低温高场下顺磁性物质的磁和磁光特性及掺杂影响MnZn功率铁氧体磁性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作分两部分。第一部分为强磁场下顺磁性物质的磁和磁光特性研究,第二部分是关于掺杂影响MnZn功率铁氧体材料磁性能的研究。
     近年来,实验研究发现某些顺磁性材料在低温、强磁场下呈现异常的磁和磁光特性。例如,其法拉第旋转角θ与外磁场强度之间存在非线性和互易性关系,而随着的增强,某些顺磁性介质的低温磁化强度eHeHM呈现异常的饱和现象。目前尚无相应的理论能够较好地解释上述实验现象。
     本文首先简要介绍了磁学和磁光学的基本概念及其相关理论的发展历程,以及物质的自旋玻璃态特性和理论。
     随后,本文理论研究和分析了顺磁性介质法拉第磁光效应的非线性和互易性,首先从法拉第效应的宏观理论出发,然后过渡到顺磁性介质法拉第效应的量子理论,推导出了顺磁性介质法拉第旋转角θ与之间关系。理论研究表明,顺磁性介质的法拉第旋转角eHθ与外磁场之间存在复杂的非线性关系。在高温和中、低磁场下,eHθ主要受的一次项影响,两者近似呈线性关系,但在低温和高场下必须考虑高次项的影响,因此eHeHθ表现出明显的非线性特性,且其互易性也不能忽略。本文同时还分析了顺磁性介质费尔德常数与磁化率比值Vp/χ的复杂温度特性。
     利用上述理论结果,本文拟合分析了顺磁性钕镓石榴石(Nd3Ga5O12)材料在轨道-自旋耦合作用、晶场交换作用、间接交换作用和外磁场共同作用下高场法拉第效应的实验数据。研究发现高场下其法拉第旋转角θ与外磁场之间存在明显的非线性关系,且的高次项系数强烈依赖温度eHeHT和入射光频率ω,而其费尔德常数V (θ/( H eL))也是的函数。理论分析同时表明,高场情况下顺磁性钕镓石榴石法拉第效应的互易性不可忽略。理论分析结果和实验数据吻合得很好。
     最后,本文中利用朗之万顺磁性经典理论,结合顺磁性物质中(间接)交换作用有效场的概念,研究了低温、高场下NdF3单晶的异常磁特性。发现并证明了NdF3单晶在低温下具有明显的自旋玻璃态特性,而在光辐照条件下,被冻结的自旋磁矩将会“融化”。与强磁性介质的自旋玻璃态特性相似,当顺磁性介质的自旋玻璃态特性与(间接)交换作用密切相关。与此同时,其磁特性与前者相比又存在明显的不同,例如,其自旋冻结程度与外磁场H e的大小有关,在低场区可逆磁化率χM随温度下降反而增大等;本文最后详细分析了导致这些特性的内在因素。
     本文第二部分是关于掺杂影响MnZn功率铁氧体材料磁性能的研究。由于高性能铁氧体对于烧结炉的温度和气氛控制精度有很高的要求,而目前国内铁氧体烧结设备的性能相对国外仍有一定的差距,因此立足现有设备,通过新的掺杂提高MnZn铁氧体的性能具有重要意义。
     本文首先研究了作为主配方原料之一的Mn3O4用作掺杂对于MnZn功率铁氧体材料性能的影响。研究发现,相对于将全部Mn3O4作为主配方原料使用的传统方法,将适量Mn3O4作为添加剂,在二次球磨时进行掺杂能够有效提高MnZn功率铁氧体材料的初始磁导率和饱和磁感应强度,同时降低功率损耗。实验结果表明,应用Mn3O4添加剂对进一步改善现有MnZn铁氧体材料的性能具有重要的潜在价值。
     除了探索Mn3O4作为新掺杂的可能性之外,本文对之前报道过的MoO3和TiO2掺杂从不同角度进行了研究,得到了一些新的结论。研究表明,以往主要作为助熔剂,用于提高铁氧体初始磁导率的MoO3在特定的含量下对材料功耗也有显著的改善,而少量的TiO2掺杂不仅并不影响铁氧体的初始磁导率等磁特性,还可进一步降低铁氧体功耗,并改善材料初始磁导率的温度稳定性。
The main work in this doctoral dissertation consists of two parts. One is the theoretical investigation on the magnetic and magneto-optical properties in paramagnetic media under high field and at low temperatures, the other is the study on the effect of doping on the magnetic properties of MnZn ferrites.
     Recently, it has been found in experiment that some paramagnetic media present novel magnetic and magneto-optical characteristics under high applied magnetic field and at low temperatures. For example, there is a nonlinear and reciprocal relationship between the Faraday rotationθand the applied field H e, and with the increase of the applied field, the magnetization M of some paramagnetic media presents abnormal saturation characteristics in the low temperature range. Till now, there are no corresponding theoretical progresses which keep up with the above experimental findings.
     In this paper, firstly, it is briefly introduced the basic conceptions regarding magnetism and magneto-optics as well as the development of relative theories. Also is described a general picture of the spin-glass properties and theories.
     Then, the nonlinearity and reciprocity of the Faraday effect in paramagnetic media are theoretically studied and the results analyzed. It is started from the classical theory of the Faraday effect, and then transited into the quantum theory of the Faraday effect in paramagnetic media. It is worked out the relationship between the Faraday rotationθof paramagnetic media and the applied field. Theoretical study reveals a complicated nonlinear relationship between eHθand . Specifically, under middle or low field and at high temperatures, eHθis mainly decided by the first order term of , therefore, they can be considered as linearly dependent; but in the case of high field and low temperatures, the higher order term of must be taken into account, as a result, ieHieHθdemonstrates adistinguishing nonlinear property, meanwhile its reciprocity can not be neglected. Also theoretically analyzed is the complicated temperature dependence of the Verdet constant over the magnetic susceptibility (Vp/χ) in paramagnetic media.
     Based on the above conclusions, a theoretical fitting and analysis on the experimental data of the Faraday effect in paramagnetic neodymium gallium garnet (Nd3Ga5O12) is presented by taking account of the Spin-Orbit interaction, the Crystal field interaction, the super-exchange interaction and the effect of the applied field. It is found that under high applied field, the Faraday rotationθof Nd3Ga5O12 is strongly nonlinear with , and the coefficients of the higher order term of deeply dependent on the frequency of the incident light and the temperature. Moreover, the Verdet constant (eHieHVeH/θ) is also a function of . Meanwhile, the theoretical analysis shows that the reciprocity of the Faraday effect in paramagnetic NdeH3Ga5O12 can not be neglected under high applied field. The theoretical results are in good agreement with the experimental data.
