层状Ti_3AlC_2的燃烧合成及其性能研究32
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti 3 AlC2是MAX化合物的典型一员,由于其具有低密度、高电导、高热导、良好的抗热震性能和可加工性等,因而在众多领域有很大的潜在应用。
     本论文采用燃烧合成的方法制备了高纯度的Ti 3 AlC2,并对其燃烧合成机理、热物性能、导电性能和抗循环氧化性能进行了系统的研究。
     红外测温仪测得Ti-Al-C体系燃烧合成最高温度为1780°C,高于Al和Ti的熔点。对Ti-Al-C体系热力学分析表明:在低温区Ti3Al的生成趋势最大,而在高温区TiC的生成趋势最大。根据Ti-Al-C体系热力学分析,淬熄区域的XRD、SEM/EDS和TEM分析结果,提出Ti 3 AlC2的燃烧合成机理如下:Al首先在660°C发生熔化,随后包覆到Ti颗粒的表面。Ti开始向液态Al中溶解,并且在界面处生成TiAlx金属间化合物,并且释放出大量的热,引燃了自蔓延反应。体系的温度被进一步提高,Ti颗粒和先前生成的TiAlx发生熔化,形成Ti-Al熔体并开始在C颗粒表面铺展。碳元素开始溶解到Ti-Al熔体中,并且开始形成TiC 0.67 ,TiC0.67的形成导致体系温度进一步提高并能达到最高温度。当体系温度降低到1370°C时,TiC 0.67开始和液态的Al反应生成Ti 3 AlC 2。
     本论文分别研究了坯体的致密度以及Ti、Al和C粉末的初始配比对燃烧合成产物的物相组成的影响。结果表明前者对产物的物相组成影响很小,后者对产物的物相组成有较大影响。对合成产物在1100°C进行2 h的热处理,结果发现物相组成并没有发生明显变化。
     采用直流四端电极法测试了Ti 3 AlC2在51~900°C电阻率。结果发现在该温度区间内,其电阻率随温度升高呈线性增加的关系,表现出与金属相同的导电规律。
     在200~1200°C范围内测试了Ti3 AlC2的线膨胀系数,结果发现平均值为9.3×10-6 K-1。对Ti 3 AlC2在200~1200°C的热导率研究发现,热导率随着温度的升高而增大,而且电子和声子对Ti 3 AlC 2的热导均有贡献。Ti 3 AlC2在200~1200°C时的摩尔热容随着温度的升高而变大。
     通过对Ti 3 AlC2在550~1300°C的40次抗循环氧性能的研究,发现在550和650°C存在反常氧化现象。在550和650°C,其循环氧化动力学基本属于直线加速型的;而在750~1300°C,其循环氧化动力学属于抛物线型。XRD和XPS结果表明:在550和650°C,氧化膜由锐钛矿型和金红石型TiO2以及非晶态Al 2 O 3组成;在750~950°C,Ti 3 AlC 2表面氧化膜由α-Al 2 O3和锐钛矿型TiO2。表面和截面形貌观察均发现在550和650°C时形成的氧化膜疏松、表面充满裂纹,并且与Ti 3 AlC2基体结合处有裂纹存在;在750~1300°C时形成的氧化膜致密,无裂纹且和Ti 3 AlC2基体结合良好。在1000和1100°C时,氧化膜包含外层非连续的锐钛矿型TiO 2和内层连续的α-Al 2 O3;在1200°C时,氧化膜外层是非连续的Al 2 TiO 5 ,中间层是TiO 2和α-Al 2 O3的混合物,内层为连续的α-Al 2 O 3 ;在1300°C时,氧化膜的最外层为Al 2 TiO 5 ,中间层为α-Al 2 O3和Al 2 TiO 5的混合物,内层为连续的α-Al 2 O 3 ,并且像钉子一样深深扎入Ti 3 AlC2基体,形成机械钉扎,大大提高了氧化膜和基体的界面强度。
     利用XRD测试了Ti 3 AlC2在1000°C经历5、20和40次循环氧化后,表面氧化膜中的残余应力。结果发现氧化膜中存在压应力,分别为0.82,0.65和0.49 GPa。而Fe-Cr-Al高温合金在1100~1300°C经历40 h氧化后,表面氧化膜中的应力为4~5 GPa,因此Ti 3 AlC2表面氧化膜内的应力要比Fe-Cr-Al高温合金表面氧化膜中的应力小许多。
     为了提高Ti 3 AlC2在低温的抗循环氧化能力,采用了高温预氧化技术。结果发现在1100°C空气中预氧化2 h后,能有效提高其在550和650°C的抗循环氧化能力。
     在室温下对Ti 3 AlC2的氧化机理进行了研究,发现其氧化过程包含两个阶段。在第一个阶段只发生氧的吸附和溶解,发现没有钛、铝和碳的氧化。在第二个阶段铝发生选择性氧化;而Ti2p和C1s电子结合能的峰位在经历3600 s后仍然没有发生明显的变化,意味着钛和碳没有被氧化。
Ti 3 AlC2 is a typical member of MAX phase materials, which has a lot of potential applications in many fields because it possesses a low density, high electric and thermal conductivities, good thermal shock resistance and ready machinability.
     In the present study, highly-pure Ti 3 AlC2 was prepared by combustion synthesis. The synthsis mechanism, the thermalphysical properties, the electrical properties and the cyclic-oxidation resistance were studied systematically.
