K465镍基合金叶片电子束钎焊修复及裂纹控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空工业中所使用的镍基高温合金叶片的焊接修复一直是连接领域研究的热点和难点之一,本文对K465镍基高温合金叶片的电子束钎焊修复进行了研究。K465镍基高温合金的焊接性较差,而电子束钎焊是一种局部加热的钎焊方法,在焊接过程会产生较大的热应力,焊后接头极易产生裂纹。因此,在综合分析接头界面反应产物含量及分布规律的基础上,结合焊接热应力的分布特征,针对K465镍基高温合金叶片的修复,提出了一种控制热输入的电子束钎焊修复方法,实现了K465镍基高温合金叶片电子束钎焊的无裂纹修复。
     钎料的研制与选用是K465镍基高温合金电子束钎焊连接的关键问题,考虑电子束钎焊K465合金对钎料的性能要求,采用机械合金化方法制备了一种适合电子束钎焊K465镍基高温合金的高温和高性能镍基钎料。通过电子束钎焊工艺参数对BNi-2、Bпp27和自制1号三种钎料铺展面积影响和不同钎料接头力学性能的研究,选择了自制1号钎料进行真空电子束钎焊研究。
     通过对采用自制1号钎料的K465镍基高温合金电子束钎焊接头界面反应产物的分析,发现电子束钎焊的工艺参数对界面反应产物的形成和分布有直接影响。焊接修复的界面共生成五种反应产物,它们分别是:镍基γ固溶体、Ni2Si、Ni3B、Ni3Si和Ni3Al相。
     试验结果表明,当电子束钎焊工艺参数改变时,接头界面产物的种类并未发生改变,但对界面产物的形态与数量影响较大。当电子束钎焊束流较小或加热时间较短时,镍基γ固溶体在钎焊接头界面中所占的比例较大;当电子束钎焊束流较大或加热时间较长时,Ni2Si、Ni3B、Ni3Si和Ni3Al钎焊接头界面中所占的比例增加,界面中的基体相镍基γ固溶体所占的比例减少,块状的Ni2Si尺寸变大,分布较集中,主要分布在接头界面和母材的交界处。
     研究了工艺参数对接头抗拉强度和断裂部位的影响。结果表明,接头的抗拉强度随着束流和加热时间的增加而升高,当强度达到最大值后,随着束流和加热时间的增加反而降低。在本试验条件下,当束流为2.7mA、加热时间为200s和聚焦电流为1800mA时,接头的最大抗拉强度为760MPa,可达母材强度的82%。
     K465镍基高温合金开非贯通槽叶片模拟件电子束钎焊修复接头极易产生裂纹,裂纹大多起裂于焊缝或接头界面附近的母材上,整体沿着纵向穿过钎缝,其主要原因是热应力较大。拉伸断裂往往发生在钎缝和近缝母材处,为脆性穿晶断裂。而开贯通槽叶片模拟件很少产生裂纹。
     通过对开非贯通槽叶片模拟件的分析,得到了产生宏观裂纹所对应的冷却时间,并计算了此时的温度和应力分布,发现距试件中心1.3~2.4mm是应力集中区域,且沿Y轴σY方向比X轴σX方向应力值较大,最高可达935MPa,裂纹绝大多数均沿X轴方向分布。对比非贯通槽和贯通槽叶片模拟件的X轴σX方向和Y轴σY方向的应力分布,发现相同位置具有贯通槽试件的应力小于非贯通槽试件。室温时由于接头中仍有826MPa的残余拉应力,从而使开贯通槽试件接头在低应力下拉伸断裂。
     根据上述研究结果,本文提出一种束流逐级跃迁热输入控制电子束钎焊K465镍基高温合金叶片无裂纹修复方法:即采用焊前逐级增加束流的预热和焊后逐级减少束流的方式调控焊接热循环曲线,缓解和释放热应力。采用该方法最终获得了K465镍基高温合金叶片模拟件电子束钎焊修复无宏观裂纹接头。并采用X射线衍射技术测定了束流逐级跃迁热输入控制电子束钎焊接头的残余应力场分布。
     采用局部束流逐级跃迁热输入控制电子束钎焊修复方法实现了K465镍基高温合金非贯通槽和贯通槽叶片的无裂纹修复。对修复后的叶片进行X射线探伤,结果未发现裂纹和其它焊接缺陷。
Ni-base superalloy blades welding repair always serves as one of the hot and difficult issues in the joining fields. The K465 Ni-base superalloy blades repairing by vacuum electron beam brazing (VEBB) has been studied in this paper. The weldability of K465 alloy is poor, and VEBB is a method only for local heating, these two factors induce the generation of heat stress in the joints during brazing and hot cracks easily formation in the joints after brazing. Therefore, basing on the analysis of composition and distribution of the interfacial reaction products of the joints and heat stress distribution during brazing, a beam current gradual transition heat input control VEBB repair method of K465 Ni-base superalloy blades has been developed, and the crack-free joints of K465 Ni-base superalloy blades have been obtained by VEBB repair.