     Finally, with Langevin theory of paramagnetism and introducing the conception of the effective (indirect) exchange field, a deep and comprehensive study is conducted on the experimental magnetic and MO data of NdF3 single crystal under high applied field and in the low temperature range. It is found and proved that typical spin-glass characteristics does exist in NdF3 single crystal at low temperatures, and the“frozen”spins will be“melted”under light irradiation. Like the case of the spin-glass states converted from ferromagnetic or ferrimagnetic ones, the spin-glass characteristic of the paramagnetic media are closely connected with the (indirect) exchange interaction. At the same time, the latter also presents some magnetic characteristics quite different from the former. For example, the degree of“spin freezing”is affected by the applied field, and in the low field range, the magnetic susceptibilityχM increases with the decrease of temperature. Their mechanisms are analyzed in details at the end of this paper.
     The second part of this doctoral dissertation is about the effect of doping on the magnetic properties of MnZn power ferrites. Synthesizing high performance MnZn ferrites demands highly accurate control on temperature and oxygen concentration of sintering furnace. Take into consideration that the performance of sintering furnaces at home lags quite behind those abroad, therefore, it is of great significance to improve the performance of MnZn ferrites via basing new kind of doping on the current equipment.
     The effect of Mn3O4, one of the three raw materials of MnZn ferrites, as a dopant on the properties of MnZn power ferrites is firstly studied. It is found that remaining suitable amount of Mn3O4 to add as a dopant within the second time ball milling, in contrast with the traditional method of adding all the Mn3O4 powders as the raw material, can effectively raise the initial permeability and saturated magnetic induction of MnZn power ferrites, while reduce its power loss. Therefore, adding Mn3O4 as a dopant is of great potential in further improving the performance of current MnZn ferrites.
     In addition to the exploring the possibility of Mn3O4 as a kind of new dopant, the effect of MoO3 and TiO2 addition on the properties of MnZn power ferrites is also studied from a new aspect, and some interesting conclusion is made. It is found that suitable amount of MoO3, which is long considered as a melting agent to raise the initial permeability, can also greatly reduce the power loss of MnZn power ferrites. Besides, small amount of TiO2 addition does not deteriorate the initial permeability of MnZn power ferrites, instead, it can further reduce the power loss, and improve the temperature stability of the initial permeability.
引文
[1]戴道生,钱昆明,铁磁学(上册),北京,科学出版社,1987
    [2]周志刚,铁氧体磁性材料,北京,科学出版社,1981
    [3]褚圣麟,原子物理学,北京,高等教育出版社,1999
    [4] P.Curie, Magnetic Properties of Materials at Various Temperatures, Ann. Chim. Phys., 1895, 5:289
    [5] P.Weiss, L'Hypothèse du Champ Moléculaire et la PropriétéFerromagnétique, J.de Physique, 1907, 6: 661
    [6]W.Heitler, F.London, Wechselwirkung neutraler Atome und Hom?opolare Bindungnach der Quantenmechanik, Z. Physik, 1927, 44:455
    [7] W.Heisenberg, Zur Theorie des Ferromagnetismus, Z. Physik, 1928, 49:619
    [8] T.Oguchi, A Theory of Antiferromagnetism, II, Prog. Theor. Phys., 1955, 13:148
    [9] H.A.Kramers, L’interaction entre les atomes magneto-genes dans un crystal paramagnetique, Physica (Amsterdam), 1934, 1: 182
    [10] P.W.Anderson, Antiferromagnetism. Theory of Superexchange Interaction, Phys. Rev.,1950, 9:350
    [11] P.W.Anderson, H.Hasegawa, Considerations on Double Exchange, Phys. Rev., 1955, 100:675
    [12] P.W.Anderson, New Approach to the Theory of Superexchange Interactions, Phys. Rev., 1959, 115:2
    [13] N.Fuchikami, Theory of Superexchange Interaction. I. KMnF3, J. Phys. Soc. Japan, 1970, 28:871
    [14]T.Kasuya, A Theory of Metallic Ferro- and Antiferro-magnetism on Zener's Model, Prog. Theor. Phys. Japan, 1956,16:45
    [15] M.A.Ruderman, C.Kittel, Indirect exchange coupling of Nuclear Magnetic Moments by conduction electrons, Phys. Rev. 1954, 96: 99
    [16] J.C.Slater, The Ferromagnetism of Nickel, Phys. Rev., 1936, 49:537
    [17] C.Herring, C.Kittel, On the Theory of Spin Waves in Ferromagnetic Media, Phys. Rev., 1951, 81:869
    [18] J.Ostoréro, M.Guillot, Field-induced phase transitions in Sc-substited ytterbium-iron-garnet under high dc fields, J. Appl. Phys., 2003, 93:8008
    [19] Izuru Umehara, Ying Lu, Qing Feng Lu, et al. High field magnetic properties in single crystal Nd3Co, J. Appl. Phys., 1998, 83:6961
    [20] J.Ostoréro, M. Guillot, Anisotropy of the magnetic and magnetooptic properties of HolG: Al single crystals (low and high magnetic field), J. Appl. Phys., 1994, 75:6792
    [21] M.Guillot, X.Wei, D.Hall, et al, Magnetic and magneto-optical properties of neodymium gallium garnet under“extreme“conditions, J. Appl. Phys., 2003, 93: 8005
    [22] J.Ostoréro, M. Guillot, Magnetic properties of Sc-substituted erbium iron garnet single crystals in high magnetic field, J. Appl. Phys., 1999, 85:5214
    [23] H.Ido, K.Konno, H.Ogata, et al., Magnetic study of SmCo5, PrCo5, SmCo4B, and Sm3Co11B4 under pulse high field, J. Appl. Phys., 1991, 70(10):6128
    [24] M.Guillot, T.Schmiedel, Y. Xu, Faraday rotation and magnetic properties of neodynium trifluoride under high magnetic field, J. Appl. Phys., 1999, 85:5097
    [25] M.Guillot, T.Schmiedel, Y. Xu, Faraday rotation and magnetic properties of erbium gallium garnet under high magnetic field, J. Appl. Phys., 1998, 83:6762
    [26] T.Ito, H.Ogata, H.Ido, et al., Magnetic property of GdCo4B in high field, J. Appl. Phys, 1993, 73(10):5914
    [27] B.V.B.Sarkissian, J.Beille, High field high pressure magnetic and superconducting properties of Y9 Co7 , J. Appl. Phys, 1984, 55(6):2004
    [28] J.Ostorero, M.Guillot, High field magnetic properties of HoIG:Sc single crystals, J. Appl. Phys., 1997,81(8):4797