     The maximum temperature of Ti-Al-C system during combustion syntheis was measured up to 1780°C, which was higher than the melting points of Al and Ti, respectively. The thermodynamic analysis indicated that the formation tendency of Ti3Al and TiC was the maximum at the low and high temperature range, respectively. The combustion synthesis mechanism of Ti 3 AlC2 was proposed based on the thermodynamic calculation of Ti-Al-C system and XRD, SEM, EDS and TEM results of the quenched samples. Al would first melt at 660°C and spread on Ti particles. Then Ti began to dissolve into liquid Al and form TiAlx intermetallics at the interface, which released large amounts of heat. As a result of the released heat, combustion synthesis was initiated and the temperature was elevated higher. Ti particles and previously formed TiAlx completely melted subsequently and formed Ti-Al melts which could wet and spread on C particles. Then C began to dissolve into Ti-Al melts and form TiC0.67, which again released large amount of heat and brought the system temperature to the maximum. After that the temperature began to decline and TiC 0.67 reacted with liquid Al to form Ti 3 AlC2 when the temperature was below 1370°C.
     Efforts were made on optimizing the relative density of the green compact and the initial molar ratio of Ti, Al and C powders. XRD results indicated that the former had little effect on the resulting phase, while the latter had greater effect on it. Heat treatment at 1100°C for 2 h was performed on the as-synthesized product and it was found the composing phases remained unchanged.
     The electrical resistivity of Ti3 AlC2 was measured by four-point probes at 51~900°C. The results indicated that the electrical resistivity was similar with a metal, increasing linearly with increasing temperature.
     The coefficient of thermal expansion of Ti 3 AlC 2 was examined at 200~1200 °C and yielded a mean value of 9.3×10 -6 K-1. The thermal conductivity and the molar heat capacity of Ti 3 AlC2 increased with increasing temperature at 200~1200°C and the results proved that both electron and phonon contributed to the thermal conductivity of Ti 3 AlC 2.
     A 40-cycle oxidation was performed on Ti 3 AlC2 at 550~1300°C and the results showed that abnormal oxidation occurred at 550 and 650°C. The cyclic-oxidation kinetics approximately obeyed an accelerated linear law at 550 and 650°C, while that at 750~1300°C basically followed a parabolic law. XRD and XPS results showed the scales on Ti 3 AlC 2 containedα-Al 2 O 3 and rutile TiO2 at 750~950°C, while at 550 and 650°C they contained anatase and rulite TiO2 and amorphous Al 2 O3. Surface and cross-section morphologies showed the scales formed at 750~950°C were dense, free of microcrack and well adhesive to Ti 3 AlC2 substrate. However, the scales formed at 550 and 650°C were loose and full of cavities, and cracks were found at the scale/Ti 3 AlC2 interface. At 1000 and 1100°C, the scales were composed of an outer and discontinuous layer of rutile TiO2, and an inner and continuous layer ofα-Al 2 O3. The scale formed at 1200°C contained an outmost layer of discontinuous Al 2 TiO 5 , an intermediate mixed layer of TiO 2 andα-Al 2 O3, and an inner layer ofα-Al 2 O3. At 1300°C, the scale contained an outmost layer of discontinuous Al 2 TiO 5 , an intermediate mixed layer of Al 2 TiO 5 andα-Al 2 O3, and an inner layer of continuousα-Al 2 O 3 which deeply intruded into the Ti 3 AlC2 substrate and greatly improved the interface strength.
     XRD results showed that the compressive stress within the scale formed on Ti 3 AlC2 was measured to be 0.82,0.65 and 0.49 GPa after 5, 20 and 40 thermal cycles at 1000°C. However, the compressive stress within the scale formed on Fe-Cr-Al superalloy was 4~5 GPa after 40-h oxidation at 1100~1300°C. It was obvious that the compressive stress within the scale formed on Ti 3 AlC2 was much smaller than that within the scale on Fe-Cr-Al superalloy.
     In order to improve the cyclic-oxidation resistance of Ti 3 AlC2 at low temperatures, preoxidation of Ti 3 AlC2 was employed. The results showed that the cyclic-oxidation resistance of Ti 3 AlC2 at 550 and 650°C could be greatly improved by preoxidation at 1100°C for 2 h.
     The oxidation mechanism of Ti 3 AlC2 was studied at room temperature. The oxidation process contained two stages. During the first stage, the adsorption and absorption of oxygen occurred and there was no evidence that titanium, aluminum and carbon were oxidized. During the second stage, the selective oxidation of aluminum occurred, whereas the binding energy of titanium and carbon remained unchanged after 3600 s exposure in air which meant they were not oxidized.
