动物性食品中喹噁啉类药物代谢物和磺胺类—喹诺酮类药物多残留免疫分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,动物性食品中的兽药残留问题引起了国内外的普遍关注。目前的免疫分析方法多数只能检测一种或一类具有相似结构的药物。为了提高检测效率、节省检测时间、降低检测成本,发展能够同时检测两种或两类兽药残留的免疫分析方法对于保障动物性食品安全具有较为重要意义。本文开展了同时检测两种喹噁啉类药物残留标示物以及同时检测磺胺类、喹诺酮类两类药物残留的免疫分析方法研究。
     以4-(3-甲基-喹嗯啉-2-甲酰胺基)丁酸为半抗原制备了单克隆抗体,该单抗对3-甲基-喹噁啉-2-酸(MQCA)和喹噁啉-2-羧酸(QCA)等5种喹嗯啉类药物双脱氧代谢物的交叉反应率在50%-2400%之间,其中MQCA和QCA的IC50值分别为4.8和9.6ng/mL。本文利用该抗体建立了检测动物组织(鱼肉、虾肉、猪肉和鸡肉)中MQCA和QCA残留的ELISA方法。该方法检测动物组织中MQCA和QCA残留的检测限(LOD)为1.54μg/kg,当MQCA和QCA在动物组织中添加浓度分别为2-20μg/kg时,该方法的添加回收率在76%-108%之间,变异系数在4.2%-13.3%之间,符合兽药残留检测的相关要求。
     为了提高免疫分析方法的灵敏度,本文建立了检测MQCA和QCA残留生物素亲和素信号放大酶联免疫分析(BA-ELISA)和化学发光免疫分析(CLIA)。BA-ELISA方法对MQCA和QCA的IC50值为1.6和3.6ng/ml;检测动物组织的LOD值为1.04μg/kg;MQCA在动物组织中的添加浓度在2-8μg/kg时,添加回收率在72%-106%,变异系数在6.7%-12.6%之间。CLIA方法对MQCA和QCA的IC50值为0.42和1.05ng,mL;检测动物组织的LOD值为0.76μg/kg;MQCA在动物组织中的添加浓度为1-4μg/kg时,添加回收率在71%-108%之间;变异系数在7.0%-14.4%之间。上述两种方法的灵敏度和检测限等符合兽药残留检测的相关要求。
     以辣根过氧化物酶HRP标记羊抗兔二抗来识别磺胺类药物(SAs)的多克隆抗体,以碱性磷酸酶ALP标记羊抗鼠二抗来识别喹诺酮药物(QNs)单克隆抗体,从而实现在同一个反应体系中同时检测牛奶中22种SAs和13种QNs残留的双显色酶联免疫吸附试验(DC-ELISA)。该DC-ELISA方法对SAs和QNs的检测限分别为5.8和2.4μg/L。当SAs和QNs在牛奶中的添加浓度分别为10-100μg/L时,SAs的添加回收率均在67%-101%之间,变异系数在8.1%-16.4%之间;QNs的添加回收率在72%-105%之间,变异系数在4.8%-9.3%之间,该方法满足SAs和QNs两类兽药残留检测的相关要求。
     以琼脂糖凝胶作为载体,建立了同时检测牛奶中14种SAs和13种QNs的凝胶穿流免疫亲和层析试验(FTIACT)方法,并评价了HRP、荧光微球、量子点、脂质体包裹量子点(LQDs)四种标记物的试验效果。以LQDs做标记物的FTIACT肉眼判断检测牛奶中SAs和QNs残留的Cut off值分别为1和0.5μg/L。通过光密度值分析,LQDs-FTIACT定量分析方法的LODs为0.27μg/L(SAs)和0.12μg/L(QNs),在空白牛奶样品中SM2添加浓度为0.25、0.15μg/L和CIP的添加浓度为0.1、0.25μg/L时,平均添加回收率在89%-114%之间,变异系数在9.2%-12.3%之间,满足兽药残留检测的相关要求。
The veterinary drug residues in animal-origin foods caused widespread concern at home and abroad in recent years. Nowadays, most of the immunoassays focus on detecting one analyte or one class of structural-related analytes. In order to improve dtermination efficiency, decrease detecting time and decrease expenses, it is urgent to develop multi-analyte immunoassays. In this paper, we developed immunoassays for rapid detecting two marker residues of quinoxaline and immunoassays for detecting two class of veterinary drugs (SAs and QNs)
     In this paper,4-(3-methylquinoxaline-2-carboxamido)butanoic acid was used as hapten for monoclonal antibody production. The produced MAb showed good cross reactivities (50%-2400%) with the metabolites of quinoxaline, and the IC50values of QCA and MQCA were4.8and9.6ng/mL. Based on this MAb, a broad specificity ELISA was developed for simultaneously detecting MQCA and QCA in animal edible tissues (fish, shrimp, pork and chicken). The limit of detection was1.54μg/kg for MQCA and QCA in animal edible tissues. Satisfying recovery ranged from76%-108%was obtainded with the coefficients of variance ranged from4.2%to13.3%, when the samples were spikded with MQCA (2,4,8μg/kg) and QCA (4,10,20μg/kg). All these results meet the requirement of residue analysis.
     To improve the sensitivity of immunoassay, BA-ELISA and CLIA were debeloped for MQCA and QCA residues analysis. The IC50of BA-ELISA was1.6and3.6ng/mL for MQCA and QCA in buffer, and the LOD was1.04μg/kg in animal edible tissues (fish, shrimp, pork and chicken).When the blank samples were spiked with MQCA at2,4,8μg/kg, the intra-assay and inter-assay recoveries were in the range of72%-106%, and the corresponding CV values ranged from6.7%to12.6%. The IC50of CLIA was0.42and1.05ng/mL for MQCA and QCA in buffer, and the LOD was0.76μg/kg. When the fish sample were spiked at1,2,4μg/kg, the intra-assay and inter-assay recoveries were in the range of71%-108%, with the CV values ranged from7.0%to14.4%. The detection limit and sensitivity of the immunoassays meet the requirements of the legislation of EU, US and China.