    [29]刘公强,乐志强,沈德芳,磁光学,上海,上海科学技术出版社,2001
    [30] P.Zeeman, Researches in Magneto-optics, London: macmillan, 1913
    [31] J.F.Dillon.Jr., Optical properties of several ferrimagnetic garnet, J. Appl. Phys., 1958, 29: 539
    [32] J.F.Dillon.Jr., J.W.Nielsen, Ferrimagnetic Resonance in Impurity Doped Yttrium Iron Garnet (YIG), J. Appl. Phys., 1960, 31: S43
    [33] J.F.Dillon.Jr., J.P.Remeika, Diffraction of light by domain structure in ferromagnetic CrBr3, J. Appl. Phys., 1963, 34:637
    [34] J.F.Dillon.Jr., J.P.Remeika, Magneto-Optical Studies of Chromium Tribromide, J. Appl. Phys., 1963, 34:1240
    [35]毋国光,战元龄编,光学,北京,人民教育出版社,1978
    [36] J.F.Dillon.Jr., Magnetooptics and its uses, J. Magn. Magn. Mat., 1983, 31-34: 1
    [37] J.F.Dillon.Jr., Magnetic and optical properties of rare earth garnets, J. Magn. Magn. Mat., 1990, 84: 213
    [38] J.F.Dillon.Jr., Magnetooptics, J. Magn. Magn. Mat., 1991, 100: 425
    [39] P.Hansen, C.Clausen, G.Much, et al, Magnetic and magneto-optical properties of rare-earth transition-metal alloys containing Gd, Tb, Fe, Co, J. Appl. Phys., 1989, 66:756
    [40] P.Hansen, W.Tolksdorf, Magnetic and magneto-optic properties of bismuth-substituted thuliumiron -garnet films, J. Appl. Phys., 1991, 69:4577
    [41] P.Hansen, S.Klahn, C.Clausen, et al., Magnetic and magneto-optical properties of rare-earth transiti -on-metalalloys containing Dy, Ho, Fe, Co, J. Appl. Phys., 1991, 69:3594
    [42] P.Hansen, D.Raasch, D.Mergel, Magnetic and magneto-optical properties of amorphous rare-earth- transition-metal alloys containing Pr, Nd, Fe, Co, J. Appl. Phys., 1994, 75:5267
    [43] Y.Xu, J.H.Yang, X.J.Zhang, Quantum theory of the strong magneto-optical effect of Ce-substituted yttrium iron garnet, Phys. Rev. B, 1994, 50:13428
    [44] J.H.Yang, Y.Xu, F.Zhang, et al., Theoretical analysis of the magnetization and of the paramagnetic and diamagnetic magneto-optical effects in Pr-substituted yttrium iron garnets using quantum theory, Phys. Rev. B, 1997, 56:11119
    [45] G.Q.Liu, Y.P.Huang, Z.Q.Yu, Quantum theory of the Faraday magneto-optical effect in paramagnetic media, Phys. Rev. B, 1990, 41:749
    [46] G.Q.Liu, W.D.Zuo, Z.Q.Le, The four-level transition model and the Faraday effect in ferromagnetic media, J. Appl. Phys., 1991, 69:1591
    [47]G.Q.Liu, W.D.Zuo, Four-level model and the Faraday effect in ferrimagnetic media, Phys. Rev. B,1991, B44(2):699
    [48]G.Q.Liu, X.Zhang, N.G.Zhang, et al, The quantitative analysis of magnetic and magneto-optical pro- perties in praseodymium trifluoride, J. Phys: Condens. Matter, 1994, 6:453
    [49] J.Q.Cai, X.M.Tao, W.B.Chen, et al, Density-functional theory calculations on the magneto- optical Kerr effects in Co2TiSn and Co2ZrSn, J. Magn. Magn. Mater, 2005, 292:476
    [50]H.Nojiri, Y.Shimamoto, N.Miura, et al, Faraday rotation and magnetization in CuGeO3 in ultra-high magnetic fields, Phys. B, 1995, 211:184
    [51] J.Ostoréro, M.Guillot, Magnetooptical properties of Sc-substituted erbium-iron-garnet single crystals, J. Appl. Phys., 1998, 83:6756
    [52] A.I.Savchukay, V.I.Fediv, P.I.Nikitinb, et al, High-field Faraday rotation in II-VI-based semimagnet -ic semiconductors, J. Cryst. Growth, 1998,184/185:988
    [53] M.Guillot, T.Schmiedel and Y.Xu, Faraday rotation and magnetic properties of neodynium trifluoride under high magnetic field, J. Appl. Phys., 1999, 85:5097
    [54] T.Yasuhira, K.Uchida, Y.H.Matsuda, N.Miura, Giant Faraday rotation spectra of Zn1-xMnxSe observed in high magnetic fields up to 150 T, Phys. Rev. B,2000, 61(7):4685
    [55]Y.Imanaka, H.Nojiri, Y.H.Matsuda, et al,Cyclotron resonance and Faraday rotation in n-type CdS at ultra-high magnetic fields, Phys. B, 2004, 346-347:437
    [56]V.Cannella, J.A.Mydosh, Magnetic Ordering in Gold-Iron Alloys Phys. Rev. B,1972, 6:4220
    [57]F.W.Smith, Thermodynamic functions of a spin glass, Solid State Commu., 1973, 13(8):1267
    [58]J.Dumas, C.Schlenker, R.Tournier, Spin glass properties of vanadium diluted in Ti2O3Solid State Commu., 1975,17(10):1215
    [59]K.Binder, K.Schr?der, Monte Carlo study of a two-dimensional Ising“spin-glass”Solid State Commu., 1976, 18(9-10):1361
    [60]G.J.Nieuwenhuys, J.A.Mydosh, Long-time relaxation effects in spin-glasses: The heat capacity of AuFe, Phys. B+C, 1977, 86-88(2):880
    [61]A.P.Murani, Spin glasses: Comments on some experimental results, J. Magn. Magn. Mater., 1977,5(2):95
    [62]J.A.Mydosh, Spin glasses-recent experiments and systems, J. Magn. Magn. Mater., 1978, 7(1-4):237
    [63] R.Buchmann,H.P. Falke, H.P.Jablonski,et al, Influence of reduced mean free path on the electrical resistivity of AuFe spin glass alloys, Phys. B+C, 1977, 86-88(2):835
    [64]R.W.Knitter, J.S.Kouvel, Field-induced magnetic transition in a Cu-Mn spin-glass alloy, J. Magn. Magn. Mater., 1980, 21(3):L316
    [65]J.A.Mydosh, G.J.Nieuwenhuys, Chapter 2 Dilute transition metal alloys: Spin glasses, Handbook of Ferromagnetic Materials, 1980
    [66]H.v.L?hneysen, J.L.Tholence, Time dependent magnetic properties of (La,Gd)Al2 spin-glasses, J. Magn. Magn. Mater., 1980, 15-18(1):171
    [67]M.H.Bennett, B.R.Coles, La(Gd)Al2 - a simple spin glass?, Phys. B+C, 1977, 86-88(2): 844
    [68]J.Y.Ping, B.R.Coles, Enhanced moments, resistivity minima and spin-glass character in Gd-doped UAl2, J. Magn. Magn. Mater., 1982, 29(1-3):209
    [69]M.A.Savchenko, A.V.Stephanovich, Spin glasses on the basis of rare earth metal compounds, Solid State Commu., 1980,33(7):725
    [70]S.Nagata, R.R.Galazka, G.D.Khattak, Spin glass transition in a diluted frustrated lattice: Cd1?xMnxTe, Hg1?xMnxTe, and Hg1?xMnxSe, Phys. B+C, 1981,107(1-3):311
    [71]J.L.Genicon, P.Haen, F.Holtzberg, et al, Spin glass freezing in mixed valence dilute Y1?xTmxSe alloys, Phys. B+C, 1981:108(1-3):1355
    [72]H.Maletta, W.Felsch, H.Scheuer, et al, The spin-glass-to-ferromagnetism transition in the diluted Heisenberg system EuxSr1?xS, J. Magn. Magn. Mater., 1980, 15-18(1):167.
