 413-417.
    [74] Barnes P W, Lufaso M W and Woodward M. Structure determination of A2M3+TaO6 and A2M3+NbO6 ordered perovskites: octahedral and pseudosymmetry [J]. Acta Cryst, 2006, B62: 384-396.
    [75] Yasutake Teraoka, Ming Deng Wei and Shuichi Kagawa. Double perovskites containing hexavalent molybdenum and tungsten: synthesis, structure investigation and proposal of a fitness factor to discriminate the crystal symmetry [J]. J. Mater. Chem, 1998, 8(11): 2323-2325.
    [76] Aleksandrov K S, Anistratov A T, Bezosikov B V, Fedoseeva NV, PhaseTransition in Crystals of the Halide Compounds ABX3 Nauka, Novosibirsk, 1981 (in Russian)
    [77] Goodenough J B, Longo J M, Magnetic properties of perovskites, Landoldt-B?rnstein Tables, Group III [J]. Springer, New York, 1970, 4: 126
    [78] Tressaud A. Low-temperature fluorination processes for the synthesis of new materials [J]. Journal of Fluorine Chemistry, 1995, 71: 171-172.
    [79] Omari M EI, Sénégas J and Réau J M. 19F NMR investigation of the K3InF6 ternary fluoride [J]. Solid State Ionics, 2000, 134: 323-329.
    [80] Pausewang Von G. und Rüdorff W. A3MeOxF6-x Verbindungen mit x=1, 2, 3 [J].über Alkali-oxofluorometallate derübergangsmetalle, 1969, 364: 69-87.
    [81] Mitchell Roger H, Liferovich Ruslan P. A Structure study of the perovskite series Ca1-xNaxTi1-xTaxO3 [J]. Journal of Solid State Chemistry, 2004, 177: 4420-4427.
    [82] Stefan Carlson, Yiqiu Xu and Rolf Norrestam. Single-Crystal High-Pressure Studies of Na3ScF6 [J]. Journal of Solid State Chemistry, 1998, 135: 116-120.
    [83]Yuji Arta, Krishnamurthy Nagrajan, Toyo Ohashi, et al. Heat capacity measurements on CaTiO3 doped with Ce and La [J]. Journal of Nuclear Materials, 1997, 247: 94-97.
    [84] Venkata Narayana M, Brixner L H. Thermally stimulated luminescence of gadolinium-activated NaMgF3 at 77K [J]. Crystal Research and Technology, 2006, 25: K209-213.
    [85] Qingdi Zhou and Brendan J. Kennedy. High-temperature powder synchrotron diffraction studies of synthetic cryolite Na3AlF6 [J]. Journal of Solid State Chemistry, 2004, 177: 654-659.
    [86] Hironori Sakai, Kazuyoshi Yoshimura, Hiroyuki Ohno, et al. Superconductivity in a pyrochlore oxide, Cd2Re2O7 [J]. J. Phys.:Condens. Matter, 2001, 13(33):L785-L790.
    [87] Vandenborre M T, Husson E, Comparison of the force field in various pyrochlore famailies. II. Phases presenting structural defects [J]. Journal of Solid State Chemistry, 1984, 53: 253-259.
    [88] Thorsten Geisler, Philip P?ml, Thomas Stephan, et al. Experimental observation of an interface-controlled pseudomorphic replalcement reaction in a natural crystalline pyrochlore [J]. American Mineralogist, 2005, 90: 1683-1687.
    [89] Zhang F X, Lian J and Becker U. Pressure-induced structural transitions and phase decomposition in the Cd2Nb2O7 pyrochlore [J]. Phys. Rev.B, 2006, 74: 174116-6.
    [90] Karin Barthelet, Jér?me Marrot, Didier Riou, et al. (H2O)“Vlll2F6”and Pyr-VF3:Hydrothermal Synthesis, Structure Determination, and Magnetic Characterization of New Fluorides with the Pyrochlore Type [J]. Journal of Solid State Chemistry, 2001, 162: 266-269.
    [91] Barker William W, White Peter S and Osvald Knop. Pyrochlores. X. Madelung energies of pyrochlores and defect fluorites [J]. Can. J. Chem, 1976, 54:2316-2334.
    [92] Garg N, Sharma SM and Tyaji AK. Preparation, XRD and Raman spectroscopic studies on new compounds RE2Hf2O7 (Re = Dy, Ho, Er, Tm, Lu, Y): pyrochlores or defect-fluorites [J]. Journal of Solid State Chemistry, 2006, 179(7): 1990-1994.
    [93] Ter-Mikaelyan, Inanov S A and Venevtsev. An X-ray Study of Thermal Atomic Vibration in Oxygen-Octahedra Compounds [J]. Jpn. J. Appl. Phys, 1985, 24: 603-605.
    [94] Weller Mark T, Hughes Robert W, Joanna Rooke, et al. The pyrochlore family-a potential panacea for the frustrated perovskite chemist [J]. DaltonTrans, 2004, 3032-3041.
    [95] Christy A G and Gatedal K. Extremely Pb-rich rock-forming silicates including a beryllium scapolite and associated minerals in a skarn from L?ngban, V?rmland, Sweden [J]. Mineralogical Magazine, 2005, 69: 995-1018.