     In this study, a novel DC-ELISA was developed for simultaneously detecting22SAs and13QNs in milk. The DC-ELISA using ALP labeled goat anti-mouse IgG to recognize anti-QN MAb, and using HRP labeled goat anti-rabbit IgG to recognize anti-SA PAb. In this way, the DC-ELISA could be used for simultaneous detecting SAs and QNs in one well. The method for SAs and QNs detection limits were5.8and2.4ng/mL. When the milk samples were sipked with SAs and QNs (10,50,100ng/mL), the mean recoveries were in the range of67%-101%for detecting SAs residues in milk, and the corresponding CV values ragned form8.1%to16.4%. The mean recoveries were in the range of72%-105%for detecting QNs residues in milk, and the corresponding CV values ranged from4.8%to9.3%. All these results meet the requirement of residue analysis.
     In this paper, we used agrose as the carrier of the immune-reaction and developed a novel FTIACT method for simultaneously detecting14SAs and13QNs. In this paper, we tested four different labels (horseradish peroxidase, fluorescent microspheres, quantum dots, lipsome encapsulated quantum dots) and their application in FTIACT. The visual detection limits of the LQDs-FTIACT method were1and0.5ng/mL. The OD values were processed and analyzed from the image of the FTIACT results using Image Pro Plus6.0software, and the OD values were used to develop a standard curve for FTIACT quantitative analysis. When using LQDs as labels, the detection limit of the FTIACT method were0.27ng/mL (SAs) and0.12ng/mL (QNs). The mean recovery ranged from89%to114%, and the CV values ranged from9.2-12.3%when the blank milk samples were spikded at0.25,0.15μg/kg for SM2and0.1,0.25μg/kg for CIP. All these results meet the requirement of the legislation and indicated that the FTIACT method could be used for simultaneously screening SAs and QNs in milk.
引文
[1]徐晓新.中国食品安全:问题,成因,对策.农业经济问题.2002,10:45-48
    [2]朱奎.蛋白质与小分子化合物的检测及其相互作用.[硕士学位论文]北京:中国农业大学.2011
    [3]沈建忠,谢联金.兽医药理学.中国农业大学出版社,2000
    [4]农业部.食品动物禁用的兽药及其它化合物清单2002
    [5]李俊锁,邱月明,王超.兽药残留分析.上海:上海科技出版社.2002
    [6]沈建忠.动物毒理学.中国农业出版社,2002
    [7]杨利国,魏平华,郭爱珍.酶免疫测定技术.南京:南京大学出版社.1998
    [8]陈晓东,周旭一.Poct-检验医学发展的趋势之一.放射免疫学杂志.2008,21(4):335-337
    [9]Kupstat A., Kumke M.U., Hildebrandt N. Toward Sensitive, Quantitative Point-of-Care Testing (Poet) of Protein Markers:Miniaturization of a Homogeneous Time-Resolved Fluoroimmunoassay for Prostate-Specific Antigen Detection. Analyst.2011,136 (5):1029-1035
    [10]Gordon J., Michel G. Analytical Sensitivity Limits for Lateral Flow Immunoassays. Clinical Chemistry. 2008,54 (7):1250-1251
    [11]Posthuma-Trumpie G., Korf J., Amerongen A. Lateral Flow (Immuno)Assay:Its Strengths, Weaknesses, Opportunities and Threats. A Literature Survey. Analytical and Bioanalytical Chemistry.2009,393 (2): 569-582
    [12]李姮.伏马菌素b1和脱氧雪腐镰刀菌烯醇的免疫层析检测方法研究.[硕士学位论文]北京:中国农业大学.2013
    [13]Shyu R.-H., Shyu H.-F., Liu H.-W., Tang S.-S. Colloidal Gold-Based Immunochromatographic Assay for Detection of Ricin. Toxicon.2002,40 (3):255-258
    [14]Liubavina I., Valiakina T., Grishin E. [Monoclonal Antibodies Labeled with Colloidal Gold for Immunochromatographic Express Analysis of Diphtheria Toxin]. Bioorganicheskaia khimiia.2010,37 (3):366-373
    [15]Salter R., Douglas D., Tess M., Markovsky B., Saul S.J., Brandt A. Interlaboratory Study of the Charm Rosa Safe Level Aflatoxin M1 Quantitative Lateral Flow Test for Raw Bovine Milk. Journal of AOAC International.2006,89 (5):1327-1334
    [16]Yang H., Guo Q., He R., Li D., Zhang X., Bao C, Hu H., Cui D. A Quick and Parallel Analytical Method Based on Quantum Dots Labeling for Torch-Related Antibodies. Nanoscale research letters. 2009,4(12):1469-1474
    [17]Li Z., Wang Y., Wang J., Tang Z., Pounds J.G., Lin Y. Rapid and Sensitive Detection of Protein Biomarker Using a Portable Fluorescence Biosensor Based on Quantum Dots and a Lateral Flow Test Strip. Analytical Chemistry.2010,82 (16):7008-7014
    [18]Anfossi L., D'Arco G., Calderara M., Baggiani C., Giovannoli C., Giraudi G. Development of a Quantitative Lateral Flow Immunoassay for the Detection of Aflatoxins in Maize. Food Addit Contain. 2011,28 (2):226-234
    [19]Wang Y, Chen L. Quantum Dots, Lighting up the Research and Development of Nanomedicine. Nanomedicine:Nanotechnology, Biology and Medicine.2011,7 (4):385-402
    [20]Kantiani L., Llorca M., Sanchis J., Farre M., Barcel6 D. Emerging Food Contaminants:A Review. Analytical and Bioanalytical Chemistry.2010,398 (6):2413-2427
    [21]Huang Z., Lee H.K. Materials-Based Approaches to Minimizing Solvent Usage in Analytical Sample Preparation. TrAC Trends in Analytical Chemistry.2012,39 (0):228-244
    [22]Shen J., Zhang Z., Yao Y., Shi W., Liu Y, Zhang S. Time-Resolved Fluoroimmunoassay for Ractopamine in Swine Tissue. Analytical and Bioanalytical Chemistry.2007,387 (4):1561-1564
