几类非线性微分方程边值问题解的存在性及振动分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动力系统的概念,最早起源于十九世纪末,在经典力学和微分方程定性理论的研究中。动力系统是一种描述一个给定空间中的所有点随时间旅程的方法,关心的是微分方程解的长期行为。根据所研究的微分方程形式的不同,分为线性微分方程系统和非线性微分方程系统。对于线性系统,解的存在唯一性是显而易见的。但是对于非线性系统,情况比较复杂,并且也没有一种普遍适用的方法来求解非线性微分方程。所以研究非线性微分方程解的存在性就尤为重要。而微分方程边值问题,作为微分方程的一个重要分支,在力学、天文、物理中有着重要的应用,同时在化学、生物学、气象学、医学、经济学以及航空航天、水电能源、环境、动力和生物工程等领域中也有着广泛的应用。
     本论文研究动力学系统中几类非线性微分方程共振与非共振条件下的多点边值问题、二阶差分方程以及无穷区间上的微分方程边值问题、具有时滞分布的偶数阶带阻尼项的微分方程的振动分析以及奇异摄动非线性微分系统边值问题。讨论解的存在性和唯一性、正解和多个正解的存在性,以及解的振动性,渐进性等。主要工具是Mawhin迭合度定理、微分不等式理论、拓扑度理论、不动点定理、奇异摄动方法等。全文分五章。
     第一章介绍有关动力系统和微分方程边值问题以及非线性振动的背景知识和当前进展情况,对本文工作的创新之处作出说明。
     第二章通过对Bananch空间进行直和分解,构造合适的投影算子,并进行有效的先验界估计,运用Mawhin迭合度理论研究核空间维数为一和核空间维数为二的三阶微分方程多点共振边值问题、高阶微分方程多点共振边值问题以及高阶非局部共振边值问题的可解性。与已有的工作相比,本章运用新的方法,获得了新的结果。
     第三章运用上下解方法和Leray-Schauder度理论,研究具非线性边界条件的三阶微分方程多点边值问题解的存在性和唯一性。运用两对上下解方法研究非线性项依赖于高阶导数的n阶三点边值问题三解的存在性。我们研究问题的边界条件是非线性的,因而讨论的边值问题更具一般性。本章的结果推广和改进了已有的工作。
     第四章运用Leggett-Williams不动点定理,研究二阶差分方程多点边值问题,通过给出离散边值问题相应的Green函数,并讨论Green函数的性质,得到二阶离散边值问题的多个正解的存在性。类似地运用Leggett-Williams不动点定理,研究无穷区间上二阶微分方程边值问题,得到了三个正解的存在性。我们的结果推广了以前的工作。
     第五章运用广义的Riccati技巧、Hardy-Littlewood-Polya不等式研究具有时滞分布的偶数阶带阻尼项的微分方程的振动性,得到了一些新的振动性准则。运用微分不等式理论、不动点定理和奇异摄动理论研究二阶非线性奇异摄动微分系统边值问题。得到了解的存在性以及解的一致有效渐近估计。本章的主要结果推广和改进了已有文献的工作。
This dissertation is mainly concerned with multi-point boundary value problems of nonlinear differential equations with the resonance case and non-resonance case, discrete boundary value problems for difference equations, even-order distributed delay differential equations with damping and singularly perturbed boundary value problems for nonlinear differential systems. We study the existence of solutions and the uniqueness of solution, positive solutions and the multiplicity of positive solutions and the oscillation. The proofs of the results are based Mawhin's coincidence degree theorem, differential inequality technique, topology degree theory, fixed point theorems in cones and the methods of singular perturbation respectively.
     The whole thesis contains five chapters.
     The first chapter introduces concisely the historical situation, the present development and the research background of dynamical systems and boundary value problems for nonlinear differential equations and nonlinear oscillation, as well as the main work done in this thesis.
     Chapter 2 devotes to the study of the solvability of third order multi point boundary value problems at resonance with the case dim Ker L=1 and dim Ker L=2, respectively. We also discuss the solvability of multi point and nonlocal boundary value problems at resonance for higher order differential equations. The method is based upon the theory of Mawhin's coincident degree. The approaches are different from those used in the past and the results improve and extend what are given in the relevant literatures.