     Development and choice of the filler metal is the key factor of VEBB K465 Ni-base superalloy. Considering the requirement of VEBB on the filler metal, a new Ni-base filler metal with good high temperature property is developed by mechanical alloying. The effect of VEBB parameters on the spreading area and the mechanical property of the joints with BNi-2, Bпp27 and No.1 self-made filler metal were carried out, No.1 self-made filler metal was chosen as the filler metal for VEBB study.
     According to the experimental results of interface reactions on the K465 Ni-base superalloy interface, it was found that the VEBB parameters had a direct effect on the formation and distribution of the interface reaction products. There are five reaction products in the repaired joints interface, they are Ni-baseγsolid solution, Ni2Si, Ni3B, Ni3Si and Ni3Al.
     The experimental results show that interface reaction products do not change with the electron beam brazing parameters varying, but shape and quantity of reaction products are effectively affected. When the electron beam current is small or heating time is short, the quantity of Ni-baseγsolid solution is large in the brazed joint interface. While the electron beam current is large or heating time is long, the content of Ni2Si, Ni3B, Ni3Si and Ni3Al increases, but the content of Ni-baseγsolid solution decreases in the brazed joint interface. At the same time, the size of Ni2Si become larger, and the distribution of Ni2Si is concentrated on interface between filler metal and base material.
     Effects of brazing parameters on joint tensile strength and fracture position are investigated. The joint strength improves as the electron beam current and heating time increase. When the strength comes to the maximum, it declines with the electron beam current and heating time increase. In this work, the largest tensile strength could reach 760MPa, 82 percent of that of base material, when the current is 2.7mA, heating time is 200s and focus current is 1800mA.
     Hot cracks easily occurred during VEBB repairing K465 Ni-base superalloy simulating blades with non-through slot. Mostly, cracks occur from the seam and base metal next to the joining interface, then the cracks go along the whole seam. This is mainly because the hot stress is large. Tensile fractures usually appear at the seam and base metal near the seam, which belong to brittle transcrystalline fracture. While simulating blades with through slot rarely produce cracks.
     The cooling time of crack initiation was got by analyzing simulating blades with non-through slot. The distribution of temperature and stress was calculated. The results showed that stress concentration area was 1.3~2.4mm away from the center of the specimens. And the stressσY in Y axis direction was higher thanσX in X axis direction, the maximum tensile stress reached to was 935MPa. Most of the cracks were in X axis direction. Comparing the tensile stress distribution ofσX in X axis direction andσY in Y axis direction of simulating blades with non-through and through slot, the tensile stress of simulating blades with non-through slot was less than that of simulating blades with non-through slot at the same position. The residual tensile stress in the joints was 826MPa, resulting in low stress fracture of the through slot specimens joints.
     According to the above results, a beam current gradual transition heat input control method was developed, which could obtain crack-free joints of of K465 Ni-base superalloy blades by VEBB. The procedure as follows: application of brazing preheating step-by-step increasing beam current and step-by-step decreasing beam current slow-cooling after brazing, which were used to control brazing thermal cycle and release the heat stress. Finally, macro crack-free joints of K465 Ni-base superalloy simulating blades with non-through slot have been obtained by this method. X-ray diffraction was applied to measure the residual stress distribution by beam current gradual transition heat input control method.
     The crack-free joints of K465 Ni-base superalloy blades with non-through slot and through slot were repaired by beam current gradual transition heat input control VEBB method. The results showed there was no crack or any other welding defects by X-ray detection.