    [23]Zhang S., Liu Z., Zhou N., Wang Z., Shen J. A Liposome Immune Lysis Assay for Enrofioxacin in Carp and Chicken Muscle. Analytica Chimica Acta.2008,612(1):83-88
    [24]Zhang S., Zhang Z., Shi W., Eremin S.A., Shen J. Development of a Chemiluminescent Elisa for Determining Chloramphenicol in Chicken Muscle. Journal of Agricultural and Food Chemistry.2006, 54 (16):5718-5722
    [25]Chen J., Xu F., Jiang H., Hou Y., Rao Q., Guo P., Ding S. A Novel Quantum Dot-Based Fluoroimmunoassay Method for Detection of Enrofioxacin Residue in Chicken Muscle Tissue. Food Chemistry.2009,113 (4):1197-1201
    [26]Wang Z., Zhang S., Nesterenko I.S., Eremin S.A., Shen J. Monoclonal Antibody-Based Fluorescence Polarization Immunoassay for Sulfamethoxypyridazine and Sulfachloropyridazine. Journal of Agricultural and Food Chemistry.2007,55 (17):6871-6878
    [27]Beloglazova N.V., Goryacheva I.Y., de Saeger S., Scippo M.L., Niessner R., Knopp D. New Approach to Quantitative Analysis of Benzo[a]Pyrene in Food Supplements by an Immunochemical Column Test. Talanta.2011,85(1):151-156
    [28]李莹,钟金钢,张永林,唐勇.基于表面等离子体共振的土霉素残留检测.应用激光.2008,28(5):390-394
    [29]Khan S.S., Smith M.S., Reda D., Suffredini A.F., McCoy J.P. Multiplex Bead Array Assays for Detection of Soluble Cytokines:Comparisons of Sensitivity and Quantitative Values among Kits from Multiple Manufacturers. Cytometry Part B:Clinical Cytometry.2004,61B (1):35-39
    [30]Remcho V.T., Chatterjee E., Marr T, Dhagat P. A Microfluidic Sensor Based on Ferromagnetic Resonance Induced in Magnetic Bead Labels. Sensors And Actuators B-Chemical.2011,156 (2): 651-656
    [31]Sun X., Ma Z. Highly Stable Electrochemical Immunosensor for Carcinoembryonic Antigen. Biosensors and Bioelectronics.2012,35 (1):470-474
    [32]于世林.色谱技术丛书-高效液相色谱方法及应用(第二版).北京:化学工业出版社
    [33]Adrian J., Pinacho D.G., Granier B., Diserens J.M., Sanchez-Baeza F., Marco M.P. A Multianalyte Elisa for Immunochemical Screening of Sulfonamide, Fluoroquinolone and Beta-Lactam Antibiotics in Milk Samples Using Class-Selective Bioreceptors. Analytical and Bioanalytical Chemistry.2008,391 (5): 1703-1712
    [34]Danaher M., O'Mahony J., Moloney M., McConnell R.I., Benchikh E.O., Lowry P., Furey A. Simultaneous Detection of Four Nitrofuran Metabolites in Honey Using a Multiplexing Biochip Screening Assay. Biosensors & Bioelectronics.2011,26 (10):4076-4081
    [35]Oppermann W., Mehtalia S.D., Sodero E.C., Cole H.S., Camerini-Davalos R.A. A Sensitive Micromethod for the Simultaneous Determination of Insulin and Growth Hormone by Double Antibody Precipitation. Clinical Biochemistry.1968,2 (0):341-348
    [36]Porstmann T., Nugel E., Henklein P., Dopel H., Ronspeck W., Pas P., Voribaehr R.2-Color Combination Enzyme-Linked-Immunosorbent-Assay for the Simultaneous Detection of Hbv and Hiv-Infection. Journal of Immunological Methods.1993,158 (1):95-106
    [37]Akhavantafti H., Sugloka Y., Sugioka K., Desilva R., Arghavani Z., Handley R.S., Schoenfelner B.A., Schaap A.P. Chemiluminescent Detection of DNA with Dual Enzyme Labels. Clinical Chemistry.1995, 41 (11):18-18
    [38]Buckwalter J.M., Guo X., Meyerhoff M.E. Dual Enzyme Labels for Simultaneous Heterogeneous Enzyme-Linked Competitive-Binding Assays. Analytica Chimica Acta.1994,298(1):11-18
    [39]Boorsma D.M., VanBommel J., VanderRaaij-Helmer E.M.H. Simultaneous Immunoenzyme Double Labelling Using Two Different Enzymes Linked Directly to Monoclonal Antibodies or with Biotin-Avidin. Journal of Microscopy.1986,143 (2):197-203
    [40]Basu A., Maitra S.K., Shrivastav T.G. Development of Dual-Enzyme-Based Simultaneous Immunoassay for Measurement of Progesterone and Human Chorionic Gonadotropin. Analytical Biochemistry.2007, 366 (2):175-181
    [41]Okamoto Y, Gotoh Y., Shiraishi H., Nishida M. A Human Dual-Color Enzyme-Linked Immunospot Assay for Simultaneous Detection of Interleukin 2-and Interleukin 4-Secreting Cells. International Immunopharmacology.2004,4 (1):149-156
    [42]Okamoto Y, Abe X., Niwa T., Mizuhashi S., Nishida M. Development of a Dual Color Enzyme-Linked Immunospot Assay for Simultaneous Detection of Murine T Helper Type 1-and T Helper Type 2-Cells. Immunopharmacology.1998,39(2):107-116
    [43]Li H., Cao Z., Zhang Y, Lau C, Lu J. Combination of Quantum Dot Fluorescence with Enzyme Chemiluminescence for Multiplexed Detection of Lung Cancer Biomarkers. Analytical Methods.2010, 2 (9):1236-1242
    [44]Stenman U.-H. Clinical Application of Time-Resolved Fluorometric Assays
    Lanthanide Luminescence--P. Hanninen, H. Hatma, eds.:Springer Berlin Heidelberg,2011:329-341
    [45]Xu Y.Y., Pettersson K., Blomberg K., Hemmila I., Mikola H., LSvgren T. Simultaneous Quadruple-Label Fluorometric Immunoassay of Thyroid-Stimulating Hormone,17 Alpha-Hydroxyprogesterone, Immunoreactive Trypsin, and Creatine Kinase Mm Isoenzyme in Dried Blood Spots. Clinical Chemistry. 1992,38 (10):2038-2043