    [96] Bernard D, Pannetier J, Moisan J Y, et al. Influence des substitutions les transitions de phases de pyrochlores derives de Cd2Nb2O6S [J]. Journal of Solid State Chemistry, 1973, 8: 31-36.
    [97] Ismailzade I G, Samedov O A, Bernar D, et al. Influence de champsélectriques constants sur les transitions de phase dans les cristaux de Cd2Nb2O6S et CdZnNb2O6S Stationary electric field effect on phase transitions in Cd2Nb2O6S and CdZnNbO6S [J]. Fizika tverdogo tela, 1985, 27: 2822-2824.
    [98] White Timothy J. The microstructure and microchemistry of synthesis zirconolite, zirkelite and related phases [J]. American Mineralogist, 1984, 69: 1156-1172.
    [99] Bermard D. Les pyrochlores ferroelectriques derives de Cd2Nb2O6S: Mise enévidence des transitions de phase par des techniques d’optique non linéaire [J]. Solid State Communications, 1976, 18: 927-930.
    [100] Harry Nyman, Sten Andersson, Hyde B G, et al. The pyrochlore structure and its relatives [J]. Journal of Solid State Chemistry, 1978, 123-131.
    [101] Ledesert M and Raveau. BaCd2Cl6·5H2O a pyrochlore with 16(d) 32(e) positions both fully occupied [J]. Journal of Solid State Chemistry, 1987, 67: 340-345.
    [102] Calage Y, Zemirli M, Greneche J M, et al. M?ssbauer study of the new pyrochlore form of FeF3 [J]. Journal of Solid State Chemistry, 1987, 69: 197-201.
    [103] The Prefix“anti-”refers to switching of the cation and anion positions.Compared to theβ-cristobalite (SiO2) structure, the A cations occupy the oxygen positions and the O’oxygen atoms occupy the Si positions.
    [104] Riseberg L A and Moos H W. Multiphonon Orbit-Lattice Relaxation in LaBr3, LaCl3, and LaF3 [J]. Phys. Rev. Lett, 1967, 19: 1423-1426.
    [105]Pan Hongjun, Gerstein B. C, Loeliger Hans R, et al. A reexamination of F-19 NMR in selected solids, the conductor Ag2F and reference insulators for studies of YBa2Cu3O7-type superconductors [J]. Solid State Physics, 1991.
    [106] Marchetti Alfred P and Bottger G L. Optical Absorption Spectrum of AgF [J]. Phys. Rev, 1971, B3: 2604-2607.
    [107]De Groot Ra,Buiting J J, Weger M, et al. Self-consistent electronic-band-structure calculation for Hg2AsF6 [J]. Phys Rev B Condens Matterr, 1985, 31(1): 2881-2885.
    [108]George F, Whitwell, Douglas C. et al. Electrochemistry of liquid sulfur dioxide. A new synthesis of mercury hexafluoroarsenate (Hg3AsF6) and mercury hexafluoroantimonate (Hg3SbF6) [J]. Inorg. Chem., 1982, 21: 1692-1693.
    [109]Edwin G. Schneider. Optical Properties of Lithium Fluoride in the Extreme Ultraviolet [J]. Phys. Rev., 1936, 49: 341-345.
    [110] JACOBONI C, LEBLE A, ET J. J. ROUSSEAU. Détermination precise de la structure de la chiolite Na5Al3F14 etétude par R.P.E. de Na5Al3F14: Cr3+ [J]. Journal of Solid State Chemistry, 1981, 36: 297-304.
    [111] Boris ?emva, Karel Lutar, Adolf Jesih, et al. Silver Trifluoride: Preparation, Crystal Structure, Some Properties, and Comparison with AuF3 [J]. J. Am. Chem. Soc, 1991, 113: 4192-4198.
    [112] Graham L, Graudejus O, Jha N. K, et al. Concerning the nature of XePtF6 [J]. Coordiantion Chemistry Review., 2000, 197: 321-334.
    [113] Dove M F A, Benkic P, Platte C, et al. Concerning the crystal structure ofBrF3·AuF3 [J]. Journal of Fluorine Chemistry, 2001, 110: 83-86.
    [114] Hugo Steinfink, George D. Brunton. Crystal structure of Cs4Mg3F10 [J]. Inorg. Chem, 1969, 8(8): 1665-1668.
    [115] Eric Largeau, Vincent Gaumet, Malika EI-Ghozzi, et al. Synthesis and single-crystal structural study of an original low-temperature formαof BaTbF6 [J]. J. Mater. Chem, 1997, 7(9): 1881-1885.
    [116] Olof Beckman, Kerro Knox. Magnetic Properties of KMnF3. I. Crystallographic Studies [J]. Phys. Rev, 1961, 121: 376-380.
    [117] Rabenau A, Augew. Chem Int. Ed. Engl, 1985, 24: 1026.
    [118]王海增,庞文琴,“水热晶化法在材料制备中的应用”,功能材料, 1993, 2414: 289.
    [119] Cheetham A K and Loiseau G. Open-framework inorganic materials, Angew. Chem. Int. Ed. Engl, 1999 38: 3268-3292.
    [120] Li J, Li L, Feng S, et al, An effective synthetic route for a novel electrolyte: nanocrystaline solid solutions of (CeO2)1-x(BiO1.5)x[J]. Adv. Mater, 1999, 11(2): 146-149.