    [73]J.J.Hauser, Concentrated spin glass systems: Amorphous MnSi and MnGe, J. Magn. Magn. Mater., 1980, 15-18(3):1387
    [1]刘公强,乐志强,沈德芳,磁光学,上海,上海科学技术出版社,2001
    [2] P.Zeeman, Researches in Magneto-Optics, London: Macmillan, 1913
    [3] W.Voigt, Magneto- and Electro-Optics, Tübingen: Leipzig, 1908
    [4] J.F.Dillon.Jr., Optical Properties of Several Ferrimagnetic Garnets, J. Appl. Phys.,1958, 29:539
    [5] J.F.Dillon.Jr., Magnetic and optical properties of rare earth garnets, J. Magn. Magn. Mat., 1990, 84: 213
    [6] L.K.Anderson, Microwave Modulation of Light Using Ferrimagnetic Resonance, J. Appl. Phys., 1963, 34:1230
    [7] S.Yamamoto, T.Makimoto, Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics,J. Appl. Phys., 1974, 45(2):882
    [8] M.Shirasaki, K.Asama, Compact optical isolator for fibers using birefringent wedges, Appl. Opt., 1982, 21(23):4296
    [9] H.Nojiri, Y.Shimamoto, N.Miura, et al., Faraday rotation and magnetization in CuGeO3 in ultra- high magnetic fields, Phys. B, 1995, 211:184
    [10] V.V.Druzhinin, O.M.Tatsenko, A.I.Bykov, Nonlinear Faraday effect in CdS semiconductor in an ultrahigh magnetic field, Phys. B, 1995, 211:392.
    [11] A.I.Savchuk, V.I.Fediv, P.I.Nikitin, Enhancement of magneto-optical effects in ZnHgMnTe solid solutions, J. Cryst. Growth, 1999, 197(3):698
    [12] V.V.Platonov, O.M.Tatsenko, A.I.Bykov, The Faraday effect in Cd0.57Mn0.43Te in high magnetic field, Phys. B, 1998, 246-247:319
    [13] M.Guillot, T.Schmiedel, Y.Xu, Faraday rotation and magnetic properties of erbium gallium gallate under high magnetic field, J. Appl. Phys., 1998, 83:6762
    [14] M.Guillot, T.Schmiedel, Y.Xu, Faraday rotation and magnetic properties of neodynium trifluoride under high magnetic field, J. Appl. Phys., 1999, 85:5097
    [15] Yasuhira, K.Uchida, Y.H.Matsuda, et al, Giant Faraday rotation spectra of Zn1-xMnxSe observed inhigh magnetic fields up to 150 T, Phys. Rev. B, 2000, 61(7):4685
    [16] M.Guillot, X.Wei, D.Hall, et al, Magnetic and magneto-optical properties of neodymium gallium garnet under "extreme" conditions, J. Appl. Phys., 2003, 93:8005
    [17] J.F.Dillon.Jr., Magnetooptics and its uses, J. Magn. Magn. Mater., 1983, 31-34:1
    [18] E.U.Condon, G.H.Shortley, The Theory of Atomic Spectra, Cambridge, Cambridge University, 1951
    [19] K.A.Wickersheim, Spectroscopic Study of the Ytterbium-Iron Exchange Interaction in Ytterbium Iron Garnet, Phys. Rev., 1961, 122:1376
    [20] J.Yang, Y.Xu, F.Zhang, M.Guillot, Theoretical analysis of the magnetization and of the paramagneti -c and diamagnetic magneto-optical effects in Pr-substituted yttrium iron garnets using quantum theory, Phys. Rev. B, 1997, 56:11119
    [1] P.Langevin, Sur la Théorie du Magnétisme, J. de Physique, 1905, 4:678
    [2]W.Heitler, F.London, Wechselwirkung neutraler Atome und Hom?opolare Bindungnach der Quantenmechanik, Z. Physik, 1927, 44:455
    [3]M.A.Ruderman, C.Kittel, Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons, Phys. Rev., 1954, 96:99
    [4] P.W.Anderson, H.Hasegawa, Considerations on Double Exchange, Phys. Rev., 1955, 100:675
    [5] J.H.Van Vleck, M.H.Hebb, On the paramagnetic rotation of tysonite, Phys. Rev., 1934, 46:17
    [6] G.Q.Liu, Z.Q.Yu, Z.Q.Le, Faraday effect and effective field theory in solid materials, J. Magn. Magn. Mater., 1991, 96:155
    [7] S.Giraud-Cotton, V.P.Kaftandjian, L.Klein, Magnetic optical activity in intense laser fields. I. Self-rotation and Verdet constant, Phys. Rev. A, 1985, 32:2211
    [8] M.Burgess, J.M.Leinaas, O.M.Lovvik, Classical optics in generalized Maxwell Chern-Simons theory, Phys. Rev. B, 1993, 48:12912
    [9] G.Q.Liu, Y.P.Huang, Z.Q.Yu, Quantum theory of the Faraday magneto-optical effect in paramagnetic media, Phys. Rev. B, 1990, 41:749
    [10] Y.Xu, M.Duan, Theory of Faraday rotation and susceptibility of rare-earth trifluorides, Phys. Rev.B, 1992, 46:11636
    [11] J.F.Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, London, Oxford, 1969
    [12] J.Warner, Faraday Optical Isolator/Gyrator Design in Planar Dielectric Waveguide Form, IEEE Trans. Microw. Theory Tech., 1973, MIT, 21:769
    [13] L.D.Landau, E.M.Lifshitz, Electrodynamics of Continuous Media, Oxford, Pergamon, 1960
    [14] W.A.Crossley, R.W.Cooper, J.L.Page, Faraday Rotation in Rare-Earth Iron Garnets, Phys. Rev., 1969, 181:896
    [15] P.Hansen, M.Rosenkranz, K.Witter, Temperature and wavelength dependence of the Faraday ellipticity of lead-substituted gadolinium iron garnet films, Phys. Rev. B, 1982, 25:4396
    [16] M.Guillot, X.Wei, D.Hall, et al, Magnetic and magneto-optical properties of neodymium gallium garnet under "extreme" conditions, J. Appl. Phys., 2003, 93:8005.