    [46]张兵波,常津.疾病诊断用功能化量子点荧光探针的研究[博士学位论文]天津:天津大学2008
    [47]Peng C., Li Z., Zhu Y, Chen W., Yuan Y, Liu L., Li Q., Xu D., Qiao R., Wang L., Zhu S., Jin Z., Xu C. Simultaneous and Sensitive Determination of Multiplex Chemical Residues Based on Multicolor Quantum Dot Probes. Biosensors and Bioelectronics.2009,24 (12):3657-3662
    [48]Zhu K., Li J., Wang Z., Jiang H., Beier R.C., Xu F., Shen J., Ding S. Simultaneous Detection of Multiple Chemical Residues in Milk Using Broad-Specificity Antibodies in a Hybrid Immunosorbent Assay. Biosensors and Bioelectronics.2011,26 (5):2716-2719
    [49]Carta A., Corona P., Loriga M. Quinoxaline 1,4-Dioxide:A Versatile Scaffold Endowed with Manifold Activities. Curr Med Chem.2005,12 (19):2259-2272
    [50]Van der Molen E., Baars A., De Graaf G., Jager L. Comparative Study of the Effect of the Effect of Carbadox, Olaquindox and Cyadox on Aldosterone, Sodium and Potassium Plasma Levels in Weaned Pigs. Research in Veterinary Science.1989,47 (1):11-16
    [51]刘迎春,高怀涛.乙酰甲喹的合理应用.养禽与禽病防治.2009(3):42-43
    [52]高杰.喹胺醇蛋白结合率及其标示残留物研究.[硕士学位论文]甘肃:甘肃农业大学.2008
    [53]李剑勇,张继瑜,李金善,徐忠赞,赵荣材,周旭正.喹烯酮对肉仔鸡的促生长作用.畜牧与兽医.2008,39(9):38-40
    [54]黄玲利,袁宗辉.喹赛多对鸡大肠杆菌病的预防效果研究.华中农业大学学报.2002,21(1):47-49
    [55]Vicente E., Villar R., Perez-Silanes S., Aldana I., C. Goldman R., Monge A. Quinoxaline 1,4-Di-N-Oxide and the Potential for Treating Tuberculosis. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious.2011,11 (2):196-204
    [56]FAO/WHO. Joint Expert Committee on Food Additives:Evaluation of Certain Veterinary Drug Residues in Food, Technical Series, Vol.851,1995, P.19.,
    [57]Zhang K., Ban M., Zhao Z., Zheng H., Wang X., Wang M., Fei C, Xue F. Cytotoxicity and Genotoxicity of 1,4-Bisdesoxyquinocetone,3-Methylquinoxaline-2-Carboxylic Acid (Mqca) in Human Hepatocytes. Research in Veterinary Science.2012,93 (3):1393-1401
    [58]Ganley B., Chowdhury G., Bhansali J., Daniels J.S., Gates K.S. Redox-Activated, Hypoxia-Selective DNA Cleavage by Quinoxaline 1,4-Di-N-Oxide. Bioorganic & Medicinal Chemistry.2001,9 (9): 2395-2401
    [59]Liu Z.Y., Sun Z.L. The Metabolism of Carbadox, Olaquindox, Mequindox, Quinocetone, and Cyadox: An Overview. Med Chem.2013
    [60]农业部.动物性食品中兽药残留最高限量.中国兽药杂志.2003,37(4):15-20
    [61]COMMISSION REGULATION (EC) No 2788/98. of 22 December 1998 amending Council Directive 70/524/EEC concerning additives in feedingstuffs asregards the withdrawal of authorisation for certain growth promoters. Official Journal of the European Communities 23.12.98 L 347/31
    [62]CRL Guidance Paper (7 December 2007)-CRLs'View on State of the Art Analytical Methods for National Residue Control Plans
    [63]王战辉,张素霞,沈建忠.荧光偏振免疫分析在农药和兽药残留检测中的研究进展.光谱学与光谱分析2007(11)2299-2306
    [64]Yue N., Ji B., Liu L., Tao G., Eremin S.A., Wu L. Synthesis of Olaquindox Metabolite, Methyl-3-Quinoxaline-2-Carboxylic Acid for Development of an Immunoassay. Food and Agricultural Immunology.2009,20 (2):173-183
    [65]Chen W., Jiang Y., Ji B., Zhu C., Liu L., Peng C., Jin M.K., Qiao R., Jin Z., Wang L. Automated and Ultrasensitive Detection of Methyl-3-Quinoxaline-2-Carboxylic Acid by Using Gold Nanoparticles Probes Sia-Rt-Pcr. Biosensors and Bioelectronics.2009,24 (9):2858-2863
    [66]Peng D., Zhang Z., Chen D., Wang Y., Tao Y., Yuan Z. Development and Validation of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Monitoring Quinoxaline-2-Carboxylic Acid in the Edible Tissues of Animals. Food Additives & Contaminants:Part A.2011,28 (11):1524-1533
    [67]Le T., Xu J., Jia Y.-Y, He H.-Q., Niu X.-D., Chen Y. Development and Validation of an Immunochromatographic Assay for the Rapid Detection of Quinoxaline-2-Carboxylic Acid, the Major Metabolite of Carbadox in the Edible Tissues of Pigs. Food Additives & Contaminants:Part A.2012,29 (6):925-934
    [68]Cheng L., Shen J., Wang Z., Jiang W., Zhang S. A Sensitive and Specific Elisa for Determining a Residue Marker of Three Quinoxaline Antibiotics in Swine Liver. Analytical and Bioanalytical Chemistry.2013,405 (8):2653-2659
    [69]张丽芳,薛飞群.喹喔啉1,4-二氧化物类兽药的检测.安徽农业科学.2005,33(5):898-900
    [70]Sin D.W., Chung L.P., Lai M., Siu S.M., Tang H.P. Determination of Quinoxaline-2-Carboxylic Acid, the Major Metabolite of Carbadox, in Porcine Liver by Isotope Dilution Gas Chromatography-Electron Capture Negative Ionization Mass Spectrometry. Analytica Chimica Acta.2004,508 (2):147-158
    [71]Zhang Y, Huang L., Chen D., Fan S., Wang Y, Tao Y, Yuan Z. Development of Hplc Methods for the Determination of Cyadox and Its Main Metabolites in Goat Tissues. Analytical sciences.2005,21 (12): 1495-1500
    [72]Hutchinson M., Young P., Kennedy D. Confirmation of Carbadox and Olaquindox Metabolites in Porcine Liver Using Liquid Chromatography-Electrospray, Tandem Mass Spectrometry. Journal of chromatography B.2005,816 (1):15-20