    [121] Feng S, Greenblatt M, Galvanic cell type humidity sensor with protonic NASICON-based material operative at high temperature[J]. Chem. Mater, 1992, 4(6): 1257-1262.
    [122] Chen Q, Qian Y, Z. Chen et al, Preparation of a TI-based superconductor by a hydrothermal method [J]. Physical C, 1994, 224(3-4): 228-230.
    [123] Mao Y, Li G, Xu W, et al. Hydrothermal synthesis and characterization of nanocrystaline pyrochlore oxides M2Sn2O7(M=La, Bi, Gd or Y) [J]. J. Mater Chem, 2000, 10(2): 279-282.
    [124] Zhao C, Feng S, Cao Z, et al., Hydrothermal synthesis of the complex fluorides LiBaF3 and KMgF3 with perovskite structures under mild conditions[J]. Chem Commun, 1996:1641-1642.
    [125] Zhao C Y, Feng S H, Xu R R, et al. Hydrothermal synthesis and lanthanide doping of complex fluorides, LiYF4, KYF4 and BaBeF4 under mild conditions [J]. Chem. Commun, 1997, 945-946.
    [126] Feng S, Wang D, Xu R, et al. Hydrothermal synthesis route ro a giant magnetorsistance material La0.5Ba0.5MnO3, Proceedings of the international symposium on solvo-hydro-thermal processes[J]. Org. Comm. Solvothermal Tech Res.:Takamatsu. Japan, 1997.p.12.
    [127] Baross J A, Deming J W, Groth of‘black smoker’bacteria at temperature of at least 250oC[J]. Nature, 1983, 303: 423-426.
    [128] Jannasch H W, Mottle M J. Geomicrobiology of deep-sea hydrothermal vents [J]. Science, 1985,229: 717-725.
    [129] Harrison W, Philips M, Nenoff T M. In situ template generation for zincophosphate synthesis leading to guanylurea zinc phosphate, C2H7N4O center dot ZnPO4, containing template-to-template N-H center dot center dot center dot O hydrogen bonds [J]. Solid State Sciences, 2002, 4(7): 969-972.
    [130] Sun Y, Lin W Y, Pang W. Q, et al. The synthesis and characterization of mesoporous molecular-sieves MCM-41[J]. Chemical Journal of Chinese Universities-Chinese, 1995, 16(9): 1334-1338.
    [131] Sand L B, Proceedings of 5th. International. Conference on Zeolites. Naples Italy, E6-June, 1980.
    [132]徐如人,无机合成化学[M].吉林:高等教育出版社,2001.
    [133]Reynhardt E C, Pratt J C, Watton A, et al. NMR study of molecular motions and disorder in K3ZrF7 and K2TaF7 [J]. Journal of Physics C: Solid State Physics, 1981, 14:4701-4715.
    [1] Abdulsabirov Yu R and Kazei Z A. Magnetoelastic anomalies of thermal expansion of LiRF4 (R = Ho, Tm, Lu) crystals [J]. Fiz, Tverd Tela (St. Petersburg) 1993, 35: 1876.
    [2] Meyer P, Pommier J and FerréJ. Magnetization reversal in ultrathin ferromagnetic films with perperndicular anisotropy: Domain observations [J]. Phys. Rev. Lett., 1990, 65:2054-2057.
    [3] Núňez P, Morales Escobar M, Roisnel T, et al. Structural and Magnetic Phase Transitions of the 2D Ferromagnetic Fluoride TI2CuF4 [J]. Journal of Solid State Chemistry, 1996, 122: 87-94.
    [4] Hiroyuki Okita and Toshitaka Kawashima. Reactive sputtering process for depositing Er3+/Y3+ co-doped lead fluorde films [J]. Vacuum, 2004, 74: 437-441.
    [5] Fiorenzo Vetrone, John A. Capobianco. Lanthanide-doped fluoride nanoparticles: luminence, upconversion, and biological applications [J]. International Journal of Nanotechnology, 2008, 9: 1306-1339.
    [6] Kim M, Stryganyuk G, Vielhauer S, V.N.Makhov, et al. Vacuum-ultraviolet 5d-4f luminescence of Gd~(3+) and Lu~(3+) ions in fluorides matrices [J]. Physical Review. B, Condensed Matter And Materials Physics, 2007, 75: 89-94.
    [7] Boutinaud P, Monnier A and Bill H. Luminescence mechanisms of Ag+ cubic centers in strontium fluorides crystals [J]. J. Phys.: Condens. Matter, 1994, 6: 8931-8947.
    [8] Ershov N N, Zakharov G M, Nikitinskaya T I. X-ray luminescenceof nanoctibated magnesium fluoride crystals [J]. Journal of Applied Spectroscopy, 1978, 29: 874-875.
    [9] Kiminski? A A, Demchuk M I, Zhavoronkov N I, et al. Lithium yttrium fluoride (LiYF4:Nd3+)-promising laser material for picosecond spectroscopy [J]. Sov. J. Quantum Electron, 1989, 19: 30-31.
    [10] Needs Richard L, Dann Sandra E, Weller Mark T, et al. The structure and oxide/fluoride ordering of the ferroelectrics Bi2TiO4F2 and Bi2NbO5F [J]. Journal of Material Chemistry., 2005, 15: 2399-2407.