     In chapter 3, we first study a kind of third order boundary value problem with nonlinear multi-point boundary conditions. The existence and uniqueness of solutions are given by use of upon lower and supper solutions methods and the theory of Leray-Schauder degree. We also investigate the multiplicity of solutions for a n order three-point boundary value problem with nonlinear terms depending explicity on the higher order derivative. Compared with the work done by others, we mainly deal with more generalized nonlinear boundary conditions. Our results improve and extend some work in the past.
     In chapter 4, by applying Leggett-Williams fixed point theorem, the Green's function and exploring its properties, the existence of the multiplicity of positive solutions for second order difference equations with three-point boundary value problems is given. Similarly, the multiplicity of second order boundary value problems on infinite intervals is discussed. Our theorems include some available results as special cases.
     In chapter 5, by using the generalized Riccati technique and an inequality due to Hardy, Littlewood and Polya, several new oscillation criteria are established to even-order distributed delay differential equations with damping. We also apply differential inequality theory, fixed point theorem and singular perturbation theory to study the existence of solution and the asymptotic estimate of solution for a singularly perturbed three-point boundary value problem for nonlinear differential systems. The results obtained extend and improve earlier results in existing literature.
引文
[1]Hirsch M. W., Smale S., Devaney R. L. Differential Equations, Dynamical Systems, and Introduction to Chaos (Second Edition).微分方程,动力系统与混沌导论(第二版)[M].甘少波译,北京:人民邮电出版社,2008.
    [2]韩茂安.动力系统的周期解与分支理论[M].北京:科学出版社,2002.
    [3]张芷芬,丁同仁,黄文灶,董镇喜.微分方程定性理论[M].北京:科学出版社,1985.
    [4]Li Yong, Yi Yingfei, Persistence of lower dimensional tori of general types in Hamiltonian systems[J]. Trans. Amer. Math. Soc.,2005,357:1565-1600.
    [5]Li Yong, Yi Yingfei, Persistence of hyperbolic tori in Hamiltonian systems[J]. J. Differential Equations,2005,208:344-387.
    [6]郑连存,张欣欣,赫冀成,传输过程奇异非线性边值问题[M].北京:科学出版社,2003.
    [7]邓宗琦.常微分方程边值问题和Sturm比较理论引论(第二版)[M].武汉:华中师范大学出版社,1990.
    [8]He Jihuan. A simple perturbation approach to Blasius equation[J]. Appl. Math. Comput., 2003,140:217-222.
    [9]Krasnosel'skii M. A. Positive solutions of operator equations[M]. Noordhoff, Groningen,1964.
    [10]Agarwal R. P., O'Regan D. Singular Differential and Integral Equations with Applications[M]. Kluwer Academic Publishers, Dordrecht/Boston/London,2003.
    [11]Agarwal R. P., O'Regan D, Wong P. J. Y. Positive Solutions of Differential, Difference and Integral Equations[M]. Kluwer Academic Publishers, Boston,1999.
    [12]Il'in V. A., Moiseev E. I. Nonlocal boundary value problems of the first kind for a Strum-Liouville operator in its differential and finite difference aspects[J]. Differential Equations, 1987,23(7):803-810.
    [13]Il'in V. A., Moiseev E. I. Nonlocal boundary value problems of the second kind for a Strum-Liouville operator in its differential and finite difference aspects[J]. Differential Equations, 1987,23(8):979-987.
    [14]Gupta C. P. Solvabilty of a three-point nonlinear boundary value problems for a second order ordinary differential equation[J]. J. Math. Anal. Appl.,1992,168:540-551.
    [15]葛渭高.非线性常微分方程边值问题[M].北京:科学出版社,2007.
    [16]马如云.非线性常微分方程非局部问题[M].北京:科学出版社,2004.
    [17]钟承奎,范先令,陈文原.非线性泛函分析引论[M].兰州:兰州大学出版社,1998.
    [18]孙经先.非线性泛函分析及其应用[M].北京:科学出版社,2008.
    [19]Guo D., Lakshmikantham V. Nonlinear Problems in Abstract Cones[M], Academic Press, San Diego,1988.
    [20]J. Mawhin, Topological degree methods in nonlinear boundary value problems[M], NSFCBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 1979.