    [73]Wu Y, Yu H., Wang Y, Huang L., Tao Y, Chen D., Peng D., Liu Z., Yuan Z. Development of a High-Performance Liquid Chromatography Method for the Simultaneous Quantification of Quinoxaline-2-Carboxylic Acid and Methyl-3-Quinoxaline-2-Carboxylic Acid in Animal Tissues. Journal of Chromatography A.2007,1146 (1):1-7
    [74]Huang L., Wang Y, Tao Y, Chen D., Yuan Z. Development of High Performance Liquid Chromatographic Methods for the Determination of Cyadox and Its Metabolites in Plasma and Tissues of Chicken. J Chromatogr B.2008,874 (1-2):7-14
    [75]Boison J.O., Lee S.C., Gedir R.G. A Determinative and Confirmatory Method for Residues of the Metabolites of Carbadox and Olaquindox in Porcine Tissues. Analytica Chimica Acta.2009,637 (1-2): 128-134
    [76]Zhang X., Zheng B., Zhang H., Chen X., Mei G. Determination of Marker Residue of Olaquindox in Fish Tissue by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry. Journal of Seperation Science.2011,34 (4):469-474
    [77]He L., Liu K., Su Y, Zhang J., Liu Y, Zeng Z., Fang B., Zhang G. Simultaneous Determination of Cyadox and Its Metabolites in Plasma by High-Performance Liquid Chromatography Tandem Mass Spectrometry. Journal of Separation Science.2011
    [78]Duan Z.J., Fan L.P., Fang G.Z., Yi J.H., Wang S. Novel Surface Molecularly Imprinted Sol-Gel Polymer Applied to the Online Solid Phase Extraction of Methyl-3-Quinoxaline-2-Carboxylic Acid and Quinoxaline-2-Carboxylic Acid from Pork Muscle. Analytical and Bioanalytical Chemistry.2011,401 (7):2291-2299
    [79]Merou A., Kaklamanos G., Theodoridis G. Determination of Carbadox and Metabolites of Carbadox and Olaquindox in Muscle Tissue Using High Performance Liquid Chromatography-Tandem Mass Spectrometry. Journal of chromatography B.2012,881:90-95
    [80]Yan D., He L., Zhang G., Fang B., Yong Y, Li Y. Simultaneous Determination of Cyadox and Its Metabolites in Chicken Tissues by Lc-Ms/Ms. Food Analytical Methods.2012,5 (6):1497-1505
    [81]Zeng D., Shen X., He L., Ding H., Tang Y, Sun Y, Fang B., Zeng Z. Liquid Chromatography Tandem Mass Spectrometry for the Simultaneous Determination of Mequindox and Its Metabolites in Porcine Tissues. Journal of Separation Science.2012,35 (10-11):1327-1335
    [82]李存.动物肌肉组织中喹诺酮类和磺胺类药物多残留检测方法研究.[博十学位论文]北京:中国农业大学.2008
    [83]孙镇平,杭柏林,袁海星,潘春刚,付光武.磺胺类衍生物对肉鸡生长代谢的影响.畜牧兽医学报.2004,35(5):516-521
    [84]裴斌.抗菌药物的不良反应及其对策.中国医药指南.2011,9(15):267-268
    [85]胡仪吉.不合理使用抗生素增加不良反应.中华儿科杂志.2002,40(8):453-455
    [86]Alekshun M.N., Levy S.B. Molecular Mechanisms of Antibacterial Multidrug Resistance. Cell.2007, 128 (6):1037-1050
    [87]中华人民共和国农业部公告第235号.《动物性食品中兽药最高残留限量》.2002
    [88]何继红,沈建忠.磺胺二甲嘧啶单克隆抗体的研制.中国兽医杂志.2003,39(1):8-11
    [89]Franek M., Kolar V, Deng A., Crooks S. Determination of Sulphadimidine (Sulfamethazine) Residues in Milk, Plasma, Urine and Edible Tissues by Sensitive Elisa. Food and Agricultural Immunology.1999, 11 (4):339-349
    [90]陈军霞.量子点标记荧光免疫吸附测定法的建立和应用.[硕士学位论文]北京:中国农业大学.2006
    [91]Li X., Tang S., Chen Y, Niu L., Ding S., Wan Y., Xiao X. Development of a Monoclonal Antibody-Based Elisa for the Detection of Sulfaquinoxaline in Chicken Tissues and Serum. Analytical Letters.2008,41 (17):3007-3020
    [92]徐飞.量子点荧光免疫分析方法的建立.[硕士学位论文]北京:中国农业大学.2008
    [93]Zhang G., Wang X., Zhi A., Bao Y, Yang Y, Qu M., Luo J., Li Q., Guo J., Wang Z., Yang J., Xing G., Chai S., Shi T., Liu Q. Development of a Lateral Flow Immunoassay Strip for Screening of Sulfamonomethoxine Residues. Food Additives & Contaminants:Part A.2008,25 (4):413-423
    [94]齐永华.基于核糖体展示技术的抗磺胺二甲嘧啶特异性单链抗体的筛选研究.[博士学位论文]北京:中国农业大学.2010
    [95]Cliquet P., Cox E., Haasnoot W., Schacht E., Goddeeris B.M. Extraction Procedure for Sulfachloropyridazine in Porcine Tissues and Detection in a Sulfonamide-Specific Enzyme-Linked Immunosorbent Assay (Elisa). Analytica Chimica Acta.2003,494 (1-2):21-28
    [96]Korpimaki T., Brockmann E.C., Kuronen O., Saraste M., Lamminmaki U., Tuomola M. Engineering of a Broad Specificity Antibody for Simultaneous Detection of 13 Sulfonamides at the Maximum Residue Level. Journal of Agricultural and Food Chemistry.2004,52 (1):40-47
    [97]Franek M., Diblikova I., Cernoch I., Vass M., Hruska K. Broad-Specificity Immunoassays for Sulfonamide Detection:Immunochemical Strategy for Generic Antibodies and Competitors. Analytical Chemistry.2006,78 (5):1559-1567
    [98]Zhang H.Y., Wang L., Zhang Y., Fang G.Z., Zheng W.J., Wang S. Development of an Enzyme-Linked Immunosorbent Assay for Seven Sulfonamide Residues and Investigation of Matrix Effects from Different Food Samples. Journal of Agricultural and Food Chemistry.2007,55 (6):2079-2084