    [11] Von E. Alter und R. Hoppe. Cs2MVF6 und Rb2MVF6 (M = TI, K und Na): mit einer Bemerkungüber Na3VF6 [J]. Z. anorg. Allg. Chem., 1975, 412: 110-120.
    [12] Manoharan P T and Rogers M T. ESR Study of VOF53- Ion [J]. The Journal of Chemical Physics., 1968, 49: 3913-3018.
    [13] Roisnel T , Núňez P, Massa W, et al. Magnetic structures of antiferromagnetic chain fluorides A2MnF5·xH2O [J]. Physica B: Condensed Matter, 1997, 234-236: 579-580.
    [14] Qingdi Zhou and Brendan J. Kennedy. High-temperature powder synchrotron diffraction studies of synthetic cryolite Na3AlF6 [J]. Journal of Solid State Chemistry. 2004,177:654-659.
    [15] Navarro J, Balcells LI, Sandiumenge F, et al. Antisite defects and magnetoresistance in Sr2FeMoO6 double perovskite [J]. J. Phys.: Condens. Matter 2001, 13: 8481-8488.
    [16] Kuepper K, Balasz I, Hesse H, et al. Electronic and magnetic properties of highly ordered Sr2FeMoO6 [J]. Phys. Stat. Sol. (a)201. 2004, 15: 3252-3256.
    [17] Jin-Xiao Mi, Shu-Ming Luo, Hua-Yu Sun, et al. Synthesis and characterization of elpasolite-type ammonium alkali metal hexafluorometallates(III) [J]. Journal of Solid State Chemistry. 2008, 181: 1723-1730.
    [18] Mike Ahrens, Katrin Schuschke, Susanne Redmer, et al. Transparent ceramic from sol-gel derived elpasolites by cold pressing [J]. Solid State Sciences. 2007, 9: 833-837.
    [19] Bu?uel M A, Lozano L, Chaminade J P, et al. Optical properties of Tb3+-doped Rb2KInF6 elpasolite [J]. Optical Materials. 1999(13), 2: 211-223.
    [20] Selgert P, Lingner C. and Lüthi B. On the structural phase transition in rare earth elpasolites [J]. Zeitschrift für Physik B Condensed Matter. 1984, 55: 219-226.
    [21] Gorev, M. Flerov. I. Tressaud, A. and Grannec, J. Thermaldynamic properties of the mixed elpasolites Rb2KGaxSc1-xF6 (x=0.6-1.0) [J]. Physics of the Solid State., 1997, 39: 1647-1651.
    [22] Bordallo H N, Wang X, Hanif K M, et al. Structure determination and a vibrational study for the hexagonal elpasolite Cs2NaGaF6:Cr3+ [J]. J. Phys.: Condens. Matter. 2002, 14: 12383-12389.
    [23] Manoharan P T and Rogers M T. ESR Study of VOF5- Ion [J]. The Journal of Chemical Physics, 1968, 49: 9.
    [24] Bokovec P. Bukovec N, Demsar A. Thermal analysis of complex fluorides [J]. Journal of thermal analysis., 1990, 36: 1751-1760.
    [25] Koster A F Van Groos. Differenctial thermal analysis of the system sodium fluoride-sodium carbonate to 10 kbar [J]. J. Phys. Chem., 1979, 83: 2976-2978.
    [26] Laptash N M and Polyshchuk S A. Thermal decomposition of ammonium fluoroferrates (NH4)xFeF2x (2≤x≤3) [J]. Journal of Thermal Analysis. 1995, 44: 877-883.
    [27] K?ichir? K?yama and Yasuhiko Hashimoto. Thermal Decomposition of Ammonium Hexafluorovanadate(III) [J]. Autumn Meeting of the Japan Institute of Metals. November, 1974, at Higashi ?saka.
    [28] Shin-ichi Ohkoshi, Toshiya Hozumi, Mikihisa Mizuno, et al. A High Compensation Temperature of 175K in a Vanadium Hexacyanochromate-based Magnet [J]. Chemistry Letters., 2007, 36: 932.
    [29] Leszek Wojtczak. Théorie des couches minces magnétiques [J]. J. Phys. France., 1969, 30: 578-588.
    [30] Smart J S. Magnetism, Vol. III, P. 63, New York: Academic Press 1963.
    [31] Goodenough, J. B.: Magnetism and the Chemical bond, New York, London, Interscience, 1963.
    [32] Goodenough J, Longo B, et al. Landolt-Bornstein series, Vol. III/4a, 126, Berlin, Heidelberg, New York: Springer 1970.
    [33] Babel D. Structure and Bonding, Vol. 3, p. 1, Berlin, Heidelberg, New York: Springer 1976. Goodenough, J. B.: Magnetism and the Chemical bond, NewYork, London, Interscience, 1963.
    [34] Alter Von E und Hoppe R. Cs2MVF6 und Rb2MVF6 (M=Tl, K und Na): mit einer Bemerkungüber Na3VF6. [J]. anorg. Allg. Chem. 1975, 412: 110-120.
    [35] Brown Jane P, Forsyth J B and Mason R. Magnetization densities and electronic states in crystals [J]. Phil. Trans. R. Soc. Lond. B., 1980, 290: 481-496.