    [21]Landesman E. M., Laser A. C. Nonlinear perturbations of linear elliptic boundary value problems at resonance [J]. J. Math. mach.,1970,19(7):609-623.
    [22]Gupta C. P. Solvability of multi-point boundary value problems at resonance [J]. Results Math., 1995,28:270-276.
    [23]Gupta C. P. A second order m-point boundary value problem at resonance[J]. Nonlinear Anal. TMA,1995,24:1483-1489.
    [24]Gupta C. P. Existence theorems for a second order m-point boundary value problem at reso-nance[J]. Int. J. Math. Sci.,1995,18:705-710.
    [25]Gupta C. P. On a third-order boundary value problem at resonance [J]. Differential Intergral Equations,1989,2:1-12.
    [26]Feng. W., Webb J. R. L. Solvability of m-point boundary value problems with nonlinear growth[J]. J. Math. Anal. Appl.,1997,212:467-480.
    [27]Feng. W., Webb J. R. L. Solvability of three-point boundary value problems at resonance[J]. Nonlinear Anal. TMA,1997,30:3227-3238.
    [28]Su Jiabao. Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues [J]. Nonlinear Anal. TMA,2002,48 881-895.
    [29]Cai Guolan, Du Zengji, Ge Weigao. Periodic boundary value problem for first order impulsive differential equation at resonance[J]. Rocky Mountain J. Math.,2007,37(1):67-77.
    [30]Liu Bin, Yu Jianshe. Solvability of multi-point boundary value problem at resonance (Ⅰ)[J]. Indian J. Pure and Appl. Math.,2002,33:475-494.
    [31]Liu Bin. Solvability of multi-point boundary value problem at resonance (Ⅱ)[J]. Appl. Math. Comput.,2003,136:353-377.
    [32]Liu Bin, Yu Jianshe. Solvability of multi-point boundary value problem at resonance (Ⅲ) [J]. Appl. Math. Comput.,2002,129:119-143.
    [33]Liu Bin. Solvability of multi-point boundary value problem at resonance (Ⅳ)[J]. Appl. Math. Comput.,2003,143:275-299.
    [34]Ma Ruyun. Multiplicity results for a third order value problem at resonance[J]. Nonlinear Anal. TMA,1998,32:493-499.
    [35]Ma Ruyun. Multiplicity results for a three-point boundary value problems at resonance[J]. Nonlinear Anal. TMA,2003,53:777-789.
    [36]Du Zengji, Lin Xiaojie, Ge Weigao. On a third order multi-point boundary value problem at resonance [J]. J. Math. Anal. Appl.,2005,302(1):217-229.
    [37]Du Zengji, Cai Guolan, Ge Weigao. A class of third order multi-point boundary value prob-lem[J]. Taiwanese Journal of Mathematics,2005,9(1):81-94.
    [38]Du Zengji. Solvability of Functional Differential Equations with Multi-point Boundary Value Problem at Resonance [J]. Computers Math. Appl.,2008,55:2653-2661.
    [39]Cai Guolan, Du Zengji, Ge Weigao. Periodic boundary value problem for first order impulsive differential equation at resonance[J]. Rocky Mountain J. Math.,2007,37(1):67-77.
    [40]Cai Guolan, Du Zengji, Ge Weigao. On a class of second-order impulsive boundary value problem at resonance, Int. J. Mathematics and Mathematical Sciences,2006 (26512)(2006): 1-11.
    [41]Rachankove I., Stanek S. Topological degree method in functional boundary value problems at resonance[J]. Nonlinear Anal. TMA,1996,27:271-285.
    [42]Nagle R. K., Pothoven K. L. On a third-order nonlinear boundary value problems at reso-nance[J]. J. Math. Anal. Appl.,1995,195:148-159.
    [43]Krasnosel'skii A. M., Mawhin J. On some higher order boundary value problems at reso-nance[J]. Nonlinear Anal. TMA,1995,24:1141-1148.
    [44]Lin Xiaojie, Liu Wenbin, A nonlinear third order multi-point boundary value problem in the resonance case [J]. J. Appl. Math. Comput.,2009,29(1):35-51.