引文
1关长斌,郭英奎,赵玉成,陶瓷材料导论.哈尔滨工程大学出版社. 2005:1-9
    2 H. Nowotny. Struktuchemie Einiger Verbindungen der Ubergangsmetalle Mit Den Elementen C, Si, Ge, Sn. Progress in Solid State Chemistry. 1970, 2:27-32
    3 W. Jeitschko, H. Nowotny. Die Kristallstructur von Ti3SiC2-ein Neuer Komplex- carbid-Typ. Monatshefte fur Chemie. 1967, 98:329-337
    4 H. Wolfsgruber, H. Nowotny, F. Benesovsky. Die Kri stall struktur von Ti3GeC2. Monatshefte fur Chemie. 1967, 98:2403-2405
    5 M. Barsoum. The Mn+iAXn phases: A New Class of Solids; Thermodynamical-ly Stable Nanolamintes. Progress in Solid State Chemistry. 2000, 28:201-281
    6 M. W. Barsoum, T. El-Raghy. The MAX phases: Unique New Carbide and Nitride Materials. American Scientist. 2001, 89(4):334-343
    7 J. Etzkorn, M. Ade, H. Hillebrecht. V2A1C, V4A1C3-X (x approximate to 0.31), and V12AI3C8: Synthesis, Crystal Growth, Structure, and Superstructure. Inorganic Chemistry. 2007, 46(18):7646-7653
    8 H. Hogberg, P. Eklund, J. Emmerlich, J. Birch, L. Hultman. Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase Thin Films Grown by Magnetron Sputtering. Journal of Materials Research. 2005, 20(4):779-782
    9 Z. J. Lin, M. J. Zhuo, Y. Zhou, M. S. Li, J. Y. Wang. Microstructures and Theoretical Bulk Modulus of Layered Ternary Tantalum Aluminum Carbides. Journal of the American Ceramic Society. 2006, 89(12):3765-3769
    10 R. S. Kumar, S. Rekhi, A. L. Cornelius, M. W. Barsoum. Compressibility of Nb2AsC to 41 GPa. Applied Physics Letters. 2005, 86(11): 111904
    11 A. Bouhemadou, R. Khenata. Structural, Electronic and Elastic Properties of M2SC (M=Ti, Zr, Hf) Compounds. Physics Letters A. 2008, 372(42):6448-6452
    12 J. P. Palmquist, S. Li, P. O. A. Persson, J. Emmerlich, O. Wilhelmsson, H. Hogberg, M. I. Katsnelson, B. Johansson, R. Ahuja, O. Eriksson, L. Hultman, U. Jansson. Mn+iAXn Phases in the Ti-Si-C System Studied by Thin-film Synthesis and Ablnitio Calculations. Physical Review B. 2004, 70(16): 165401-165413
    13 J. Etzkorn, M. Ade, H. Hillebrecht. Ta3AlC2 and Ta4AlC3—Single-Crystal Investigations of Two New Ternary Carbides of Tantalum Synthesized by the Molten Metal Technique. Inorganic Chemistry. 2007, 46(4):1410-1418
    14 A. Bouhemadou. Structural, Electronic and Elastic Properties of MAX phasesM2GaN (M=Ti, V and Cr). Solid State Sciences. 2009, 11(11): 1875-1881
    15 O. D. Leaffer, S. Gupta, M. W. Barsoum, J. E. Spanier. On Raman Scattering from Selected M2AC Compounds. Journal of Materials Research. 2007, 22(10):2651-2654
    16 A. Roumili, Y. Medkour, D. Maouche. Elastic and Electronic Properties of Hf2SnC and Hf2SnN. International Journal of Modern Physics B. 2008, 23(26):5155-5161
    17 Z. M. Sun, Y. C. Zhou. Ab Initio Calculation of Titanium Silicon Carbide. Physical Review B. 1999, 60(3): 1441-1443
    18 B. Holm, R. Ahuja, B. Johansson. Ab Initio Calculations of the Mechanical Properties of Ti3SiC2. Applied Physics Letters. 2001, 79(10): 1450-1452
    19 M. W. Barsoum, T. El-Raghy. Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2. Journal of the American Ceramic Society. 1996, 79(7): 1953-1956
    20 T. El-Raghy, A. Zavaliangos, M. Barsoum, S. Kalidindi. Processing and Properties of Ti3SiC2. Processing and Fabrication of Advanced Materials V. 1996:631-640
    21 M. W. Barsoum, T. El-Raghy, L. U. J. T. Ogbuji. Oxidation of Ti3SiC2 in Air. Journal of the Electrochemical Society. 1997, 144(7):2508-2516
    22 T. EIRaghy, A. Zavaliangos, M. W. Barsoum, S. R. Kalidindi. Damage Mechanisms around Hardness Indentations in Ti3SiC2. Journal of the American Ceramic Society. 1997, 80(2):513-516
    23 D. G. Kellerman, V. S. Gorshkov, Y. N. Blinovskov, I. G. Grigorov, V. A. Perelyaev, G. P. Shveikin. Synthesis and Properties of the Ternary Phase Ti3SiC2. Inorganic Materials. 1997, 33(3):271-274
    24 M. Amer, M. W. Barsoum, T. El-Raghy, I. Weiss, S. Leclair, D. Liptak. The Raman Spectrum of Ti3SiC2. Journal of Applied Physics. 1998, 84(10):5817-5819