    [17] M.Guillot, T.Schmiedel, Y.Xu, Faraday rotation and magnetic properties of erbium gallium gallate under high magnetic field, J. Appl. Phys., 1998, 83:6762.
    [18] M.Guillot, T.Schmiedel, Y.Xu, Faraday rotation and magnetic properties of neodynium trifluoride under high magnetic field, J. Appl. Phys., 1999, 85:5097.
    [19]周志刚等,铁氧体磁性材料,科学出版社,1981
    [20]张纪纲,射频铁氧体宽带器件,科学出版社,1986
    [21]张国荣等,微波铁氧体材料与器件,电子工业出版社,1995
    [22] Marshall Sparks, Effect of Impurities on the Microwave Properties of Yttrium Iron Garnet, J. Appl. Phys., 1967, 38:1031
    [23] Chien-Yih Tsay, Chu-Yu Liu, Kuo-Shung Liu, et al, Low temperature sintering of microwave magnetic garnet materials, Mater. Chem. Phys., 2003, 79(2-3):138
    [24] Alexey V. Nazarov, David Ménard, Jerome J. Green, et al, Near theoretical microwave loss in hot isostatic pressed (hipped) polycrystalline yttrium iron garnet, J. Appl. Phys., 2003, 94:7227
    [25] Rodica Puflea-Ramer, Kevin D. McKinstry, John Fagan, et al., Predictive analysis of linewidth parameters of microwave garnets, Electr. Pow. Syst. Res, 1992, 24(2):149
    [26] P. E. Wigen, Microwave properties of magnetic garnet thin films, Thin Solid Films, 1984, 114(1-2): 135
    [27] M. F. Lewis, E. Patterson, Interaction of Microwave Phonons with Domain Walls in Yttrium Iron Garnet, J. Appl. Phys., 1968, 39:1913
    [28] W. R. Wilson, L. R. Hodges, Jr., G. P. Rodrigue, G. R. Harrison, Magnetic and Microwave Properties of Aluminum- and Gadolinium-Substituted Calcium Vanadium Garnets, J. Appl. Phys., 1967, 38:1405.
    [29] J. C. Butler, J. J. Kramer, R. D. Esman, et al., Microwave and magneto-optic properties of bismuth-substituted yttrium iron garnet thin films, J. Appl. Phys., 1990, 67:4938
    [30]李荫远,李国栋,铁氧体物理学,科学出版社,1978
    [31] Wei Wang, Gongqiang Liu, Jinhui Wang, Theoretical investigation of magnetic property in paramagnetic neodymium gallium garnet under high magnetic field,J. Magn. Magn. Mater. 2006,306(1):119
    [32] J. H. Yang, Y. Xu, M. Guillot,The effect of the spin-orbit interaction strengths on the Faraday rotation in Pr-substituted yttrium iron garnet and in praseodymium trifluoride, J. Phys.: Condens. Matter, 1999, 11:3299
    [33] [38]F. Zhang, Y. Xu, J. H. Yang, M. Guillot, Quantum theory of the magneto-optical effect and magnetization of Nd-substituted yttrium iron garnet, Eur. Phys. J. B, 2001, 20:165
    [1] J.Hubsch, G.Gavoille, Semi-spin-glass behavior in the Co2 T iO4 compound, Phys. Rev. B, 1982, 26: 3815
    [2] D.Fiorani, S.Viticoli, J.L.Dorman, Murani, Spin-glass behavior in an antiferromagnetic frustrated spinel: ZnCr1 .6G a 0.4O 4, et al., Phys. Rev. B,1984, 30:2776 .
    [3] R.N.Bhowmika, R.Ranganathan, Re-entrant spin glass and magneto-resistance in Co0.2Zn0.8Fe1.6Ti0.4 -O4 spinel oxide, J. Appl. Phys., 2003, 93 (5): 2780
    [4] J. W.Cai, C.Wang, B.G.Shen, et al., Colossal magnetoresistance of spin-glass perovskite La0.67Ca0.33Mn0.9Fe0.1O3, Appl. Phys. Lett, 1997, 71:1727
    [5]J.R.Sun, H.K.Wong, Lattice effects on the magnetic and transportproperties of La0.67-xSmxSr0.33CoO3 perovskites, Appl. Phys. Lett, 1999, 75(12):1772
    [6] V.Cannella, Mydosh, Magnetic Ordering in Gold-Iron Alloys, Phys. Rev. B, 1972, 6:4220
    [7] M.Rots, J.Van Cauteren, L.Hermans, PAC study of spin glass freezing in AuFe alloys, 1984, J.Appl. Phys., 55:1732
    [8] Yeun V.Tsay, L.Shen, The electrical resistivity of dilute magnetic alloys: Kondo effect vs spin glass behavior, J. Appl. Phys., 1978, 49 (3):1625
    [9] F.S.Huang, L.H.Bieman, A.M.De Graaf, et al, Frequency dependent susceptibility of cobalt and manganese aluminosilicate spin glasses. J. Phys. C, 1978, 11:L271
    [10]Y.Syono, A.Ito, O.Horie, M?ssbauer Study on the Structural and Magnetic Properties of Amorphous BaO–Fe2O3–B2O3 System, J. Phys. Soc. Jpn, 1979, 46:793
    [11]Y.Yoshurun, M.B.Salamon, K.V.Rao, et al, Spin-Glass-Ferromagnetic Critical Line in Amorphous Fe-Mn Alloys, Phys. Rev. Lett., 1981, 45:1366
    [12] B.W.Morris, S.G.Colborne, M.A.Moore, et al, Zero-temperature critical behaviour of vector spin glasses, J. Phys. C, 1986, 19:1157
    [13]Y.Muraoka, H.Tabata, T.Kawai, Photocontrol of spin-glass state in Mg1.5FeTi0.5O4 spinel ferrite films, Appl. Phys. Lett. 2000, 76(9): 1179
    [14]M.Guillot, T.Schm, You Xu, Faraday rotation and magnetic properties of neodyniumtrifluoride under high magnetic field, J. Appl. Phys., 1999, 85(8):5097.