    [45]Du Zengji, Lin Xiaojie, Ge Weigao. Nonlocal Boundary Value Problem of Higher Order Ordi-nary Differential equations at Resonance[J]. Rocky Mountain J. of Mathematics,2006,36(5): 1471-1486.
    [46]Lin Xiaojie, Du Zengji, Weigao Ge. Existence of solutions for Higher Order Multi-Point Boundary Value Problems at Resonance[J]. Appl. Math. Mech.,2006,27(5):705-711.
    [47]Perera Kanishka, Schechter Martin, Computation of critical groups in Fu ci k resonance problems [J]. J. Math. Anal. Appl.,2003,279:317-325.
    [48]Ge Weigao, Ren Jingli. An extension of Mawhin's continution theorem and its applications to boundary value problems with a P-Lapalacian[J]. Nonlinear Anal. TMA,2004,58:477-488.
    [49]Chen J., Li W. Periodic solutions for 2kth boundary value problem with resonance [J]. J. Math. Anal. Appl.,2006,314:661-671.
    [50]Karakostas G.L., Tsamatos P.CH. Sufficient conditions for the existence of nonnegative solu-tions of a nonlocal boundary value problems [J]. Appl. Math. Lett.,2002,15:401-407.
    [51]Karakostas G.L., Palamides P.K. Nonlocal boundary vector value problems for ordinary differential systems of higher order [J]. Nonlinear Anal.,2002,51:1421-1427.
    [52]Kosmatov N. Multi-point boundary value problems on time scales at resonance[J]. J. Math. Anal. Appl.,2006,323:253-266.
    [53]Kosmatov N. A multi-point boundary value problem with two critical conditions[J]. Nonlinear Anal.2006,65:622-633.
    [54]Bai Zhanbing, Ge Weigao, Li Weiguo. Existence and multiplicity of solutions for four-point boundary value problems at resonance[J]. Nonlinear Anal.,2005,60:1151-1162.
    [55]Liu B., Zhao Z. A note on multi-point boundary value problems, Nonlinear Anal.[J].2007,67: 2680-2689.
    [56]Zhang Xuemei, Feng Meiqiang, Ge Weigao. Existence result of second-order differential equa-tions with integral boundary conditions at resonance[J]. J. Math. Anal. Appl.,2009,353: 311-319.
    [57]Meng Fanchao, Du Zengji. Solvability of a second-order multi-point boundary value problem at resonance [J]. Appl. Math. Comput.,2009,208(1):23-30.
    [58]Nagumo M. Uber die Differential gleichung y"=f(x, y, y')[J]. Proc. Phys. Math. Soc. Japan, 1937,19:861-866.
    [59]Ako K. Subfunctions for ordinary differential equations I[J]. J. Fac. Sci. Univ. Tokyo,1965, 9:17-43.
    [60]Ako K. Subfunctions for ordinary differential equations Ⅱ[J]. Funck. Ekvac., 1967, 10:145-162.
    [61]Ako K. Subfunctions for ordinary differential equations Ⅲ[J]. Funck. Ekvac,1968,11:111-129.
    [62]Gaines R. E. A priori bounds and upper and lower solutions for nonlinear second-order bound-ary value problems[J].. Journal of differential Equations,1972,12:291-312.
    [63]Jackson L. K. Subfunctions and second-order ordinary differential equations [J]. Adv. in Math., 1968,2:307-363.
    [64]Jackson L. K. Boundary value problems for ordinary differential equations, in "studies in Ordinary Differential Equations" (J.K. Hale, Ed.), MAA Studies in Mathematics, Vol.14 Mathematical Association of American, Washington, DC,1977.
    [65]Mawhin J. Topological degree methods in nonlinear boundary value problems, Regional Con-ference series in Mathematics, No.40, American Mathematical Society, providence, RI,1979.
    [66]Grossinho M. D. R., Minhos F. M. Existence result for some third order separated boundary value problems [J]. Nonlinear Anal. TMA,2001,47:2407-2418.
    [67]Rovderova E. Third-order boundary value problem with nonlinear boundary conditions[J]. Nonlinear Anal. TMA,1995,25:473-485.
    [68]Du Zengji, Ge Weigao, Lin Xiaojie. Existence of solutions for a class of third-order nonlinear boundary value problems [J]. J. Math. Anal. Appl.,2004,294(1):104-112.