引文
1徐强,张幸红,韩杰才,赫晓东.先进高温材料的研究现状和展望.固体火箭技术. 2002, 25(3):51-52
    2罗晓娜,刘金合,康文军,马铁军.新型高温合金IC10的焊接研究进展. 热加工工艺. 2008, 37(3):101-103
    3 Ojo O A, Richards N L, Charturvedi M C. Mcrostructural study of weld fusion zone of TIG welded IN738LC nickel-based superalloy. Scripta Materialia. 2004, 51 :683-688
    4关桥.发动机叶片与部件修复工程中的焊接技术(上).航空制造技术.1993, (2):2-12
    5关桥.发动机叶片与部件修复工程中的焊接技术(下).航空制造技术.1993(3):2-9
    6材料科学和技术综合专题组. 2020年中国科学和技术发展研究(上). 2004:183-184
    7 Collins M G, Ramirez A J, Lippold J C. An investigation of ductilitydip crackingin nickle based weld metals partⅠ. Welding Journal. 2003, 82 (10) :288-295
    8孙护国,霍武军.航空发动机涡轮叶片修理技术.航空工程与维修. 2001, (6):12-14
    9白瑞金,张利国.涡轮叶片修复及其市场分析.航空制造技术. 2002, (12):37-40
    10 Sidhu R K, Ojo O A, Richards N L, Chaturvedi M C. Metallographic and OIM study of weld cracking in GTA weld build-up of polycrystalline, directionally solidified and single crystal Ni based superalloys. Science and Technology of Welding and Joining. 2009, 14(2):125-131
    11 Gon?alves E Silva, Régis Henrique, Dutra Jair Carlos. Thermal-pulsed MIG/MAG welding applied to the repair of cavitation erosion on large-scale hydraulic turbines. Welding and Cutting. 2009, 8(1): 27-30
    12 Mattheij, J H G.. Role of brazing in repair of superalloy components-advantages and limitations. Materials Science and Technology. 1985, 1(8): 608-612
    13 McGraw Julie, Van Deventer George, Anton Reiner, Burns Andrew. Advancements in gas turbine vane repair. American Society of Mechanical Engineers. 2006:1-5
    14 Miglietti Warren M. Curtis Rich. Helm John. Rejuvenation heat treatments and their role in the repair of IN738 turbine components. American Society of Mechanical Engineers. 2002, 3: 1197-1212
    15 Mokadem S, Bezen?on C, Hauert A, Jacot Alain, Kurz W. Laser repair of superalloy single crystals with varying substrate orientations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2007, 38(7):1500-1510
    16 Anderson T, DuPont J, DebRoy T. Laser weld repair of single crystal Ni-base superalloys. Materials Science and Technology Conference and Exhibition. 2007, 5: 3165-3174
    17 Wangyao P, Krongtong V, Panich N, Chuankrerkkul N, Lothongkum G.. Effect of 12 heat treatment conditions after HIP process on microstructural refurbishment in cast nickel-based superalloy, GTD-111.2007, 26(2):151-159
    18 De Jouvancourt H, Record M C, Marin-Ayral R M. Effects of platinum concentration on combustion synthesis of NiAl: Application in repairing Ni based superalloys. Materials Science and Technology. 2007, 23(5):593-599
    19 Durocher J, Richards N L. Characterization of the micro-welding process for repair of nickel base superalloys. Journal of Materials Engineering and Performance. 2007, 16(6):710-719
    20 Yang P, Turman B N. Braze microstructure evolution and mechanical properties of electron beam joined ceramics. Materials Chemistry and Physics, 2000, 64(2): 137- 146
    21 Jan Felba, Kazimierz P F. Electron beam activated brazing of cubic boron nitride to tungsten carbide cutting tools. Vacuum, 2001, 62(2):171- 180
    22李少青,张毓新,芦凤桂,姚舜.电子束钎焊接头组织分析.材料科学与工艺, 2006, 2(14):137-140
    23解瑞军,陈芙蓉,刘军,李军民.不锈钢电子束钎焊和真空钎焊接头显微组织研究.内蒙古工业大学学报(自然科学版). 2008, 27(1):30-34
    24王学东,刘鹏,王伟.电子束钎焊接头温度计算机控制系统.焊接学报. 2008, 29(12):81-84
    25刘方军,毛智勇,陈刚,左从进.不锈钢管板接头的电子束钎焊研究.第九次全国焊接会议论文集(第1册). 1999:561-564.