    25 E. H. Kisi, J. A. A. Crossley, S. Myhra, M. W. Barsoum. Structure and Crystal Chemistry of Ti3SiC2. Journal of Physics and Chemistry of Solids. 1998, 59(9): 1437-1443
    26 M. W. Barsoum, T. El-Raghy, C. J. Rawn, W. D. Porter, H. Wang, E. A. Payzant,C. R. Hubbard. Thermal Properties of Ti3SiC2. Journal of Physics and Chemistry of Solids. 1999, 60(4):429-439
    27 Y. Zhang, Z. M. Sun, Y. C. Zhou. Cu/Ti3SiC2 Composite: a New ElectrofrictionMaterial. Materials Research Innovations. 1999, 3(2):80-84
    28 H. Hashimoto, Z. M. Sun. Preparation of TiC-Ti3SiC2 Composites by Mechanical Alloying and Hot-pressing. Materials Transactions. 2008, 49(7): 1572-1578
    29 Y. Zou, Z. Sun, S. Tada, H. Hashimoto. Effect of Liquid Reaction on the Synthesis of Ti3SiC2 Powder. Ceramics International. 2008, 34(1): 119-123
    30 X. H. Yin, M. S. Li, J. J. Xu, J. Zhang, Y. C. Zhou. Direct Diffusion Bonding of Ti3SiC2 and Ti3AlC2. Materials Research Bulletin. 2009, 44(6): 1379-1384
    31 M. A. Pietzka, J. C. Schuster. Summary of Constitutional Data on the Al-Ti-C System. Journal of Phase Equilibria. 1994, (15):392-420
    32 S. Myhra, J. A. A. Crossley, M. W. Barsoum. Crystal-chemistry of the Ti3AlC2 and Ti4AlN3 Layered Carbide/nitride Phases-characterization by XPS. Journal of Physics and Chemistry of Solids. 2001, 62(4): 811-817
    33 Y. C. Zhou, Z. M. Sun, X. H. Wang, S. Q. Chen. Ab Initio Geometry Optimization and Ground State Properties of Layered Ternary Carbides Ti3MC2 (M =A1, Si and Ge). Journal of Physics-Condensed Matter. 2001, 13(44): 10001-10010
    34 Y. C. Zhou, X. H. Wang, Z. M. Sun, S. Q. Chen. Electronic and Structural Properties of the Layered Ternary Carbide Ti3AlC2. Journal of Materials Chemistry. 2001, ll(9):2335-2339
    35 N. V. Tzenov, M. W. Barsoum. Synthesis and Characterization of Ti3AlC2. Journal of the American Ceramic Society. 2000, 83(4):825-832
    36 X. H. Wang, Y. C. Zhou. Oxidation Behavior of Ti3AlC2 Powders in Flowing Air. Journal of Materials Chemistry. 2002, 12(9):2781-2785
    37 X. H. Wang, Y. C. Zhou. Microstructure and Properties of Ti3AlC2 Prepared by the Solid-liquid Reaction Synthesis and Simultaneous in-situ Hot Pressing Process. Acta Mated alia. 2002, 50(12):3141-3149
    38 X. H. Wang, Y. C. Zhou. Synthesis and Oxidation of Bulk Ti3AlC2. High-Performance Ceramics. 2002, 224-2:785-789
    39 X. H. Wang, Y. C. Zhou. Oxidation Behavior of Ti3AlC2 at 1000-1400°C in Air. Corrosion Science. 2003, 45(5):891-907
    40 Z. Y. Huang, H. X. Zhai, Y. F. Wang, W. Zhou, Y. Zhou, M. X. Ai, Z. L. Zhang,S. B. Li. Sliding Friction Coefficient of Bulk Ti3AlC2 and the Oxidation Behavior in its Friction Surface. Rare Metal Materials and Engineering. 2005, 34(sl):401-404
    41 D. B. Lee, J. H. Han, Y. D. Kim, S. W. Park. Cyclic-oxidation of Ti3SiC2 andH3AIC2 between 900 and 1200°C in Air. Eco-Materials Processing and Design Vii. 2006, 510-511:422-425
    42 D. B. Lee, S. W. Park. High-temperature oxidation of Ti3AlC2 between 1173 and1473 K in air. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 2006, 434(1-2): 147-154
    43 X. W. Xu, Y. X. Li, J. Q. Zhu, B. C. Mei. High-temperature oxidation Behavior of Ti3AlC2 in Air. Transactions of Nonferrous Metals Society of China. 2006, 16:S869-S873
    44 Z. Y. Huang, H. Zhai, W. X. Zhou, X. Liu, M. X. Ai. Tribological Behaviors and Mechanisms of Ti3AlC2. Tribology Letters. 2007, 27(2): 129-135
    45 Z. Y. Huang, H. P. Zhai, H. Zhang, H. B. Zhang. Wear Characteristics of Bulk Ti3AlC2 under Current-carrying Conditions. Materials Science Forum. 2007, 561-565:563-566
    46 Z. Y. Huang, H. X. Zhai, M. X. Ai. A New Ti3AlC2/Cu Cermet Exhibiting Excellent Tribological Properties. Key Engineering Materials. 2007, 336-338:1436-1438
    47 X. W. Xu, Y. X. Li, J. Q. Zhu, B. C. Mei. Synthesis, Structure and Properties of Ti3(SixAli_x)C2 Solid Solutions. Key Engineering Materials. 2008, 368-372:992-994