    [15] C.Leycuras, H. Gall Le, M.Guillot, et al, Magnetic susceptibility and Verdet constant in rare earth trifluorides, J. Appl. Phys., 1984, 55(6):2161
    [16]M.L.Paradowski, A.W.Pacyna, A.Bombik, et al, Magnetic susceptibility of LaxNdl-xF3 single crystal -s , J. Magn. Magn. Mater., 1997, 166:231
    [17]铁氧体物理学,李荫远,李国栋,科学出版社,1978
    [18]磁性材料,R.S.特贝尔,D.J.克雷克著,北京冶金研究所《磁性材料》翻译组译,科学出版社,1979
    [19]铁磁学(上),戴道生,钱昆明,科学出版社,2000
    [20]Liu Gongqiang, Huang Yanping, Yu Zhiqiang, Quantum theory of the Faraday magneto-optical effect in paramagnetic media, Phys. Rev. B, 1990, 41(1):749
    [21]M.Ayadi, J.Ferre′, Photoinduced Magnetic Effects in an Insulating Spin-Glass: Cobalt Aluminosilicate Glass, Phys. Rev. Lett., 1983, 50:274
    [22]Wei Wang, Ming Gu, Gongqiang Liu, Quantum theory of nonlinear and reciprocal properties of ma -gneto-optical effects in paramagnetic media under a high magnetic field, Phys. Rev. B, 2005, 72: 014415
    [1]铁氧体磁芯,V.W.卡姆普曲克(德),E.勒斯(德)著,冯怀涵,沈执两,池玉清译,科学出版社,1986
    [2]李荫远,李国栋,铁氧体物理学,北京,科学出版社,1978
    [3]周志刚等,铁氧体磁性材料,北京,科学出版社,1982
    [4]黄永杰,李世堃,兰中文,磁性材料,成都,电子科技大学出版社,2002
    [5]钟文定,铁磁学,北京,科学出版社,1987
    [6]林其壬,铁氧体工艺原理,上海科学技术出版社,1987
    [7]李国栋,当代磁学,合肥,中国科学技术大学出版社,1999.
    [8]锰锌、镍锌铁氧体的研究现状及最新进展,关小蓉,张剑光,朱春城等,材料导报,2006,20(12):109
    [9]李克文,刘剑,胡滨,软磁铁的标准化及标准体系,磁性材料及器件,1999,30 (2): 47254
    [10]J.M.Blank, Equilibrium Atmosphere Schedules for the Cooling of Ferrites, J. Appl. Phys., 1961, 32(3):378S,
    [11] R.E.Alley.JR, V.E.Legg, Effects of Hydrostatic Pressure on the Properties of Magnetic Materials, J. Appl. Phys., 1960, 31(5):239S
    [12]E.Roess, Magnetic properties and microstructure of high permeability MnZn ferrites, Ferrites Proceeding of the International Conference, 1966:105
    [13] Y.Sakaki, T.Matsuoka, Relationship between dimensions and power losses of high permeability MnZn ferrites core. Paper of Technical Group on Power Electrics, IECE, Japan, 1985, 24(1): 28
    [14] T.Pannaparayil, R.Marande, S.Komarneni, Magnetic properties of high density MnZn ferrites. J. Appl. Phys., 1991, 69(8): 5349
    [15] H.Inaba, Nonstoichiometry and its effect on the magnetix properties of a Manganese zinc ferrites. J. Amer. Ceram. Soc., 1995, 78(11):2907
    [16] C.Rath, K.K.Sahu, S.Anand, et al, Preparation and characterization of nanosize MnZn ferrite. J. Magn. Magn. Mater., 1999, 202:77
    [17] T. Nakamura, Y.Okano, Electromagnetic Properties of MnZn Ferrite Sintered Ceramics. J. Appl. Phys. , 1996, 79 (9):712927133.
    [18] P.J.Zaag, New views on the dissipation in soft magnetic ferrites. J. Magn. Magn. Mater., 1999, 196/197:315
    [19]Weon Hee Jeong, Young Ho Han, Byung Moo Song, Effects of grain size on the residual loss of Mn–Zn ferrites, J. Appl. Phys , 2002, 91 (10):7619
    [20]Amarendra K. Singha, Abhishek K. Singha, et al, High performance Ni-substituted Mn-Zn ferrites p -rocessed by soft chemical technique, J. Magn. Magn. Mater. 2004, 281:276
    [21]F.Fiorillo, C.Beatrice, O.Bottauscio, et al, Approach to magnetic losses and their frequency depende -nce in Mn–Zn ferrites, Appl. Phys. lett., 2006, 89:122513-1
    [22] J.A.T.Taylor, S.T.Reezek, A.Rosen, Soft ferrite processing., Amer. Ceram. Soc.Bulletin, 1995, 74(4):91
    [23] C.S.Liu, J.M.Wu, Optimum power loss and microstructure of MnZn ferrites under consideration of particle size., IEEE Trans. Magn., 1996, 32(5):4860
    [24]刘素琴,左晓希,桑桑斌等,锰锌铁氧体纳米晶的水热制备研究.磁性材料及器件, 1999, 31(2):12
    [25]I.P.Kilbride, R.Freer, Effect of sintering enclosure and sintering parameters on the magnetic properties of a high permeability Manganese zinc ferrites., IEEE Trans.Magn., 2000, 36(1):375
    [26] K.I.Aeshak, D.P.Egan, K.Phelan, Using statistical design of experiment to investigate the effect of firing parameters on the electrical and magnetic properties of MnZn ferrite. Microelectronics Reliab., 2002, 42:1127
    [27] D.J.Fatemi, V.G.Harris, V.M.Browning, et al., Processing and cation redistribution of MnZn ferrites via high energy ball milling., J. Appl. Phys., 1998, 83(11):6867 [28 ]王零森.特种陶瓷,中南工业大学出版社, 1994
    [29]田民波,磁性材料,北京,清华大学出版社,2001
    [30]陈国华,21世纪软磁铁氧体材料和元件发展趋势.磁性材料及器件, 2001, 3(4):34
    [31]孙科,兰中文,余忠,MnZn功率铁氧体的研究进展,磁性材料及器件,2005, 36(6):17
    [32]T.Akashi, Effect of the addition of CaO and SiO2 on the magnetic characteristics and microstructure of MnZn ferrites. Trans., Jpn. Inst. Met, 1961, 2: 171
    [33]G.C.Jain, B.K.Das, N.C.Geol, Effect of MoO3 addition on the grain growth kinetics of a manganesezinc ferrite, J.Am. Ceram. Soc., 1979,62:79
    [34] C.S.Liu, J.M.Wu, C.J.Chen, et al. Power loss properties of MnZn ferrites containing Er2O3, J. Magn. Magn. Mater., 1994, 133:478
    [35] H.Inaba, T.Abe, Y.Kitano, et al., Magnetic properties and the grain boundary structure of MnZn ferrites with the addition of Nb2O5, J. Magn. Magn. Mater., 1994,133:487
    [36] A.Znidarsic, M.Limpel, M.Drofenik, Effect of dopants on the magnetic properties of MnZn ferrites for high frequency power supplies. IEEE Trans. Magn., 1995, 31(2):950
    [37]M.Drofenik, A.Znidarsi, I.Zajc, Highly resistive grain boundaries in doped MnZn ferrites for high fr -equency power supplies, J. Appl. Phys.1997, 82 (1):333
    [38]Petru Andrei, Caltun F. Ovidiu, Constantin Papusoi, Losses and magnetic properties of Bi203 doped MnZn ferrites, J. Magn. Magn. Mater., 1999,196-197:362-