    26王学东,姚舜.扫描轨迹可控的电子束钎焊.焊接学报, 2004, (06) .
    27 Chen Yunxia, Zhang Yuxin, Yao Shun, Lu Fenggui. Scanning electron beam brazing of thin-wall capillary tube-sheet structure. Journal of Materials Processing Technology. 2008, 203(1):301-304
    28王学东,姚舜.电子束钎焊温度模糊控制系统.焊接学报, 2006, 27(05):73-76
    29李少青,王学东,张毓新,芦凤桂,姚舜.基于虚拟仪器的真空电子束钎焊系统.航空制造技术. 2007, (4):76-79
    30 Flom Yury, Electron beam brazing for in-space construction. Welding Journal, 2007, 86(1):33-37
    31张朴,王丹,孔力,程晶晶,胡刚.基于CCD的图像采集在温度场中的应用.微计算机信息. 2007, (7):77-78
    32沈宏谋.变频外转子永磁电机转子的真空电子束钎焊.微特电机, 1995, (3):41-42
    33李少青,张毓新,王学东.基于电子束扫描控制的中间层熔炼技术.上海交通大学学报. 2005, 39(11):1771-1774
    34刘昕,胡刚,毛智勇.不锈钢方管套接接头电子束钎焊微观组织分析.热加工工艺, 2005, (10):42-43
    35张秉刚,冯吉才,吴林.鉻青铜与双相不锈钢电子束熔钎焊接头形成机制.焊接学报. 2005, 26(2):17-20
    36王学东,李少青,姚舜.电子束钎焊温度场PID控制系统材料科学与工艺. 2007, 15(2):241-243
    37 B hr M, Hoffmann G, Ludwig R. New scan and control system for high power electron beam techniques. Surface and Coatings Technology. 1998, 98(1-3):1211-1220
    38 Dupak J, Vlcek I, Zobac M. Electron gun for computer-controlled welding of small components.Vacuum. 2001, 62(2-3):159-164
    39王学东,李少青,姚舜.电子束钎焊的能量密度控制方法.焊接. 2005, (6):21-24
    40 Voth T E, Gianoulakis S E, Halbleib J A. Thermal response of ceramic components during electron beam brazing. American Society of MechanicalEngineers. 1996, 323(1):185-192
    41 Goodman D L, Birx D L. High energy electron beam processing experiments with induction accelerators. Nuclear Instruments and Methods in Physics Research. 1995, 99(1-4):775~779
    42 Igor L P, Alexey A S, Irina G. N. Investigation of contact phenomena at cubic boron nitride-filler metal interface during electron beam brazing. Diamond and Related Materials. 1997, 6(8):1067~1070
    43 Felba Jan, Friedel Kazimierz P, Krull Peter, Pobol Igor L, Wohlfahrt Helmut. Electron beam activated brazing of cubic boron nitride to tungsten carbide cutting tools. Vacuum. 2001, 62(2-3):171-180
    44解瑞军,陈芙蓉.不锈钢电子束钎焊接头显微组织和力学性能研究.焊接技术, 2006, 35(6):7-8
    45 Li Junmin, Chen Furong, Liu Jun, Xie Ruijun, Hu Gang. Microstructure and mechanical property of electron beam brazing and vacuum brazing joints of stainless steel. Materials Science Forum. 2006, 532-533:564-567
    46李少青,张毓新,芦凤桂,姚舜.不锈钢管板接头电子束钎焊.焊接学报. 2005, 26(4):73-75
    47李少青,张毓新,梁智.真空电子束钎焊工艺研究.焊接技术, 2004, 33(1): 27~29