    [1] Mitchell R H, Perovskites Modern and Ancient, Almaz Press Thunder Bay, Ontario, 2002
    [2] Anderson Mark T. Kevin B. Greenwood. B-Cation arragements in double perovskites [J]. Solid State Chemistry., 1993, 22: 197-233.
    [3] Flerov I N, Gorev M V. Phase transitions in elpasolites (ordered perovskites) [J]. Materials Science and Engineering ., 1998, 24: 81-151.
    [4] Steward E G and Rooksby H P. Transitions in crystal structure of cryolite and related fluordes [J]. Acta Crystallographica., 1953, 6: 49-52.
    [5] Yang H, Ghose S, et al. Ferroelastic phase transition in cryolite, Na3AlF6, a mixed fluorde perovskte: High temperature single crystal X-ray diffraction study and symmetry analysis of the transition mechanism [J]. Physics and Chemistry of Minerals. 1993, 19: 528-544.
    [6] Sabine T M, Kennedy B J, et al. The Performance of the Australian Powder Diffractometer at the Photon Factory, Japan [J]. Journal of Applied Crystallography , 1995, 28: 513-517.
    [7] Qingdi Zhou and Brendan J. Kennedy. High-temperature powder synchrotron diffraction studies of synthetic cryolite Na3AlF6 [J]. Jnournal of Solid State Chemistry, 2004, 177: 654-659.
    [8] Jin Xiao Mi, Shu Ming Luo, et al. Syntheses and characterization of elpasolite-type ammonium alkali metal hexafluorometallates (III) [J]. Journal of Solid State Chemistry., 2008, 181: 1723-1730.
    [9] Ramesha K and Gopalakrishnan J. Properties of the ferromagnetic double-perovskite A2FeReO6 (A = Ba and Ca) [J]. Journal of Physics: Condensed Matter, 2000, 12: 965-973.
    [10] Kuepper K, Balasz I. Electronic and magnetic properties of highly ordered Sr2FeMoO6 [J]. Phys. Stat. sol. (a), 2004, 15: 3252-3256.
    [11] Flerov I N, Gorev M V, et al . Role of metal fluoride octahedral in themechanism of phase transitions in A2BMF6 elpasolites [J]. Journal of Fluorine Chemistry, 2002, 116: 9-14.
    [12] Mike Ahrens, Katrin Schuschke, et al. Transparent ceramics from sol-gel derived elpasolites by cold pressing [J]. Solid State Sciences, 2007, 9: 833-837.
    [13] Udovenko A A, Laptash N M, et al. Orientation disorder in ammonium elpasolites Crystal structures of (NH4)3AlF6, (NH4)3TiOF5 and (NH4)3FeF6 [J]. Journal of Fluorine Chemistry, 2003, 124: 5-15.
    [14] Christoe C W and Drickamer H G. Effect of Pressure on the Quadrupole Interaction in Iron-Fluorine Compounds [J]. Physical Review B, 1970, 1: 1813-1822.
    [15] Acker van J F. Magnetic moments and x-ray photoelectron spectroscopy splittings in Fe 3s core levels of materials containing Fe [J]. Physical Review B. 1988, 37: 6827-6834.
    [16] Koichiro Koyama, Yasuhiko Hashimoto, et al. Indexing of X-ray Powder Diffraction Data for Potassium Hexafluorovanadate(III) [J]. Bull. Chem. Soc. Jpn, 1984, 57: 2311-2312.
    [17] KōichirōKōyama and Yasuhiko Hashimoto. A Method for the Preparation of Potassium Hexafluorovadate(III) and Its Polymorphic Transitions [J]. Bulletin of The Chemical Society of Japan, 1977, 50: 1333-1336.
    [18] Alter Von E. und Hoppe R. Cs2MVF6 und Rb2MVF6 (M=TI, K und Na) mit einer Bemerkungüber Na3VF6 [J]. Z. anorg. Allg. Chem, 1975, 412: 110-120.
    [19] Karin Barthelet, Jér?me Marrot, et al. (H2O)[V2IIIF6] and Pyr-VF3: Hydrothermal Synthesis, Structure Determination, and Magnetic Characterization of New Fluorides with the Pyrochlore Type [J]. Journal of Solid State Chemistry, 2001, 162: 266-269.
    [20] Howard C J and Stokes H T. Group-Theoretical Analysis of Octahedra Tilting in Perovskites [J]. Acta Crystallographica Section B, 1998, B54: 782-789. Tanaka K and Onuki Y. Observation of 4f electron transfer from Ce to B6 in theKondo crystal CeB6 and its mechanism by multi-temperature X-ray diffraction [J]. Acta Crystallographica Section B, 2002, B58: 423-436.
    [21] Igor N. Flerov, Valentina D. Fokina, et al. Phase transition in perovskite-like oxyfluordes (NH4)3WO3F3 and (NH4)3TiOF5 [J]. Solid State Chemistry, 2004, 6: 367-370.
    [22] M?rup S and Thrane N. Phase Transition in (NH4)3FeF6 [J]. Solid State Communications, 1972, 11: 1319-1321.
    [23] Bukovec P und Siftar J. Zur Kenntnis der thermischen Zersetzung von Ammonium-hexafluroscandat, -titanat, -vanadat und–chromat [J]. Monatshefte für Chemie, 1974, 105: 510-516.