    [39] A.D.P.Rao, B.Ramesh, P.R.M.Rao, et al, Magnetic and microstructureal properties of Sn/Nb substituted MnZn ferrites., J. Alloys Compd., 1999, 282:268
    [40] A.Znidarsic, M.Drofenik, High resistivity grain boundaries in CaO-doped MnZn ferrites for high frequency power application., J. Amer. Ceram. Soc., 1999, 82(2):359
    [41] W.H.Jeong, M.S.Shin, B.M.Song, et al., Effect of TiO2 addition on the residual loss of MnZn ferrites. Proceeding of the Eighth International Conference on Ferrites (ICF8), Kyoto and Tokyo, Japan. 2000: 564
    [42]J.Fan, F.R.Sale,The microstructures, magnetic properties and impedance analysis of Mn-Zn ferrites doped with B2O3, J. Eur. Ceram. Soc, 2000, 20:2743
    [43] H.S. Chen, S.C.Chang, C.Y.Tsay, et al, Improvement on magnetic power loss of MnZn ferrites materials by V2O5 and Nb2O5 co-doping., J. Euro. Ceram. Soc., 2001,21:1931
    [44]Jianhu Nie, Haihua Li, Zekun Feng, et al., The effect of nano-SiO2 on the magnetic properties of the low power loss manganese zinc ferrites, J. Magn. Magn. Mater., 2003, 265:172
    [45]J.Zhu, K.J.Tseng, Reducing Dielectric Losses in MnZn Ferrites by Adding TiO2 and MoO3, IEEE Trans. Magn, 2004, 40(5):3339
    [46]Huang Aiping, He Huahui, Feng Zekun, Effects of SnO2 addition on the magnetic properties ofmanganese zinc ferrites, J. Magn. Magn. Mater., 2006, 301:33
    [1]钟文定,铁磁学,北京,科学出版社,1987
    [2]H.Rikukawa , Relationship between microstructures and magnetic properties of ferrites containing cl -osed pores,IEEE Trans. Magn., 1982, 18(6):1535
    [3]周志刚,铁氧体磁性材料,北京,科学出版社,1981.
    [4] I. Lin Nan, R.Mishra, G.Thomas, CaO segregation in MnZn ferrite, IEEE Trans. Magn.,1982, Mag- 18(6):1544.
    [5] Ying-Chun Lin, Dershin Gan, Pouyan Shen, Microstructure of zirconia-(MnZn ferrite) composites, Mater. Sci. Eng., 1994, A188:327.
    [6] A.Znidarsic, M.Limpel, M.Drofenik, Effect of dopants on the magnetic properties of MnZn ferrites 80for high frequency power supplies, IEEE Trans. Magn.,1995, 31(2):950.
    [7] C.S.Liu, J.M.Wu, M.J.Tsay , Optimum power-loss and microstructure of MnZn ferrites under consid -eration of particle size,et al., IEEE Trans. Magn., 1996, 32(5):4860.
    [8] Geun-Min Jeong, Jaeho Choi Sung-Soo Kim, Abnormal grain growth and magnetic loss in Mn-Zn f -errites containing CaO and SiO2, IEEE Trans. Magn., 2000,36(5):3405.
    [9] S.H.Chen, S.C.Chang, C.Y.Tsay, Improvement on magnetic power loss of MnZn-ferrite materials by V2 O5 and Nb2 O5 co-doping J. Eur. Ceram. Soc., 2001, 21(10-11):1931
    [10]张益栋,兰中文;余忠; Nb 2 O5掺杂对高频MnZn功率铁氧体微结构和性能的影响磁性材料及器件,2003, 34(5):8.
    [11]余忠,兰中文;王京梅;添加CaO、V2 O5对高频MnZn铁氧体性能的影响材料研究学报,2004 18(2):176.
    [12]戴煜辉,尉旭波,苏桦等,P2O5掺杂对高磁导率MnZn铁氧体性能的影响,磁性材料及器件,2005, 36(2):29
    [13]Huang Aiping, He Huahui, Feng Zekun, Effects of SnO2 addition on the magnetic properties of man -ganese zinc ferrites, J. Magn. Magn. Mater., 2006, 301:331
    [14] Lezhong Li, Zhongwen Lan, Zhong Yu, et al, Effects of Ta O addition on the microstructure and te -mperature dependence of magnetic properties of MnZn ferrites2 5,J. Magn. Magn. Mater., 2009,321(5): 438
    [15]Lezhong Li, Zhongwen Lan, Zhong Yu, et al, Effects of Co-substitution on wide temperature rangin -g characteristic of electromagnetic properties in MnZn ferrites, J. Alloy. Compd, doi:10.1016/j.jallcom. 2008.09.101
    [16] Petru Andrei, Ovidiu F. Caltun, Constantin Papusoi, et al, Losses and magnetic properties of Bi O doped MnZn ferrites2 3, J Magn. Magn. Mater., 1999, 196-197:362
    [17]王江超;赵特技;张怀武; MoO3和CaCO3掺杂对MnZn铁氧体磁特性的影响,磁性材料与器件,2006, 37(3):40
    [18]Zhong Yu, Ke Sun, Lezhong Li, Yunfei Liu, Influences of Bi O on microstructure and magnetic pr -operties of MnZn ferrite2 3, J. Magn. Magn. Mater., 2008, 320(6): 919
    [19] J.Fan, F.R.Sale, Analysis of Power Loss on Mn-Zn ferrites Prepared by Different Processing Route -s, IEEE Tran. Magn., 1996, 32: 4854
    [20] D.Stoppels, Developments in soft magnetic power ferrites, J. Magn. Magn. Mater., 1996, 160: 323
    [21] E.Cardelli, L.Fiorucci, E.D.Torre, Estimation of MnZn Ferrite Core Losses in Magnetic Compome -nts at High Frequency, IEEE Tran. Magn., 2001, 37:2366
    [22] T.Kojima, N.Sato, T.Minakawa, et al, SnO2 substituted MnZn ferrite with low power loss, Podwer Metall., 1996, 43(1):31
    [23] T.Minakawa, N.Sato, T.Nomura, Core loss of MnZn ferrite with added SnO2.,日本应用磁气协会志,1996, 20(2):497
    [24] J.Zhu, K.J.Tseng, Reducing dielectric losses in MnZn ferrites by adding TiO2 and MoO3, IEEE Tra -ns. Magn., 2004, 40(5):3339
    [25] T.Nishiyama, K.Kanai, T.Iimura, et al, Analysis of loss on MnZn ferrites containing CaO., Adv. Cer -am., 1985, 16:491
    [26] G.M.Jeong, J.Choi, S.S.Kim, Abnormal grain growth and magnetic loss in MnZn ferrites containin -g CaO and SiO2., IEEE Trans. Magn., 2000, 36(5):3405
    [27] A.Znidarsic, M.Drofenik, I.Zajc, High resistivity grain boundaries in CaO-doped MnZn ferrites for high frequency power application. J. Appl. Phys., 1997, 82(9):333
    [28]张有纲,黄永杰,罗迪民,磁性材料,成都电讯工程学院出版社,1988
    [1] T.Akashi, Effect of the addition of CaO and SiO2 on the magnetic characteristics and microstructures of manganese zinc Ferrites(Mn0.68Zn0.21Fe2.11O4),Tran.Japan.Inst.Metals,1961,2:171
    [2]D.W.Johnson Jr.,P.K.Gallagher,M.F.Yan,et al,Vacancy contents and phase equilibria of Ti-substituted MnZn ferrite,J.Solid State Chem.,1979,30(3):299
    [3] I.Lin.Nan, R,Mishra G.Thomas, CaO segregation in MnZn ferrite, IEEE Trans. Magn.,1982, Mag-18(6):1544.