    48刘昕,胡刚,毛智勇.不锈钢方管套接接头电子束钎焊微观组织分析.热加工工艺, 2005, (10):42~43
    49刘昕,胡刚,李晋伟,毛智勇.不锈钢套管接头电子束钎焊的组织分析.焊接技术. 2005, 34(6):16-18
    50刘昕,胡刚,毛智勇.不锈钢方管电子束钎焊工艺及组织分析.长春工程学院学报(自然科学版), 2005, 2(6):25-27
    51张秉刚,冯吉才,吴林.鉻青铜与双相不锈钢电子束熔钎焊接头形成机制.焊接学报. 2005, 26(2):17-20
    52张秉刚,何景山,冯吉才,吴林,杨卫鹏,朱春玲,李宏伟.铬青铜与双相不锈钢电子束焊接头组织及形成.中国有色金属学报. 2004, 14(09):1569-1574
    53张秉刚,冯吉才,吴林,何景山,杨卫鹏,朱春玲.铬青铜与双相不锈钢异种材料电子束熔钎焊.焊接学报. 2004, 25(04): 43-45
    54张秉刚,何景山,冯吉才,吴林.铬青铜与双相不锈钢偏钢电子束焊接头组织及相构成.焊接学报. 2005, 26(11):89-92
    55张秉刚,冯吉才,吴林,何景山,李宏伟,杨卫鹏,朱春玲.钢侧束偏量对QCr0.8/1Cr21Ni5Ti电子束焊接头组织性能的影响.焊接. 2004, (6):14-17
    56黄哲赟,项明,梁智.真空电子束钎焊温度场模拟.宇航材料工艺. 2004, (6):53~57
    57李少青,梁智,芦凤桂.扫描电子束钎焊温度场数值分析.机械工程材料, 2006, 30(1):26~29
    58黄哲赟,项明,梁智.真空电子束钎焊温度场模拟[J].宇航材料工艺,2004, (6):53~57
    59梁智,张毓新,芦凤桂,王学东,李少青.不锈钢毛细管管板接头真空电子束钎焊温度场模拟.航空制造技术. 2004, (9):62-64
    60李少青,张毓新,王学东,芦凤桂,姚舜.四毛细管-板结构件扫描电子束钎焊.机械工程材料. 2006, 30(02):16-18
    61陈芙蓉,刘军,董俊慧.不锈钢电子束钎焊应力场数值计算. 2005年国际材料科学与工程学术研讨会论文集, 2005:660~663
    62许鸿吉,田世英,谢明,郭德伦,李从卿.高温合金GH4169氩弧焊接头的高温组织和力学性能.大连铁道学院学报. 2006, 27(3):77-79
    63 Banerjee K, Richards N L, Chaturvedi M C. Effect of filler alloys on heat-affected zone cracking in preweld heat-treated IN-738 LC gas-tungsten-arc welds. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2005, 36(7):1881-1890
    64 Sidhu R K, Richards N L, Chaturvedi M C. Effect of filler alloy composition on post-weld heat treatment cracking in GTA welded cast Inconel 738LC superalloy. Materials Science and Technology, 2008, 24(5):529-539
    65熊建钢,胡乾午,吴丰顺,李志远,段爱琴;镍基高温合金激光焊接接头组织及裂纹形成原因应用激光. 2001, 21(5):309-312
    66熊建钢,胡席远,陈祖涛,胡伦骥.激光焊接铸造镍基高温合金工艺研究.中国激光. 1996, 23(12):1107-1111
    67 Ferro Paolo, Zambon Andrea, Bonollo Franco. Investigation of electron-beam welding in wrought Inconel 706 - Experimental and numerical analysis. Materials Science and Engineering. 2005, 392(1-2):94-105
    68 Sundararaman M, Potdar P J. Microstructural investigations of electron beam welded alloy 718. Proceedings of the International Symposium on Superalloysand Various Derivatives. 2005: 477-486
    69 Neminathan P V, Mohandas T. Mechanical properties of 718 inertia weld and its comparison with EBWProceedings of the International Symposium on Superalloys and Various Derivatives. 2005: 699-707
    70韦新华.高温合金GH3030的TIG焊.焊接, 1999, 5: 38-39.
    71吴军,李亮.激光焊及其在国外汽车生产上的应用.武汉汽车工业大学学报, 2000, 22(6): 33-36.