    [69]Thompson H. B. Second order ordinary differential equations with fully nonlinear two point boundary conditions[J]. Pacific J. Math.,1996,172:255-276.
    [70]Henderson J., Thompson H. B. Existence of multiple solutions for second order boundary value problems[J]. Journal of differential Equations,2000,166:443-454.
    [71]Thompson H. B. Second order ordinary differential equations with fully nonlinear two point boundary conditions Ⅱ[J]. Pacific J. Math.,1996,172:279-297.
    [72]Pao C. V. On fourth-order elliptic boundary value problems[J]. Proc. Amer. Math. Soc. 2000,128:1023-1030.
    [73]Du Zengji, Xue Chunyan, Ge Weigao. Multiple Solutions for Three-Point Boundary Value Problem with Nonlinear terms Depending on the First Order Derivative[J]. Arch. Math., 2005,84:341-349.
    [74]Khan R. A., Webb J.R.L. Existence of at least three solutions of a second-order three-point boundary value problem[J]. Nonlinear Anal.,2006,64:1356-1366.
    [75]Du Zengji, Liu Wenbin, Lin Xiaojie. Multiple Solutions to a Three-Point Boundary Value Problem for Higher-Order Ordinary Differential Equations[J]. J. Math. Anal. Appl.,2007,335(2): 1207-1218
    [76]王国灿.某一类三阶非线性两点边值问题的解的存在性和唯一性[J].应用数学学报,1997,20(4):631-634.
    [77]刘文斌,李勇.三阶向量微分方程的非线性振动[J],应用数学学报,2004,4:723-729.
    [78]Ehme J., Eloe P. W., Henderson J. Upper and lower solution methods for fully nonlinear boundary value problems[J]. Journal of differential Equations,2002,180:51-64.
    [79]Jankowski T. Existence of Solutions Differential Equations with Nonlinear Multipoint Bound-ary Conditions[J]. Computers Math. Appl.,2004,47:1095-1103.
    [80]Lin Xiaojie, Du Zengji, Liu Wenbin. Uniqueness and Existence Results for a Third-Order Nonlinear Multi-point Boundary Value Problem[J]. Applied Mathematics and Computation, 2008,205(1):187-196.
    [81]Hartman P. Difference equations:Disconjugacy,principal solutions, Green's functions, complete monotonicity[J]. Trans. Amer. Math. Soc.,1978,246:1-30.
    [82]Elaydi S.N. An Introduction to Difference Equations (Second Edition([M]. Undergraduate Texts in Mathematics, Springer-Verlag, New York,1999.
    [83]Sun Jian-Ping. Positive solution for first-order discrete periodic boundary value problem[J]. Applied Mathematics Letters,2006,19:1244-1248.
    [84]Cheung Wing-Sum, Ren Jingli, Wong Patricia J.Y. Multiple positive solutions for discrete nonlocal boundary value problems[J]. J. Math. Anal. Appl.,2007,330:900-915.
    [85]Avery R.I., Chyan C.J., Henderson J. Twin solutions of boundary value problems for ordinary differential equations and finite difference equations [J]. Comput. Math. Appl.,2001,42:695-704.
    [86]Thompson H. B., Tisdell C. C. The Nonexistence of Spurious Solutions to Discrete, Two-Point Boundary Value Problems[J]. Appl. Math. Lett.,2003,16:79-84.
    [87]Agarwal R. P., Henderson J. Positive solutions and nonlinear eigenvalue problems for third-order difference equations[J]. Computers Math. Appl.,1998,36(10-12):347-355.
    [88]Lin xiaojei, Liu Wenbin. Three positive solutions for a second order difference equation with three-point boundary value problem[J]. J. Appl. Math. Comput.,2009,31(1):279-288.
    [89]Du Zengji. Positive solutions for a second-order three-point discrete boundary value prob-lem[J]. J. Appl. Math. Comput.,26 (2008) 219-231.
    [90]Kong Lingju, Kong Qingkai, Zhang Binggen. Positive solutions of third-order functional difference equations[J]. Computers Math. Appl.,2002,44:481-489
    [91]Zhang G., Yang Z. Positive solutions of a general discrete boundary value problem[J]. J. Math. Anal. Appl.,2008,339:469-481.