    48 M. W. Barsoum, M. Ali, T. El-Raghy. Processing and Characterization of Ti2AlC, Ti2AlN, and ^AlCo.sNo.s. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science. 2000, 31(7): 1857-1865
    49 J. C. Ho, H. H. Hamdeh, M. W. Barsoum, T. El-Raghy. Low Temperature Heat Capacities of Ti3Ali iCi.8, Ti4AlN3, and Ti3SiC2. Journal of Applied Physics. 1999, 86(7):3609-3611
    50 X. H. Wang, Y. C. Zhou. Stability and Selective Oxidation of Aluminum in Nano-laminate Ti3AlC2 upon Heating in Argon. Chemistry of Materials. 2003, 15(19):3716-3720
    51 C. Q. Peng, C. A. Wang, Y. Song, Y. Huang. The Reaction between Ti3AlC2 and Cu in the Synthesis Process of Cu/Ti3AlC2 Composites. Key Engineering Materials. 2007, 336-338:1374-1376
    52 Z. Y. Huang, H. X. Zhai, M. X. Ai, Y. Wang, H. B. Zhang. Pressureless Sintering and Properties of Cu/Ti3AlC2 Composites. Key Engineering Materials. 2008, 368-372:998-1000
    53 M. X. Ai, H. X. Zhai, Z. Y. Tang. Interformational Exfoliation of Ti3AlC2Induced by Cu. Key Engineering Materials. 2007, 336-338:1371-1373
    54 S. G. Liang, H. X. Zhai, M. X. Ai, Z. Y. Huang. Fabrication and Properties of Cu-Ti3AlC2 Cermet. Rare Metal Materials and Engineering. 2007, 36(sl):668-670
    55 J. Zhang, J. Y. Wang, Y. C. Zhou. Structure Stability of Ti3AlC2 in Cu and Micro structure Evolution of Cu-Ti3AlC2 composites. Acta Materialia. 2007, 55(13):4381-4390
    56 X. H. Wang, Y. C. Zhou. Oxidation Behavior of TiC-containing Ti3AlC2 Based Material at 500-900°C in air. Materials Research Innovations. 2003, 7(6):381-390
    57 J. W. Byeon, J. Liu, M. Hopkins, W. Fischer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy, Y. H. Sohn. Microstructure and Residual Stress of Alumina Scale Formed on Ti2AlC at High Temperature in Air. Oxidation of Metals. 2007, 68(l-2):97-lll
    58 M. W. Barsoum. Oxidation of Tin+iAlXn (n=l-3 and X=C, N)-I. Mode . Journal of the Electrochemical Society. 2001, 148(8):C544-C550
    59 M. W. Barsoum, N. Tzenov, A. Procopio, T. El-Raghy, M. Ali. Oxidation of Tin+iAlXn (n=l-3 and X=C, N)-II. Experimental Results. Journal of the Electrochemical Society. 2001, 148(8):C551-C562
    60刘新,翟洪祥,黄振莺.钛铝碳陶瓷载流滑动下的摩擦磨损行为.硅酸盐学报. 2007, 35(7):852-855
    61张慧.超硬刀具材料的研究进展.金刚石与磨料磨具工程. 2001, 4(124):53-56
    62 C. L. Yeh, Y. G. Shen. Combustion Synthesis of Ti3AlC2 from Ti/Al/C/TiC Powder Compacts. Journal of Alloys and Compounds. 2008, 466(l-2):308-313
    63 J. M. Guo, K. X. Chen, G. H. Liu, Z. B. Ge, H. P. Zhou, X. S. Ning. Effects of TiAl Additions on Combustion Synthesis of Ti3AlC2 Powders. Rare Metal Materials and Engineering. 2004, 33(l):59-62
    64 S. B. Li, W. H. Xiang, H. X. Zhai, Y. Zhou, C. W. Li, Z. L. Zhang. Formation of a Single-phase Ti3 AIC2 from a Mixture of Ti, Al and TiC Powders with Sn as an additive. Materials Research Bulletin. 2008, 43(8-9):2092-2099
    65 S. B. Li, H. X. Zhai, G. P. Bei, Y. Zhou, Z. L. Zhang. Formation of Ti3A1C2 by Mechanically Induced Self-propagating Reaction in Ti-Al-C System at Room Temperature. Materials Science and Technology. 2006, 22(6):667-672
    66 A. G. Zhou, C. A. Wang, Z. B. Ge, L. F. Wu. Preparation of Ti3AlC2 and Ti2AlC by Self-propagating High-temperature Synthesis. Journal of Materials Science Letters. 2001, 20(21): 1971-1973
    67 X. H. Wang, Y. C. Zhou. Solid-liquid Reaction Synthesis of Layered Machinable Ti3AlC2 Ceramic. Journal of Materials Chemistry. 2002, 12(3):455-460
    68 X. W. Xu, C. K. Fu, Y. X. Li, J. Q. Zhu, B. C. Mei. Fabrication of Monolithic Bulk Ti3AlC2 and Impurity Measurement by K-value Method. Transactions of Nonferrous Metals Society of China. 2006, 16:S490-S493
    69 W. B. Zhou, B. C. Mei, J. Q. Zhu. Fabrication of High-purity Ternary Carbide Ti3AlC2 by Spark Plasma Sintering (SPS) Technique. Ceramics International. 2007, 33(7):1399-1402