    72 Pang Ming, Yu Gang, Wang Heng-Hai, Zheng Cai-Yun. Microstructure study of laser welding cast nickel-based superalloy K418. Journal of Materials Processing Technology. 2008, 207(1-3): 271-275
    73 Radhakrishna Ch, Rao K Prasad. Effect of heat input on microstructural changes in superalloy 718 welds. Praktische Metallographie/Practical Metallography. 1995, 32(10): 506-512
    74 Vishwakarma Krutika, Chaturvedi Mahesh. A study of HAZ microfissuring in a newly developed Allvac? 718 PLUS superalloy. Proceedings of the International Symposium on Superalloys. 2008:241-250
    75 Lachowicz Maciej, Dudzinski Wodzimierz, Podrez-Radziszewska Marzena. TEM observation of the heat-affected zone in electron beam welded superalloy Inconel 713C. Materials Characterization. 2008, 59(5): 560-566
    76朱丹平,刘伟平.加压燃烧原位合成NiAl连接Ni基高温合金.焊接2002. (3):14-16
    77 Shujie Li, Huiping Duan, Shen Liu. Interdiffusion involved in SHS welding of SiC ceramic to iteelfand to Ni-base superalloy. International Journal of Refractory Metals&Hard Materials. 2000, (18):33~37
    78毛信孚,傅莉,谢伟,毛正岩. Inconel625合金摩擦焊接工艺研究.航空精密制造技术. 2006, 42(6): 44-47
    79李付国,聂蕾,李庆华,段立宇. GH4169合金惯性摩擦焊接过程组织计算与预测.焊接学报. 2002, 23(1): 30-33
    80 Ekrami A, Moeinifar S, Kokabi A H. Effect of transient liquid phase diffusion bonding on microstructure and properties of a nickel base superalloy Rene 80. Materials Science and Engineering A. 2007, 456(1-2): 93-98
    81 Saha R.K, Wei S, Khan T I. A comparison of microstructural developments in TLP diffusion bonds made using ODS Ni alloy. Materials Science andEngineering A. 2005, 406(1-2): 319-327
    82 Payton Lewis N, Aluru Rajeev, Gale William F, Sofyan Nofrijon I, Krishnardula Venu G., Butts Daniel A, Chitti Subhadravalli V, Zhou Tao. Microstructural development and relationship to mechanical properties in polycrystalline to single crystal nickel-base superalloy transient liquid phase (TLP) bonds. ASM Conference Proceedings: Joining of Advanced and Specialty Materials. 2005: 85-90
    83 Brochu M, Pugh M, Drew R.A.L. Partial Transient Liquid Phase Bonding of Silicon Nitride to Iron Aluminide Alloy. ASM Conference Proceedings: Joining of Advanced and Specialty Materials. 2001: 44-50
    84冀小强,李树杰,马天宇,张艳.用Zr/Nb复合中间层连接SiC陶瓷与Ni基高温合金.硅酸盐学报. 2002, 30(3):305-309
    85 Shujie Li, Ying Zhou, Huiping Duan. Wettablity and interfacial reaction in SiC/Ni plus Ti system. Journal of Materials Science. 2002, (37):2575~2579
    86 Hyoung-Ken Lee, Sun-Hyo Hwang, Jai-Young Lee. Effects of the relative contents of silver and copper on the interfacial reactions and bond strength in the active brazing of SiC. Journal of Mater Sci. 1993, (28) :1765~1774
    87 Liu H J, et al. Interface structure and formation mechanism of diffusion-bonded joints of SiC ceramic to TiAl-based alloy. Script Materialia. 2000, (43):49~53
    88 Kim D H. The wetting, reaction and bonding of silicon nitride by Cu-Ti alloys .J Mater Sci.1991, (26):3223~3234
    89 Saida K, Song W, Nishimoto K. Laser brazing of alloy 600 with precious filler metals. SCIENCE AND TECHNOLOGY OF WELDING AND JOINING. 2006, 11(6):694-700
    90 Su C Y, Chou C P, Wu B C, Lih W C. Plasma transferred arc repair welding of the nickel-base superalloy IN-738LC. Journal of Materials Engineering and Performance. 1997, 6(5): 619-627
    91李晓莉,刘文今,钟敏霖.高温合金K403的激光熔敷研究.应用激光, 2002, 22(3):283~286
    92周卓华,朱蓓蒂.铸造镍基K3合金的激光熔覆开裂及工艺研究.材料工程. 1996,(1):32-35
    93 C Bezenn A, Schnell and W Kurz. Epitaxial deposition of MCrAlY coatingson a Ni-base superalloy by laser cladding. Scripta Materialia. 2003, 49(7):705-709
    94刘其斌,李绍杰.航空发动机叶片铸造缺陷激光熔覆修复层的组织结构.金属热处理. 2007, (05)
    95孙鸿卿,钟敏霖,刘文今,何金江,李晓莉,朱晓峰.定向凝固镍基高温合金上激光熔覆Inconel738的裂纹敏感性研究.航空材料学报. 2005,(02)
    96吴祥海,李绍杰,刘其斌.工艺参数对航空发动机叶片激光熔覆开裂敏感性的影响.现代机械. 2005, (1):76~78
    97吴国林.烟气轮机叶片堆焊修复.石油化工设备. 2002,31(6):50~51
    98 Pascal C, Marin-ayral R M, Tedenac J C. Joining of nickel monoaluminide to a superalloy substrate by high pressure self-propagating high-temperature synthesis. Journal of Alloys and Compounds, 2002, 337(1-2): 221-225.