    [99]Font H., Adrian J., Galve R., Esevez M.C., Castellari M., Gratacos-Cubarsi M., Sanchez-Baeza F., Marcot M.P. Immunochemical Assays for Direct Sulfonamide Antibiotic Detection in Milk and Hair Samples Using Antibody Derivatized Magnetic Nanoparticles. Journal Of Agricultural And Food Chemistry.2008,56 (3):736-743
    [100]Chafer-Pericas C., Maquieira A., Puchades R., Miralles J., Moreno A. Fast Screening Immunoassay of Sulfonamides in Commercial Fish Samples. Analytical and Bioanalytical Chemistry.2010,396 (2): 911-921
    [101]Korpimaki T., Hagren V., Brockmann E.C., Tuomola M. Generic Lanthanide Fluoroimmunoassay for the Simultaneous Screening of 18 Sulfonamides Using an Engineered Antibody. Analytical Chemistry. 2004,76 (11):3091-3098
    [102]Wang Z., Zhu Y., Ding S., He F., Beier R.C., Li J., Jiang H., Feng C., Wan Y, Zhang S., Kai Z., Yang X., Shen J. Development of a Monoclonal Antibody-Based Broad-Specificity Elisa for Fluoroquinolone Antibiotics in Foods and Molecular Modeling Studies of Cross-Reactive Compounds. Analytical Chemistry.2007,79 (12):4471-4483
    [103]Adrian J., Font H., Diserens J.M., Sanchez-Baeza F., Marco M.P. Generation of Broad Specificity Antibodies for Sulfonamide Antibiotics and Development of an Enzyme-Linked Immunosorbent Assay (Elisa) for the Analysis of Milk Samples. Journal Of Agricultural And Food Chemistry.2009,57 (2): 385-394
    [104]Chen Y., Schwack W. Rapid and Selective Determination of Multi-Sulfonamides by High-Performance Thin Layer Chromatography Coupled to Fluorescent Densitometry and Electrospray Ionization Mass Detection. Journal Of Chromatography A.2014
    [105]Yu H., Mu H., Hu Y.-M. Determination of Fluoroquinolones, Sulfonamides, and Tetracyclines Multiresidues Simultaneously in Porcine Tissue by Mspd and Hplc-Dad. Journal of Pharmaceutical Analysis.2012,2 (1):76-81
    [106]Gamba V., Terzano C., Fioroni L., Moretti S., Dusi G., Galarini R. Development and Validation of a Confirmatory Method for the Determination of Sulphonamides in Milk by Liquid Chromatography with Diode Array Detection. Analytica Chimica Acta.2009,637 (1):18-23
    [107]Gratacos-Cubarsi M., Castellari M., Garcia-Regueiro J.A. Detection of Sulphamethazine Residues in Cattle and Pig Hair by Hplc-Dad. Journal of chromatography B.2006,832 (1):121-126
    [108]Stoev G., Michailova A. Quantitative Determination of Sulfonamide Residues in Foods of Animal Origin by High-Performance Liquid Chromatography with Fluorescence Detection. Journal Of Chromatography A.2000,871 (1-2):37-42
    [109]Gentili A., Perret D., Marchese S., Sergi M., Olmi C., Curini R. Accelerated Solvent Extraction and Confirmatory Analysis of Sulfonamide Residues in Raw Meat and Infant Foods by Liquid Chromatography Electrospray Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry. 2004,52 (15):4614-4624
    [110]Pecorelli I., Bibi R., Fioroni L., Galarini R. Validation of a Confirmatory Method for the Determination of Sulphonamides in Muscle According to the European Union Regulation 2002/657/Ec. Journal Of Chromatography A.2004,1032 (1):23-29
    [111]Stubbings G., Bigwood T. The Development and Validation of a Multiclass Liquid Chromatography Tandem Mass Spectrometry (Lc-Ms/Ms) Procedure for the Determination of Veterinary Drug Residues in Animal Tissue Using a Quechers (Quick, Easy, Cheap, Effective, Rugged and Safe) Approach. Analytica Chimica Acta.2009,637 (1-2):68-78
    [112]朱颜.动物性产品中氟喹诺酮类多残留快速检测试剂盒和试纸条的研制[博十学位论文]北京:中国农业大学.2008
    [113]Blondeau J.M. Fluoroquinolones:Mechanism of Action, Classification, and Development of Resistance. Survey of Ophthalmology.2004,49 (2, Supplement 2):S73-S78
    [114]孙慧萍,蔡力力,阎赋琴,李霞.喹诺酮类药物的作用机制及不良反应.中华医院感染学杂志.2008,18(7):1014-1016
    [115]范柏.喹诺酮类抗菌药的作用机制及细菌耐药性的研究进展.国外医药:抗生素分册.2004,25(1):27-29
    [116]Wolfson J.S., Hooper D.C. The Fluoroquinolones:Structures, Mechanisms of Action and Resistance, and Spectra of Activity in Vitro. Antimicrob Agents Chemother.1985,28 (4):581-586
    [117]王战辉.动物性产品中磺胺类和喹诺酮类等兽药残留的免疫分析检测技术研究.[博十学位论文]北京:中国农业大学.2007
    [118]黄文杰,马玉斌.氟喹诺酮类药物的不良反应与用药原则.中国误诊学杂志.2008,8(8):2006-2006
    [119]米铁军.动物性食品中喹诺酮类药物残留的荧光偏振免疫分析研究.[博士学位论文]北京:中国农业大学.2013
    [120]王战辉,沈建忠,张素霞.喹诺酮类药物抗体制备研究进展及策略分析.中国农业科学2008(10)3311-3317
    [121]Duan J., Yuan Z. Development of an Indirect Competitive Elisa for Ciprofloxacin Residues in Food Animal Edible Tissues. Journal of Agricultural and Food Chemistry.2001,49 (3):1087-1089
    [122]Van Coillie E., De Block J., Reybroeck W. Development of an Indirect Competitive Elisa for Flumequine Residues in Raw Milk Using Chicken Egg Yolk Antibodies. Journal of Agricultural and Food Chemistry.2004,52 (16):4975-4978
    [123]Haasnoot W., Gercek H., Cazemier G., Nielen M.W.F. Biosensor Immunoassay for Flumequine in Broiler Serum and Muscle. Analytica Chimica Acta.2007,586 (1-2):312-318