    70 O. Wilhelmsson, J. P. Palmquist, T. Nyberg, U. Jansson. Deposition of Ti2AlC and Ti3AlC2 Epitaxial Films by Magnetron Sputtering. Applied Physics Letters. 2004, 85(6): 1066-1068
    71 O. Wilhelmsson, J. P. Palmquist, E. Lewin, J. Emmerlich, P. Eklund, P. O. A. Persson, H. Hogberg, S. Li, R. Ahuja, O. Eriksson, L. Hultman, U. Jansson. Deposition and Characterization of Ternary Thin Films within the Ti-Al-C System by DC Magnetron Sputtering. Journal of Crystal Growth. 2006, 291(l):290-300
    72 S. Chatterjee, P. Ganesh, R. Palai, J. A. Wu, R. Kaul, J. D. Majumdar, A. R. Choudhury. Effect of h-BN Addition on the Properties of Nanostructured Al2O3-TiB2-TiN Based Coatings Developed by Combined SHS and Laser Surface Alloying. Surface and Coatings Technology. 2010, 204(11): 1702-1709
    73 S. B. Jin, P. Shen, Q. L. Lin, L. Zhan, Q. C. Jiang. Growth Mechanism of TiCx during Self-propagating High-temperature Synthesis in an Al-Ti-C System. Crystal Growth & Design. 2010, 10(4): 1590-1597
    74 H. Y. Zhuang, X. M. Pan. Influence of Irradiation Parameters on Micro-structures of Al-Ti-C Master Alloys by Laser-induced Self-propagating High-temperature Synthesis (SHS). Rare Metal Materials and Engineering. 2010, 39(l):46-49
    75 I. Boromei, A. Casagrande, F. Tarterini, G. Poli, P. Veronesi, R. Rosa. Ni-Al-Ti Coatings Obtained by Microwave Assisted SHS: Oxidation Behaviour in the 750-900°C Range. Surface and Coatings Technology. 2010, 204(11): 1793-1799
    76 J. P. McDonald, M. A. Rodriguez, E. D. Jones, D. P. Adams. Rare-earthTransition-metal Intermetallic Compounds Produced via Self-propagating, High-temperature Synthesis. Journal of Materials Research. 25(4):718-727
    77 T. F. Grigorieva, T. L. Talako, M. R. Sharafutdinov, Y. D. Kaminskii, I. A. Vorsina, S. V. Tsibulya, A. P. Barinova, N. Z. Lyakhov. Ultrafine Si/Al2O3 Composites Obtained by Combining Methods of Mechanical Activation and Self-propagating High-temperature Synthesis. Combustion Explosion and Shock Waves. 2010, 46(l):36-40
    78 V. N. Sanin, V. I. Yukhvid, A. E. Sytschev, N. V. Sachkova. Liquid-phase Final Product Formed by an SHS Reaction of NiO-Ni-Al system under Microgravity Conditions. Microgravity Science and Technology. 2010, 22(1):53-61
    79 A. G. Merzhanov. Processes of Self-propagating High-temperature Synthesis at New Frontiers. Industrial Ceramics. 2009, 29(3): 196-199
    80 A. Hendaoui, D. Vrel, A. Amara, P. Langlois, M. Andasmas, M. Guerioune. Synthesis of High-purity Polycrystalline MAX Phases in Ti-Al-C System Through Mechanically Activated Self-propagating High-temperature Synthesis. Journal of the European Ceramic Society. 2010, 30(4): 1049-1057
    81 C. L. Yeh, Y. G. Shen. Effects of Using AI4C3 as a Reactant on Formation of Ti3AlC2 by Combustion Synthesis in SHS Mode. Journal of Alloys and Compounds. 2009, 473(l-2):408-413
    82 M. Lopacinski, J. Puszynski, J. Lis. Synthesis of Ternary Titanium Aluminum Carbides Using Self-propagating High-temperature Synthesis Technique. Journal of the American Ceramic Society. 2001, 84(12):3051-3053
    83李小雷,周爱国,汪长安,马小娥,刘豫.自蔓延高温合成Ti3AlC2和Ti2AlC及其反应机理研究.硅酸盐学报. 2002, 30(3):407-410
    84郭俊明,陈克新,葛振斌,周和平,宁晓山.添加TiC和Ti3AlC2对燃烧合成Ti3AlC2粉体的影响.无机材料学报. 2003, 18(1):251-256
    85郭俊明,陈克新,葛振斌,刘光华,周和平,宁晓山.碳含量对Ti-Al-C系燃烧合成Ti3AlC2粉体的影响.金属学报. 2003, 39(4):409-413
    86葛振斌,陈克新,郭俊明,周和平,宁晓山.燃烧合成Ti3AlC2粉体的机理研究.无机材料学报. 2003, 18(2):427-432
    87 Y. Khoptiar, I. Gotman, E. Y. Gutmanas. Pressure-assisted Combustion Synthesis of Dense Layered Ti3AlC2 and Its Mechanical Properties. Journal of the American Ceramic Society. 2005, 88(l):28-33
    88殷声.自蔓延高温合成技术和材料.冶金工业出版社1995:55-65
    89李建伟.自蔓延高温合成机理研究方法的分析.洛阳工业高等专科学校学报. 2007, 17(6):1-3
    90 J. Subrahmanyam, M. Vijaykumar. Review Self-propagating High-temperature Synthesis. Materials Science. 1992, 27(23):6249-6373
    91刘宏伟,张龙,赵忠民,王建江.自蔓延高温合成基础理论研究进展.军械工程学院学报. 2002, 14(2):1-5