    [92]Ge Weigao, Ren Jingli. Fixed point theorems in double cones and their applications to nonlinear boundary value problems[J]. Chinese Ann. Math.,2006,27:155-168.
    [93]Ma Ruyun. Positive solutions of a nonlinear three-point boundary value problems[J]. Electron Journal of Differential Equations,1999,34(1):1-8.
    [94]He Xiaoming, Ge Weigao. Triple solutions for second order three-point boundary value problems [J]. J. Math. Anal. Appl.,2002,268:256-265.
    [95]Guo Yanping, Ge Weigao. Positive solutions for three-point boundary value problems with dependence on the first order derivative[J]. J. Math. Anal. Appl.,2004,290(1):291-301.
    [96]Agarwal R.P., O'Regan D. Infinite Interval Problems for Differential, Difference and Integral Equations[M]. Kluwer Academic Publisher,2001.
    [97]Lian Hairong, Pang huihui, Ge weigao. Solvability for second-order three-point boundary value problems at resonance on a half-line [J]. J. Math. Anal. Appl.,2008,337:1171-1181.
    [98]Ma Ruyun. Existence of positive solutions for second-order boundary value problem on infinite intervals [J]. Appl. Math. Lett.,2003,16:33-39.
    [99]Liu Y. S. Existence and unboundedness of positive solutions for singular boundary value problem on half-line[J]. Appl. Math. Comput.,2003,144:543-556.
    [100]Yan Baoqiang, Liu Yansheng. Unbounded solutions of the singular boundary value problem for second order differential equations on the half-line[J]. Appl. Math. Comput.,2004,147: 629-644.
    [101]林晓洁,杜增吉,刘文斌,无穷区间上的二阶边值问题的多解性[J].数学的实践与认识,2007,37(22):144-148.
    [102]Kusano T., Swanson C.A. Unbounded positive entire solutions of semilinear elliptic equa-tion[J]. Nonlinear Anal.10:853-861,1986.
    [103]Erbe L., Schmitt K. On radial solutions of some semilinear elliptic equations[J]. Differential Integral Equations,1:71-78,1988.
    [104]O'Regan D. Theory of Singular Boundary Value Problems[M]. Scientific World,1994.
    [105]Chen Shaozhu, Zhang Yong. Singular boundary value problems on a half-line [J]. J. Math. Anal. Appl.,1995,195:449-468.
    [106]Chen S.Z. Singular boundary value problem on a half-line [J]. J. Math. Anal. Appl.,1995,195: 449-468.
    [107]Jiang Daqing, Agarwal R. P. A uniqueness and existence theorem for a singular third-order boundary value problem on [0, ∞)[J]. Appl. Math. Lett.,2002,15:445-451.
    [108]Zima M. On positive solutions of boundary value problems on the half-line [J]. J. Math. Anal. Appl.,2001,259:127-136.
    [109]Hao ZhaoCai, Liang Jin, Xiao TiJun. Positive solutions of operator equations on half-line [J]. J. Math. Anal. Appl.,2006,314:423-435.
    [110]陈予恕.非线性振动[M].北京:高等教育出版社,2002.
    [111]刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.
    [112]陈树辉.强非线性振动系统的定量分析方法[M].北京:科学出版社,2007.
    [113]钱伟长.奇异摄动理论及其在力学中的应用[M].北京:科学出版社,1981.
    [114]O'Malley R. E. Singular Perturbation Methods for Ordinary Differential Equations[M]. Springer-Verlag, New York,1991.
    [115]Chang K. W, Howes F. A. Nonlinear Singular Perturbation Phenomena:Theory and Appli-cation [M]. Springer Verlag, New York,1984.
    [116]林宗池,周明儒.应用数学中的摄动方法[M].江苏:江苏教育出版社,1995.
    [117]Manojlovic J. V. Oscillation criteria for second-order half-linear differential equations[J]. Math. Comput. Modelling,1999,30:109-119.
    [118]Wang Qiru. Oscillation and asymptotics for second-order half-linear differential equations[J]. Appl. Math. Comput.,2001,122:253-266.