    99 Pascal C, Marin-Ayral R M, Simultaneous synthesis and joining of a nicraly layer to a superalloy substrate by self-propagating high-temperature synthesis. Journal of Materials Synthesis and Processing. 2001, 9(6):375-381
    100 Messler Jr, Robert W, Orling Timothy T. Process parameter effects in pressurized combustion synthesis or reactive joining. Journal of Materials Synthesis and Processing. 1994, 2(5):315-328
    101 Su C Y, Lih W C, Chou C P. Tsai H C. Activated diffusion brazed repair for IN738 hot section components of gas turbines. Journal of Materials Processing Technology. 2001, 115(3): 326-332
    102 Yi H C, Moore J J. Review self-propagating high-temperature synthesis of powder-compacted materials. Journal of Materials Science, 1990, 25(5): 1159-1168.
    103李树杰,刘深,段辉平,张永刚,吴晨刚,党紫九,张艳. SiC陶瓷/ SiC陶瓷及SiC陶瓷/Ni基高温合金SHS焊接中的界面反应及微观结构研究.硅酸盐学报, 1999, 27(6): 757-762.
    104 Orling T T, Messler Jr R W. Funda mentals of the SHS joining process. In: Carim A H, Schwarta D S, Silberglitt R S. Proceeding of the 1993 MRS symposium on joining and adhesion of advanced inorganic materials. Pittsburgh: 314, MRS, 1993, 177-183.
    105 Messeler Jr R W, Zurbuchen M A, Orling T T. Welding with self-propagating high-temperature synthesis. Welding Journal, 1995, 74(10): 37-41.
    106 Pascal C, Marin-ayral R M, Tedenac J C. Joining of nickel monoaluminide to a superalloy substrate by high pressure self-propagating high-temperature synthesis. Journal of Alloys and Compounds, 2002, 337(1-2): 221-225.
    107张启运,庄鸿寿.钎焊手册.机械工业出版社. 1998: 314-323
    108黄乾尧,李汉康.高温合金.冶金工业出版社. 2000: 9-57
    109新宫秀夫.メカニカルワロイニクの热力学.日本金属学会会报. 1988, 27(10):805
    110李凡,吴炳尧.机械合金化─新型的固态合金化方法.机械工程材料. 1999, 23(4): 22
    111 N. Bekris, C. Caldwell-Nichols, E. Hutter. Cold trap and cryogenic molecular sieve adsorber: components for tritium extraction from the purge gas of the HCPB-breeder blanket for ITER. Fusion Engineering and Design. 2003, 69(1-4): 21-25
    112 D. Murdoch, N. Bekris. EU contribution to ITER CTA fuel cycle design and R&D. Fusion Engineering and Design. 2003, 69(1-4): 45-49
    113庄鸿寿, E罗格夏特.高温钎焊.国防工业出版社. 1989:72-88
    114 http://www.crct.polymtl.ca/fact/documentation/SGTE/SGTE_Figs.htm. SGTE - SGTE Alloy Phase Diagrams在线合金二元相图数据库. Centre for Research in Computational Thermochemistry (CRET)
    115武传松.焊接热过程数值分析.哈尔滨工业大学出版社, 1990:24~26
    116俞汉清,陈金德.金属塑性成成形原理.机械工业出版社, 1999: 34~126
    117张定铨,何家文.材料中残余应力的X射线衍射分析和作用.西安交通大学出版社. 1999:3-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700