    [24] Von Rudolf Hoppe. Zur Gitterenergie und Strukturgeometrie von Kryolith [J]. Hoppe R, Gitterenergie und Strukturegeometrie von Krolith, 1969, 364: 263-269.
    [25] Laptash N M and Polyshchuk S A. Thermal Decomposition of Ammonium Fluoroferrates (NH4)xFeF2x(2≤x≤3) [J]. Journal of Thermal Analysis, 1995, 44: 877-883.
    [1] Moret M P, Zallen R, Newnham R E, et al. Infraed activity in the Aurivillius layered ferroelectric SrBi2Ta2O9 [J]. Physical Review B., 1998, 57: 5715-5723.
    [2] Jiménez B, Duran Martín P, Jiménez Rioboo R, et al. On the existence of a second phase transition in ferroelectric with Aurivillius-type structure through the study of the Young’s modulus [J]. J. Phys.:Condens. Matter, 2000, 12: 3883-3895.
    [3] Ben Jennet D, Marchet P, EI Maasoui M, et al. From ferroelectric to relaxor behaviour in the Aurivillius-type Bi4-xBaxTi3-xNbxO12(0≤x≤1.4) solid solutions [J]. 2005, 59: 376-382.
    [4] Perez-Mato J, Blaha P, Parlinski K, et al. Competing Instabilities in Ferroelectric Aurivillius Compounds [J]. 2004, 62: 183-188.
    [5] Jean-Claude Boivin. Structure and electrochemical features of fast oxide ion conductors [J]. 2001, 8: 1261-1266.
    [6] Masatsune Kato, Yshinori Imai, Tetsuya Kajita, et al. Synthesis of oxide superconductors by soft-chemical techniques [J]. 2008, 148: 53057.
    [7] Bengt Hallstedt, Daniel Risold, Ludwig J. Gauckler. Thermaldynamic Assessment of the Bismuth-Strontium-Oxygen Oxide System [J]. 2005. 80: 1085-1094.
    [8] Shaw T M, Shivashankar S A, Placa La S J, et al. Incommensurate structure in the Bi-Sr-Ca-Cu-O 80-K superconductor [J]. Phys. Rev. B, 1988, 37: 8956-9859.
    [9] Hewat A W. Relations Between Superconductivity and Structure Obtained by Neutron Diffraction [J]. Physica Scripa, 1991, 44: 38-50.
    [10] Rama Sastry P S, Kumar G S, Bhimasankaram T, et al. Pyroelectricity in calcium substituted sodium bismuth titanate layer structured ferroelectric ceramic [J]. Bull. Mater. Sci, 1999, 22: 59-64.
    [11] Suresh M B, Venkata Ramana E, Narendra Babu S, et al. Comparison of electrical and dielectric properties of BLSF materials in Bi-Fe-Ti-O and Bi-Mn-Ti-O systems [J]. Ferroelectric, 2006, 332: 57-63.
    [12] Murugan G S, Varma K B R. Microstructural, Dielectric, Pyroelectric and Ferroelectric Studies on Partially Grain-Oriented SrBi2Ta2O9 Ceramics [J]. Journal of Electroceramics, 2002, 8: 37-48.
    [13] Yoneda Y and Mizuki J. Crystallization process of ferroelectric Bi4Ti3O12 from amorphous state [J]. J. Appl. Phys, 2006, 99: 074108.
    [14] Akihiko Kudo and Satoshi Hijii. H2 or O2 Evolution from Aqueous Solutions on Layered Oxide Photocatalysts Consisting of Bi3+ with 6s2 Configuration and do Transition Metal Ions [J]. Chemistry Letters, 1999, 28: 1103-1112.
    [15] Jianqiang Yu and Akihiko Kudo. Hydrothermal Synthesis and Photocatalytic Property of 2-Dimensional Bismuth Molybdate Nanoplates [J]. Chemistry Letters, 2005, 34: 1528-1537.
    [16] Hyun G. Kim , Becker Olav S, Jum S. Jang, et al. A generic method of visible light sensitization for perovskite-ralated layered oxides: Substitution effect of lead [J]. Journal of Solid State Chemistry, 2006, 179: 1214-1218.
    [17] Wong Ng W, Huang Q, Cook L P, et al. Crystal chemistry and crystallography of the Aurivillius phase Bi5AgNb4O18 [J]. Journal of Solid State Chemistry., 2004, 177: 3359-3367.
    [18]Bengt Aurivilius and Fang P H. Ferroelectricity in the Compound Ba2Bi4Ti5O18 [J]. Physical Review., 1962, 126: 893-896.
    [19]王志勇.钙钛矿型铁电体Pb(Zr, Ti)O<,3>和SrBi<,2>Ta<,2>O<,9>的缺陷行为研究[D].上海:中国科学院上海冶金研究所,1998.
    [1] Amrita Kulkarni S, Radha Jayaram V. Liquid phase catalytic transfer hydrogenation of aromatic nitro compounds on perovskites prepared by microwave irradiation [J]. Applied Catalysis. A, General., 2003, 252: 630-345.
    [2] Kulkarni A S and Jayaram R V. Liquid phase catalytic transfer hydrogenation of aromatic nitro compounds on La1-xSrxFeO3 perovskites prepared by microwave irradiation [J]. Journal of Molecular Catalysis. A. Chemical., 2004, 223: 234-236.