    92 A. G. Merzhanov, I. P. Borovinskaya, I. O. Khomenko, A. S. Mukasyan, V. I. Ponomarev, A. S. Rogachev, V. M. Shkiro. Dynamics of Phase Formation during SHS Processes. Annales De Chimie-Science Des Materiaux. 1995, 20(3-4):123-138
    93 A. S. Rogachev, A. S. Mukasyan, A. G. Merzhanov. Structural Transitions in theGasless Combustion of Titanium-carbon and Titanium-boron Systems. Physical chemistry. 1987, 297(6): 1240-1243
    94 B. L. Zhang, H. R. Zhuang, X. R. Fu. A Mechanism and Tentative Activation Energy for the Combustion Reaction Process of Silicon in a Pressurized Nitrogen Atmosphere. Journal of Materials Synthesis and Processing. 1997, 5(5):363-369
    95 Q. C. Fan, H. F. Chai, Z. H. Jin. Dissolution-precipitation-substitution Mechanism of Self-propagating High-temperature Synthesis of P-NiAl(Cu)/a (Cu,Ni) Composite. Intermetallics. 2002, 10(6):541-554
    96 A. G. Zhou, C. A. Wang, Y. Huang. A Possible Mechanism on Synthesis of Ti3AlC2. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 2003, 352(l-2):333-339
    97 S. S. Hwang, S. W. Park, T. W. Kim. Synthesis of the Ti3SiC2 by Solid State Reaction below Melting Temperature of Si. Journal of Alloys and Compounds. 2005, 392(l-2):285-290
    98 Y. L. Bai, X. D. He, Y. B. Li, C. C. Zhu, S. Zhang. Rapid Synthesis of Bulk Ti2AlC by Self-propagating High-temperature Combustion Synthesis with a Pseudo-hot Isostatic Pressing Process. Journal of Materials Research. 2009, 24(8):2528-2535
    99 A. Saidi, A. Chrysanthou, J. V. Wood, J. L. F. Kellie. Preparation of Fe-TiC Composites by the Thermal-explosion Mode of Combustion Synthesis. Ceramics International. 1997, 23(2): 185-189
    100 N. Eustathopoulos, J. C. Joud, P. Desre, J. M. Hicter. The Wetting of Carbon by Aluminium and Aluminium Alloys. Journal of Materials Science. 1974, 9(8):1233-1242
    101 A. V. Kasimtsev, Y. V. Levinskii, V. V. Zhigunov. Obtaining the Ni-TiC Composite Powder by the Carbidization of Titanium Nickelide. Russian Journal of Non-Ferrous Metals. 2009, 50(3):270-275
    102 C. Q. Hong, J. C. Han, X. H. Zhang, S. H. Meng. Influence of Hot Pressing on Microstructure and Mechanical Properties of Combustion Synthesized TiB2-Cu-Ni Composite. Journal of Materials Processing Technology. 2007, 183(2-3):445-449
    103 J. Bermudo, M. I. Osendi. Study of A1N and Si3N4 Powders Synthesized by SHS Reactions. Ceramics International. 1999, 25(7):607-612
    104 M. Belmonte, P. Miranzo, M. I. Osendi. A Method for Disentangling Beta-Si3N4 Seeds Obtained by SHS. Powder Technology. 2008, 182(3):364-367
    105 I. G. Cano, M. A. Rodriguez. Synthesis and Sintering of Si3N4 Obtained by the SHS Process. Industrial & Engineering Chemistry Research. 2006, 42(5): 1277-1280
    106 C. Y. Hsieh, C. N. Lin, S. L. Chung, J. Cheng and D. K. Agrawal. Microwave Sintering of A1N Powder Synthesized by a SHS Method. Journal of the European Ceramic Society. 2007, 27(l):343-350
    107郭俊明,陈克新,葛振斌,周和平,宁晓山.不同钛碳摩尔比和铝含量对Ti-Al-C体系燃烧合成Ti3AlC2粉体的影响.稀有金属材料与工程. 2003, 32(7):561-565
    108 C. A. Wang, A. G. Zhou, L. Qi, Y. Huang. Quantitative Phase Analysis in the Ti-Al-C Ternary System by X-ray Diffraction. Powder Diffraction. 2005, 20(3):218-223
    109郭俊明,郭亚力,黄兆龙.不同气氛和素坯密度对燃烧合成Ti3AlC2粉体的影响.蒙自师范高等专科学校学报. 2002, 4(6):6-9
    110 P. Finkel, M. W. Barsoum, J. D. Hettinger, S. E. Lofland, H. I. Yoo. Low-temperature Transport Properties of Nanolaminates Ti3AlC2 and Ti4AlN3. Physical Review B. 2003, 67(23):235108
    111 M. W. Barsoum, I. Salama, T. El-Raghy, J. Golczewski, W. D. Porter, H. Wang, H. J. Seifert, F. Aldinger. Thermal and Electrical Properties of Nb2AlC, (Ti,Nb)2AlC and Ti2AlC. Metallurgical and Materials Transactions A-PhysicalMetallurgy and Materials Science. 2002, 33(9):2775-2779
    112 H. B. Zhang, Y. C. Zhou, Y. W. Bao, M. S. Li. Abnormal Thermal Shock Behavior of Ti3SiC2 and Ti3AlC2. Journal of Materials Research. 2006, 21(9):2401-2407
    113 X. H. Wang, Y. C. Zhou. Hot Corrosion of Na2SO4-coated Ti3AlC2 in Air at 700-1000°C. Journal of the Electrochemical Society. 2004, 151(9):B505-B511