    [124]Liu Z., Lu S., Zhao C., Ding K., Cao Z., Zhan J., Ma C., Liu J., Xi R. Preparation of Anti-Danofloxacin Antibody and Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Detection of Danofloxacin Residue in Chicken Liver. Journal of the Science of Food and Agriculture. 2009,89(7):1115-1121
    [125]Sheng W., Xia X., Wei K., Li J., Li Q.X., Xu T. Determination of Marbofloxacin Residues in Beef and Pork with an Enzyme-Linked Immunosorbent Assay. Journal of Agricultural and Food Chemistry.2009, 57 (13):5971-5975
    [126]Cao Z., Meng M., Lu S., Xi R. Development of an Indirect Chemiluminescent Competitive Elisa to Detect Danofloxacin Residues in Milk. Analytical Letters.2011,44 (6):1077-1084
    [127]Bucknall S., Silverlight J., Coldham N., Thorne L., Jackman R. Antibodies to the Quinolones and Fluoroquinolones for the Development of Generic and Specific Immunoassays for Detection of These Residues in Animal Products. Food Additives & Contaminants:Part A.2003,20 (3):221-228
    [128]Huet A.-C., Charlier C., Tittlemier S.A., Singh G., Benrejeb S., Delahaut P. Simultaneous Determination of (Fluoro)Quinolone Antibiotics in Kidney, Marine Products, Eggs, and Muscle by Enzyme-Linked Immunosorbent Assay (Elisa). Journal of Agricultural and Food Chemistry.2006,54 (8):2822-2827
    [129]Huet A.C., Charlier C., Singh G., Godefroy S.B., Leivo J., Vehniainen M., Nielen M.W.F., Weigel S., Delahaut P. Development of an Optical Surface Plasmon Resonance Biosensor Assay for (Fluoro)Quinolones in Egg, Fish, and Poultry Meat. Analytica Chimica Acta.2008,623 (2):195-203
    [130]Wang Z.H., Zhu Y, Ding S.Y., He F.Y., Beier R.C., Li J.C., Jiang H.Y, Feng C.W., Wan Y.P., Zhang S.X., Kai Z.P., Yang X.L., Shen J.Z. Development of a Monoclonal Antibody-Based Broad-Specificity Elisa for Fluoroquinolone Antibiotics in Foods and Molecular Modeling Studies of Cross-Reactive Compounds. Analytical Chemistry.2007,79 (12):4471-4483
    [131]Cao L.M., Kong D.X., Sui J.X., Jiang T., Li Z.Y., Ma L., Lin H. Broad-Specific Antibodies for a Generic Immunoassay of Quinolone:Development of a Molecular Model for Selection of Haptens Based on Molecular Field-Overlapping. Analytical Chemistry.2009,81 (9):3246-3251
    [132]Pinacho D.G., Sanchez-Baeza F., Marco M.P. Molecular Modeling Assisted Hapten Design to Produce Broad Selectivity Antibodies for Fluoroquinolone Antibiotics. Analytical Chemistry.2012,84 (10): 4527-4534
    [133]Lu S.X., Zhang Y.L., Liu J.T., Zhao C.B., Liu W, Xi R.M. Preparation of Anti-Pefloxacin Antibody and Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Detection of Pefloxacin Residue in Chicken Liver. Journal of Agricultural and Food Chemistry.2006,54 (19): 6995-7000
    [134]Tittlemier S., Gelinas J.-M., Dufresne G., Haria M., Querry J., Cleroux C., Menard C., Delahaut P., Singh G., Fischer-Durand N., Godefroy S. Development of a Direct Competitive Enzyme-Linked Immunosorbent Assay for the Detection of Fluoroquinolone Residues in Shrimp. Food Analytical Methods.2008,1 (1):28-35
    [135]Fernandez F., Pinacho D.G., Sanchez-Baeza F., Marco M.P. Portable Surface Plasmon Resonance Immunosensor for the Detection of Fluoroquinolone Antibiotic Residues in Milk. J Agric Food Chem. 2011,59 (9):5036-5043
    [136]Cao L.M., Sui J.X., Kong D.X., Li Z.Y., Lin H. Generic Immunoassay of Quinolones:Production and Characterization of Anti-Pefloxacin Antibodies as Broad Selective Receptors. Food Analytical Methods. 2011,4 (4):517-524
    [137]Cao Z., Lu S., Liu J., Zhan J., Meng M., Xi R. Preparation of Anti-Lomefloxacin Antibody and Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Detection of Lomefloxacin Residue in Milk. Analytical Letters.2011,44 (6):1100-1113
    [138]Liu Y.Z., Zhao G.X., Liu J., Zhang H.C., Wang P., Wang J.P. Synthesis of Novel Haptens against Ciprofloxacin and Production of Generic Monoclonal Antibodies for Immunoscreening of Fluoroquinolones in Meat. Journal of the Science of Food and Agriculture.2013,93 (6):1370-1377
    [139]Pinacho D.G., Sanchez-Baeza F., Marco M.P. Molecular Modeling Assisted Hapten Design to Produce Broad Selectivity Antibodies for Fluoroquinolone Antibiotics. Analytical Chemistry.2012,84 (10): 4527-4534
    [140]Leivo J., Chappuis C., Lamminmaki U., Lovgren T., Vehniainen M. Engineering of a Broad-Specificity Antibody:Detection of Eight Fluoroquinolone Antibiotics Simultaneously. Analytical Biochemistry. 2011,409(1):14-21
    [141]Wen K., Nolke G., Schillberg S., Wang Z.H., Zhang S.X., Wu C.M., Jiang H.Y., Meng H., Shen J.Z. Improved Fluoroquinolone Detection in Elisa through Engineering of a Broad-Specific Single-Chain Variable Fragment Binding Simultaneously to 20 Fluoroquinolones. Analytical and Bioanalytical Chemistry.2012,403 (9):2771-2783
    [142]El-Dib M. Thin Layer Chromatographic Detection of Carbamate and Phenylurea Pesticide Residues in Natural Waters. Journal of the Association of Official Analytical Chemists.1970,53 (4):756-760