    [3] Wang H, Zhao Z, Xu C M, et al. Nanometric La1-xKxMnO3 perovskite-type oxides-highly active catalysts for the combustion of diesel soot particle under loose contact conditions [J]. Catalysis Letters., 2005, 102: 894-898.
    [4] Zhang W, Kumada N, Yonesaki Y, et al. Ferroelectric perovskite-type barium copper niobate: BaCu1/3Nb2/3O3 [J]. Journal of Solid State Chemistry., 2006, 179: 4052-4055.
    [5] Gordon A, Dorfman S and Wyder P. Ferroelectric perovskite solid solutions in high magnetic fields; diagrams of the phase growth [J]. Journal of physics. Condensed matter., 1995, 7: 9905-9911.
    [6] Alex Gordon, Simon Dorfman and Peter Wyder. Ferroelectric perovskite solutions in high magnetic fields; diagrams of the phase growth [J]. J. Phys.: Condens. Matter., 1995, 7: 9905-9911.
    [7] Kaoru Miura and Masahiro Tanaka. Effect of La-Doping on Fatigue in Ferroelectric Perovskite Oxides [J]. Jpn. J. Appl. Phys., 1996, 35: 3488-3491.
    [8] Jooho Moon, Jeffrey A, Kerchner, Henrik Krarup, et al. Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts [J]. J. Mater. Res., 1999, 14: 425-435.
    [9] Livesay, Dugdale E A, Santi S B, et al. Frmi surface of the colossalmagnetoresistance perovskite La0.7Sr0.3MnO3 [J]. Journal of Physics, 1999, 11: 346-351.
    [10]Cong B T, Anh huyp N, and Long N H. The concentration dependence of the Curie temperatureof the colossal magnetoresistance perovskite La1-xCaxMnO3 [J]. Journal of magnetism and magnetic materials., 2003, 262: 437-440.
    [11]Lobanov M,Balagurov V, Pomjakushin A M, Ju V, et al. Structure and magnetic properties of the colossal magnetoresistance perovskite La0.85Ca0.15MnO3 [J]. Physical Review B., 2000, 61: 8941-8949.
    [12] Yusuf S M. Magnetic studied of colossal magnetoresistance perovskites on macroscopic, mesoscopic and microscopic length scales [J]. Pramana, 2004, 63: 133-141.
    [13] Kuwahara H, Tomioka Y, Moritmo Y, Asamitsu A, et al. Striction-Coupled Magnetoresistance in Perovskite-Type Manganese Oxides [J]. Science, 1996, 272: 80-82.
    [14]Young Nam Kim, Seung Joo Kim, Eun Kwang Lee, et al. Large magnetoresistance in three dimensionally ordered macroporous perovskite maganites prepared by a colloidal templating method [J]. J. Mater. Chem., 2004, 14: 1774-1777.
    [15]Asit Baran Panda, Amita Pathak, Makhanlal Nandagoswami, et al. Preparation and characterization of nanocrystalline Sr1-xBi2+yTa2O9 powders [J]. Materials Science and Engineering B., 2003, 97: 275-282.
    [16]Hideki Kato, Hisayoshi Kobayashi, and Akihiko Kudo. Role of Ag+ in the Band Structure and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure [J]. J. Phys. Chem. B., 2002, 106: 12441-12447.
    [17]Antoni Kania. An Additional Phase Transition In Silver Niobate AgNbO3 [J]. Ferroelectrics., 1998, 205: 19-28.
    [18] Sciau Ph, Kania A, Dkhil B, et al. Structural investigation of AgNbO3 phase using x-ray and neutron diffraction [J]. J. Phys.:Condens. Matter, 2004, 16: 2795-2810.
    [19] Gaines R V, Skinner H C W, Foord E E, et al. Dana’s New Mineralogy [J], Wiley: New York, 1997, pp. 341-352, 8th edition.
    [20]Alzawa Koji, Ishiwara Hiroshi. Reduction of Pyrochlore Phase and Pronounced of Ferroelectric Properties in Ultrathin SrBi2Ta2O9 Films Derived from Bi-Rich Sol-Gel Solution [J]. Jpn. J .Appl Phys., 2005, 44: 6221-6224.
    [21] Vittayakorn N, Cann D P. Preparation and ferroelectric properties of pyrochlore-free Pb(Ni1/3Nb2/3)O3-based solid solutions [J]. Applied Physics. A, 2007, 86: 458-460.
    [22]Kolpakova N N, Syrnikov P P, Lebedev A O, et al. 2-5 pyrochlore relaxor ferroelectric Cd2Nb2O7 and its Fe2+/Fe3+ modifications [J]. Journal of Applied Physics., 2001, 90: 6332-6340.
    [23] Dunn S and Whatmore R W. Transformation Deperndence of PZT As Shoun by PFM [J]. INterated Ferroelectrics., 2001, 38: 1-4.
    [24]Rumen Tomov I, Mark Blamire. Plused Laser Deposition of SrBi2Ta2O9 Thin Films on Si Substrate [J]. Plasma Processes and Polymers., 2006, 3: 241-247.