    114 Z. J. Lin, Y. C. Zhou, M. S. Li, J. Y. Wang. Improving the Na2SO4-induced Corrosion Resistance of Ti3AlC2 by Pre-oxidation in Air. Corrosion Science. 2006, 48(10):3271-3280
    115 J. M. Guo, K. X. Chen, G. H. Liu, H. P. Zhou, X. S. Ning. Machinable Ti3AlC2 Ceramics Produced by Spark Plasma Sintering. Rare Metal Materials and Engineering. 2005, 34(1): 132-134
    116 Y. W. Bao, X. H. Wang, H. B. Zhang, Y. C. Zhou. Thermal Shock Behavior of Ti3AlC2 from between 200°C and 1300°C. Journal of the European Ceramic Society. 2005, 25(14):3367-3374
    117 M. Schmiedgen, P. C. J. Graat, B. Baretzky. The Initial Stages of Oxidation of Gamma-TiAl: an X-ray Photoelectron Study. Thin Solid Films. 2002, 415(1-2):114-122
    118 Z. M. Sun, Y. C. Zhou, M. S. Li. Oxidation Behaviour of Ti3SiC2-based Ceramic at 900-1300°C in Air. Corrosion Science. 2001, 43(6): 1095-1109
    119 X. H. Wang, Y. C. Zhou. High-temperature Oxidation Behavior of Ti2AlC in Air. Oxidation of Metals. 2003, 59(3-4):303-320
    120 K. Kovacs, I. V. Perczel, V. K. Josepovits, G. Kiss, F. Reti, P. Deak. In situ Surface Analytical Investigation of the Thermal Oxidation of Ti-Al Intermetallics up to 1000°C. Applied Surface Science. 2002, 200(7): 185-195
    121 A. Rahmel, P. J. Spencer. Thermodynamic Aspects of TiAl and TiSi2 Oxidation: the Al-Ti-0 and Si-Ti-0 Phase Diagrams. Oxidation of Metals. 1991, 35(1-2):53-67
    122 Z. Sun, Y. Zhou, M. Li. Cyclic-oxidation Behavior of Ti3SiC2-base Material at 1100°C. Oxidation of Metals. 2002, 57(5-6):379-394
    123 D. B. Lee, S. W. Park. Oxidation of Ti3SiC2 between 900 and 1200°C in Air. Oxidation of Metals. 2007, 67(1-2): 51-66
    124 S. B. Li, L. F. Cheng, L. T. Zhang. The Morphology of Oxides and Oxidation Behavior of Ti3SiC2-based Composite at High-temperature. Composites Science and Technology. 2003, 63(6):813-819
    125 M. S. Chu, S. K. Wu. Improvement in the Oxidation Resistance of a2-Ti3Al by Sputtering Al Film and Subsequent Interdiffusion Treatment. Surface and Coatings Technology. 2004, 179(2-3):257-264
    126 K. L. Luthra. Stability of Protective Oxide Films on Ti-base Alloys. Oxidation of Metals. 1991, 36(5-6):475-490
    127 E. J. Feltent, F. S. Pettit. Development, Growth, and Adhesion of AI2O3 on Platinum-Aluminum Alloys. Oxidation of Metals. 1976, 10(3):189-223
    128 C. S. Giggins, B. H. Kear, F. S. Pettit, J. K. Tien. Factors Affecting Adhesion of Oxide Scales on Alloys. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science. 1974, 5(7): 1685-1688
    129 V. K. Tolpygo, J. R. Dryden, D. R. Clarke. Determination of the Growth Stress and Strain in Alpha-Al2O3 Scales during the Oxidation of Fe-22Cr-4.8Al-0.3Y Alloy. Acta Materialia. 1998, 46(3):927-937
    130 C. Liu, A. M. Huntz, J. L. Lebrun. Origin and Development of Residual Stresses in the Ni-NiO System: in-situ Studies at High Temperature by X-ray Diffraction. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 1993, 16(1): 113-126
    131 R. G. Munro. Evaluated Material Properties for a Sintered Alpha-alumina. Journal of the American Ceramic Society. 1997, 80(8): 1919-1928
    132 S. Chakraborty, T. El-Raghy, M. W. Barsoum. Oxidation of Hf2SnC and Nb2SnC in Air in the 400-600°C Temperature Range. Oxidation of Metals. 2003, 59(l-2):83-96
    133 I. Salama, T. El-Raghy, M. W. Barsoum. Oxidation of Nb2AlC and (Ti, Nb)2AlC in Air. Journal of the Electrochemical Society. 2003, 150(3):C152-C158
    134 S. Gupta, E. N. Hoffman, M. W. Barsoum. Synthesis and Oxidation of Ti2InC, Zr2InC, (Tio.5,Zro.5)2lnC and (Tio.5,Hfo.5)2lnC in Air. Journal of Alloys and Compounds. 2006, 426(1-2): 168-175
    135 M. R. Shanabarger. Comparative Study of the Initial Oxidation Behavior of a Series of Titanium-aluminum Alloys. Applied Surface Science. 1998, 134(1-4):179-186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700