    [4]D.Stoppels, L.A.H.van Hoof, P.G.T.Boonen, Mon ocrystalline high-saturation magnetization ferrites for video recording head application: III. CoII doped MnZn ferrites with large FeII contents, J. Magn. Magn. Mater., 1983, 37(2):131
    [5]E.C.Snelling, Soft Ferrites: Application and Properties, 2nd Ed. Butterworths, London, 1988
    [6]C.SLiu, J.. M.Wu, C.J.Chen, et al, Power loss properties of Mn-Zn ferrites containing Er2O3, J. Magn. Magn. Mater ., 1994, 133(1-3):478
    [7] A.Zinidarisic, M.Limpel, M.Drofenik, Effect of dopants on the magnetic properties of MnZn ferrites for high frequency power supplies, IEEE. Trans. Magn., 1995, 31(2):950
    [8]H.Inaba,T.Abe,Y.Kitano,Shimomura J.,Mechanism of core loss and the grain boundary structure of Nb-doped manganese zinc ferrite, J. Solid State Chem., 1996, 121:117
    [9] T.Minakawa, N.Sato, T.Nomura, Core loss of Mn–Zn ferrite with added SnO2. J.Magn.Soc.Jpn., 1996, 20:497
    [10] J.Zhu, K.J.Tseng, Reducing Dielectric Losses in MnZn Ferrites by Adding TiO2 and MoO3, IEEE Trans. Magn, 2004, 40(5):3339
    [11] M.Drofenik, A.Znidarsic, I.Zajc, Highly resistive grain boundaries in doped Mn–Zn ferrites for high frequency power supplies., J. Appl. Phys., 1997, 82:333
    [12]Petru Andrei, Ovidiu F.Caltun, Constantin Papusoi, et al, Losses and magnetic properties of Bi2O3 doped MnZn ferrites,J.Magn.Magn.Mater.,1999,196-197:362
    [13] G.M.Jeong, J.Choi, S.S.Kim, Abnormal grain growth and magnetic loss in Mn–Zn ferrites containing CaO and SiO2, IEEE Trans. Magn., 2000, 36:3405
    [14] S.H.Chen., S.C.Chang, C.Y.Tsay, et al., Improvement on magnetic power loss of MnZn ferrites materials by V2O5 and Nb2O5 co-d Ceram. Soc.,oping., J. Euro. 2001,21:1931
    [15]V.T.Zaspalis, E.Antoniadis, E.Papazoglou, et al, The effect of Nb2O5 dopant on the structural and magnetic properties of MnZn-ferrites, J. Magn. Magn. Mater., 2002,250:98
    [16] A.Fujita, S.Gotoh, Temperature dependence of core loss in Co substituted MnZn ferrites, J. Appl. Phys. 2003, 93(10):7477
    [17] Jianhu Nie, Haihua Li, Zekun Feng, et al, The effect of nano-SiO2 on the magnetic properties of the low power loss manganese zinc ferrites, J. Magn. Magn. Mater., 2003, 265:172
    [18]姜久兴;李垚;赫晓东等,多种添加物联合作用对Mn-Zn铁氧体性能的影响,硅酸盐学报,2004,32(6):747
    [19] K.Amarendra, Singha, K.Abhishek et al, High performance Ni-substituted Mn-Zn ferrites processed by soft chemical technique, J. Magn. Magn. Mater., 2004, 281:276
    [20]余忠;兰中文;MnZn功率铁氧体研究进展,材料导报,2005, 19(4):101
    [21]Huang Aiping, He Huahui, Feng Zekun, Effects of SnO2 addition on the magnetic properties of manganese zinc ferrites, J. Magn. Magn. Mater., 2006, 301(2):331
    [22]P.Papazoglou, E.Eleftheriou, V.T.Zaspalis, Low sintering temperature MnZn-ferrites for power applications in the frequency region of 400 kHz, J. Magn. Magn. Mater.,2006,296(1):25
    [23] Y.U.Zhong, Zhongwen Lan, Shengming Chen, et al, Microstructure and magnetic performance of Ni-substituted high density MnZn ferrite, Rare Metals, 2006, 25(6), Supplement 1:584
    [24] H.Shokrollahi, K.Janghorban, Influence of additives on the magnetic properties,microstructure and densification of Mn–Zn soft ferrites, Mater. Sci. Eng.: B, 2007,141(3):91
    [25] K.Janghorban, H.Shokrollahi, Influence of V2O5 addition on the grain growth and magnetic properties of Mn–Zn high permeability ferrites, J. Magn. Magn. Mater., 2007, 308(2):238
    [26] G.C.Jain, B.K.Das, N.C.Geol, Effect of MoO3 addition on the grain growth kinetics of amanganesezinc ferrite, J.Am. Ceram. Soc., 1979,62:79
    [27]M.Drofenik, A.Znidarsic, D.Makovec, J. Am. Ceram. Soc., 1998, 81:2841
    [28]Y.Matsuo, K.Ono, M.Ishikura, I.Sasaki, Effects of MoO3 Addition on Manganese Zinc Ferrites, IEEE. Trans. Magn., 1997, 33(5):3751
    [29]张有纲,黄永杰,罗迪民,磁性材料,成都电讯工程学院出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700