    [25]Yisuyoshi Torii and Hideo Matsumoto. Formation of Oxygen Deficient Pyrochlore Solid Solutions Pb2Ta2-2xM2xO7-x(M=Ti, Sn and Zr) and Their Optical and Dielectric Properties [J]. Bulletin of the Chemical Society of Japan., 1976, 49: 671-674.
    [26]Nguyen Binh, Yun Liu, Withers Ray L. Relaxor dielectric of a (Ca1.5Ti0.5)(NbTi)O7 misplaced-displacive cubic pyrochlore synthesis via metallorganic decomposition [J]. Solid State Communications., 2008, 145:72-76.
    [27]Ren Wei, Trolier Mickinstry Susan, Randall Clive A, et al. Bismuth zinc niobate pyrochlore dielectric thin films for capacitive applications [J]. Journal of Applied Physics., 2001, 89: 767-774.
    [28]Yong Pyo Hong, Kyung Hyun Ko, Hyuk Jun Lee, et al. High-permittivity and low-loss dielectric tunable pyrochlore thin films deposited by radio frequency magnetron sputtering from a lead zinc niobate target [J]. Thin Solid Films., 2008, 516: 2195-2202.
    [29]Jin Young Kim, Dong Wan Kim, Hyun Suk Jung, et al. Voltage-Tunable Dielectric Properties of Pyrochlore Bi-Zn-Nb-Ti-O Solid-Solution Thin Films [J]. Jpn. J. Appl. Phys., 2005, 44: 6648-6653.
    [30]Du Huiling and Yao Xi. Dielectric relaxation characteristics of bismuth zinc niobate pyrochlore containing titanium [J]. Physica B: Condensed Matter., 2002, 324: 121-126.
    [31]Ryosuke Kadono, Wataru Higemoto, Akihiro Koda, et al. Quasiparticle Excitation in the Superconducting Pyrochlore Cd2Re2O7 Probed by Muon Spin Rotation [J]. J. Phys. Soc. Jpn., 2002, 71: 709-712.
    [32]Hironori Sakai, Hiroyuki Ohno, Kazuyoshi Yoshimura, et al. Superconductivity in pyrochlore oxide Cd2Re2O7 [J]. Physica C: Superconductivity., 2002, 378-381: 43-46.
    [33]Shigeki Yonezawa, Yuji Muraoka, Yoshitaka Matsushita, et al. New Pyrochlre Oxide Superconductor RbOs2O6 [J]. Journal of the Physical Society of Japan., 2004, 73: 819-821.
    [34] Eguchi R, Yokaya T, Baba T, et al. Photoemission study of pyrochlore superconductor Cd2Re2O7 [J]. Phys. Rev. B, 2002, 66: 01256-4.
    [35]Sugita Twuyoshi, Arakawa Hironori. Study on the synthesis and photocatalytic property of pyrochlore type Bi2RNbO7(R: M3+) oxide semiconductorcompounds [J]. Nippon Kagakkai Koen Yokoshu., 2005, 85: 393.
    [36]Okamoto J, Mizokawa T, Fujimori A, et al. Photoemission study of electroci structure and metal-semiconductor transition in pyrochlore-type TI2Ru2O7 [J]. Physical Riview B. Condensed Matter and Materials Physics, 2004, 69: 035115.1-035115.6.
    [37] Ramesha K, Sebastian L, Eichhorn B, et al. Perovskite and Pyrochlore Modifications of Pb2MnReO6: Synthesis, Structure, and Electronic Properties [J]. Chem. Matter, 2003, 15: 668-674.
    [38] Sakai H, Yoshimura K , Ohno H, et al. Superconductivity in a pyrochlore oxide Cd2Re2O7 [J]. J. Phys. Condens. Matter, 2001, 13: L785.
    [39]Arimori T, Kawamura H. Ordering of the Antiferromagnetic Heisenberg Model on a Pyrochlore Slab [J]. J. Phys. Soc. Jpn., 2001, 79: 3695-3707.
    [40] Gardne J S, Ehlers G, Bramwell S T, et al. Spin dynamics in geometrically frustrated antiferromagnetic pyrochlores [J]. J. Phys.: Condens. Matter, 2004, 16: S643-651.
    [41]Hirokazu Tsunetsugu. Antiferromagnetic Quantum Spins on the Pyrochlore Lattice [J]. J. Phys. Soc. Jpn., 2001, 70: 640-643.
    [42]Petrenko O A, Lees M R, Balakrishnan G, et al. Magnetic phase diagram of the antiferromagnetic pyrochlore Gd2Ti2O7 [J]. Physical Review., 2003, 70: pp4.
    [43]Subramanian M A, Ramirez A P, Kwei G H, Colossal magnetoresistance behavior in manganese oxides: pyrocholre versus perovskite [J]. Solid State Ionics., 1998, 108: 185-191.
    [44] Subramanian M A, Toby B H, Ramirez A P, et al. Colossal Magnetoresistance Without Mn3+/Mn4+ Double Exchange in the Stoichiometric Pyrochlore TI2Mn2O7 [J]. Science, 1996, 273: 81-84.
    [45] Okamura H, Koretsune T, Matsunami M, et al. Charge dynamics in the colossalmagnetoresistance pyrochlore TI2Mn2O7 [J]. Physical Review B, 2001, 64: 180409-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700