    [119]Yang Xiaojing. Oscillation results for second-order half-linear differential equations[J]. Math. Comput. Modelling,2002,36:503-507.
    [120]Agarwal R.P., Grace S.R., O'Regan D. Oscillation criteria for certain nth order differential equations with deviating arguments[J]. J.Math.Anal.Appl.,2001,262:601-622.
    [121]Li Wantong, Zhong Chengkui, Fan Xianling. Oscillation criteria for second order hall-linear ordinary differential equations with damping[J]. Rocky Mount.J.Math.,2003,33:927-951.
    [122]Long Qi, Wang QiRu. New oscillation criteria of second-order nonlinear differential equa-tions[J]. Appl. Math. Comput.,2009,212:357-365.
    [123]Li H.J., Yeh C.C. A integral criterion for oscillation of nonlinear differential equations[J]. Math. Japonica,1995,14:185-188.
    [124]Karpuz B., Manojlovic J.V., Ocalan O., Shoukaku Y. Oscillation criteria for a class of second-order neutral delay differential equations[J]. Appl. Math. Comput.,2009,210:303-312.
    [125]Dosly O. Oscillation criteria for half-linear second order differential equations, Hiroshima Math. J.,1998,28:507-521.
    [126]Hong H.L., Lian W.C., Yeh C.C. The oscillation of half-linear second order differential equa-tions with an oscillatory coefficient[J]. Math. Comput. Modelling,1996,24(7):77-86.
    [127]Hsu H.B., Yeh C.C. Oscillation theorems for second order half-linear differential equations[J]. Appl.Math.Lett.,1996,9:71-77.
    [128]Kandelaki N., Lomtatidze A., Ugulava D. Oscillation and nonoscillation criteria of a second order half-linear differential equations[J]. Georgian Math. J.,2000,7:1-19.
    [129]Li H.J., Yeh C.C. Sturmian comparison theorem for half-linear second order differential equa-tions [J]. Pro. Roy. Soc. Edinburgh.,1995,125A:1193-1204.
    [130]Wang Peiguang, Ge Weigao. Oscillation of a class of higher order functional differential equations with damped term[J]. Appl. Math. Comput.,2004,148:351-358.
    [131]Philos Ch. G. A new criterion for the oscillatory and asymptotic behavior of delay differential equations [J]. Bull. Acad. Pol. Sci. Ser. Sci. Math.,39 (1981) 61-64.
    [132]G. H. Hardy, J. E. Littlewood and G. Polya, "Inequalities",2nd ed., Cambridge Univ. Press, Cambridge, UK,1988.
    [133]Charles G. Lange, Robert M. Miura. Singular Perturbation Analysis of Boundary Value Problem for Differential-Difference Equations v. Small Shifts with Layor Behavior [J]. SI AM J. Appl. Math.54(1) (1994):249-272.
    [134]Howes F. A. The asymptotic solution of a class of third-order boundary value problem arising in the theory of thin film flow[J]. SIAM J.Appl.Math.,1983,43:993-1004.
    [135]Zhao Weili, Singular perturbations of boundary value problems for a class of third-order nonlinear ordinary differential equations[J]. Journal of Differential Equations,1990,88:265-278.
    [136]Valarmathi S., Ramanujam N. An Asymptotic Numerical Method for Singular Perturbed Third-Order Differential Equations of Convection-Diffusion Type[J]. Comput. Math. Appl., 2002,44:693-710.
    [137]Du Zengji, Ge Weigao, Zhou Mingru. Singular Perturbations for Third-Order Nonlinear Multi-point Boundary Value Problem[J]. Journal of Differential Equations.2005,218(1): 69-90.
    [138]Du Zengji. Singular Perturbation for Third-Order Nonlinear Systems of Boundary Value Problem[J]. Appl.Math. Comput.,2007,189:869-877
    [139]Du Zengji, Bai Zhanbing. Asymptotic Solutions for A Second-Order Differential Equation with three-point Boundary Conditions[J]. Appl. Math. Comput.,2007,186(1):469-473.
    [140]Elias U, Gingold H. Effects of Varying Nonlinearity and Their Singular Perturbation Flavour [J]. J. Math. Anal. Appl.,2000,248(1):309-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700