    [143]Chang C.-S., Wang W.-H., Tsai C.-E. Simultaneous Determination of Eleven Quinolones Antibacterial Residues in Marine Products and Animal Tissues by Liquid Chromatography with Fluorescence Detection. Journal of Food & Drug Analysis.2008,16 (6)
    [144]Zhao S., Jiang H., Li X., Mi T., Li C., Shen J. Simultaneous Determination of Trace Levels of 10 Quinolones in Swine, Chicken, and Shrimp Muscle Tissues Using Hplc with Programmable Fluorescence Detection. Journal of Agricultural and Food Chemistry.2007,55 (10):3829-3834
    [145]Wang Z., Leng K., Sun W., Ning J., Zhai Y. [Simultaneous Determination of 33 Quinolone and Sulfonamide Residues in Eels and Shrimps by High Performance Liquid Chromatography-Tandem Mass Spectrometry]. Se pu.2009,27 (2):138-143
    [146]Chang C.-S., Wang W.-H., Tsai C.-E. Simultaneous Determination of 18 Quinolone Residues in Marine and Livestock Products by Liquid Chromatography/Tandem Mass Spectrometry. Journal of Food& Drug Analysis.2010,18 (2)
    [147]李佩佩,郭远明,陈雪昌,张小军,梅光明,龙举.色谱法检测动物源食品中喹诺酮类药物残留研究进展.食品科学.2013,34(3):303-307
    [148]骆鹏杰.甲砜霉素、氟苯尼考及氟苯尼考胺残留检测方法研究[博士学位论文]北京:中国农业大学.2009
    [149]Jiang W., Beier R.C., Wang Z., Wu Y., Shen J. Simultaneous Screening Analysis of 3-Methyl-Quinoxaline-2-Carboxylic Acid and Quinoxaline-2-Carboxylic Acid Residues in Edible Animal Tissues by a Competitive Indirect Immunoassay. Journal of Agricultural and Food Chemistry. 2013,61(42):10018-10025
    [150]陈立本,金涌,韩博.抗生素人工抗原偶联比测定的新方法:Maldi-Tof/ms.中国畜牧兽医学会2008年学术年会暨第六届全国畜牧兽医青年科技工作者学术研讨会论文集.2008
    [151]蒋文晓.动物组织中呋喃妥因和呋喃它酮代谢物残留的酶联免疫检测方法研究.[硕士学位论文]北京:中国农业大学.2011
    [152]魏书林.鸡肉组织中氯霉素残留的酶联免疫吸附检测法研究.北京:中国农业大学[硕士学位论文].2004
    [153]Jiang W.X., Luo P.J., Wang X., Chen X., Zhao Y.F., Shi W, Wu X.P., Wu Y.N., Shen J.Z. Development of an Enzyme-Linked Immunosorbent Assay for the Detection of Nitrofurantoin Metabolite, 1-Amino-Hydantoin, in Animal Tissues. Food Control.2012,23 (1):20-25
    [154]Wang Z., Beier R., Sheng Y, Zhang S., Jiang W., Wang Z., Wang J., Shen J. Monoclonal Antibodies with Group Specificity toward Sulfonamides:Selection of Hapten and Antibody Selectivity. Analytical and Bioanalytical Chemistry.2013:1-11
    [155]Jiang W, Zhang H., Li X., Liu X., Zhang S., Shi W., Shen J., Wang Z. Monoclonal Antibody Production and the Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Screening Spiramycin in Milk. Journal of Agricultural and Food Chemistry.2013,61 (46): 10925-10931
    [156]孟辉.谷物,猪饲料和牛奶中赭曲霉毒素A的检测方法研究.[博士学位论文]北京:中国农业大学.2013
    [157]余海霞,张小军,杨会成,郑斌.碱水解-高效液相色谱法测定草鱼组织中喹乙醇代谢物的残留.中国渔业质量与标准.2012,2(1):67-70
    [158]刘正才,杨方,余孔捷,林永辉,李立.高效液相色谱-串联质谱法测定动物源食品中喹乙醇代谢物残留量.食品科学.2012,33(12):210-214
    [159]梅景良,吴聪明,程林丽,沈建忠,薛麒,钱民怡,邵梦瑜.HPLC法同步检测鲤鱼,对虾中喹乙醇与MQCA残留.海洋科学.2011,(11):41-47
    [160]张小军,郑斌,陈雪昌,余海霞,梅光明.高效液相色谱法测定动物组织中的喹乙醇标示残留物.食品科学.2010,31(24):289-292
    [161]陈永平,林黎明,张素青,李春青,李兆千.喹乙醇及其主要代谢物在罗非鱼体内的药物动力学研究.动物医学进展.2011,32(10):54-58
    [162]He J.-T., Shi Z.-H., Yan J., Zhao M.-P., Guo Z.-Q., Chang W.-B. Biotin-Avidin Amplified Enzyme-Linked Immunosorbent Assay for Determination of Isoflavone Daidzein. Talanta.2005,65 (3): 621-626 I [163] Zhang Y, Gao X., Gao A., Fan M. A Biotin-Streptavidin Amplified Enzyme-Linked Immunosorbent Assay with Improved Sensitivity for Rapid Detection of Ractopamine in Muscular Tissue. Food Analytical Methods.2012,5 (5):1214-1220
    [164]Li D., Ying Y., Wu J., Niessner R., Knopp D. Comparison of Monomeric and Polymeric Horseradish Peroxidase as Labels in Competitive Elisa for Small Molecule Detection. Microchimica Acta.2013:1-7
    [165]杨晓燕.增强化学发光分析新体系的研究及其在免疫分析中的应用.[博士学位论文]青岛:青岛科技大学.2009
    [166]Jeon M., Kim J., Paeng K.-J., Park S.-W., Paeng I.R. Biotin-Avidin Mediated Competitive Enzyme-Linked Immunosorbent Assay to Detect Residues of Tetracyclines in Milk. Microchemical Journal.2008,88(1):26-31
    [167]Jeon M., Rhee Paeng I. Quantitative Detection of Tetracycline Residues in Honey by a Simple Sensitive Immunoassay. Analytica Chimica Acta.2008,626 (2):180-185
    [168]高斌文.动物组织中兽药残留的化学发光和生物素-亲和素放大免疫检测方法研究.[硕士学位论文]北京:中国农业大学.2007
    [169]丁锴.呋喃唑酮,呋喃妥因和加替沙星的化学发光酶联免疫吸附检测法的建立[硕士学位论文]济南:山东大学.2009
    [170]朱景慧.玉米赤霉醇化学发光酶联免疫检测试剂盒的研制.[硕士学位论文]北京:中国农业大学.2013
    [171]张倩云.原发性肝癌肿瘤标志物化学发光酶免疫分析方法及应用研究[硕士学位论文]北京:北京化工大学.2011
    [172]孙彦华.基于金纳米粒的生物分子化学发光分析新技术[博士学位论文]上海:复旦大学.2012
    [173]Jiang W., Wang Z., Beier R.C., Jiang H., Wu Y, Shen J. Simultaneous Determination of 13 Fluoroquinolone and 22 Sulfonamide Residues in Milk by a Dual-Colorimetric Enzyme-Linked Immunosorbent Assay. Analytical Chemistry.2013,85 (4):1995-1999
    [174]占春霞.诺氟沙星单克隆抗体的筛选,制备及初步鉴定.[硕士学位论文]广州:暨南大学.2007
    [175]Sheng Y., Jiang W., De Saeger S., Shen J., Zhang S., Wang Z. Development of a Sensitive Enzyme-Linked Immunosorbent Assay for the Detection of Fumonisin B1 in Maize. Toxicon.2012,60 (7):1245-1250
    [176]王莉.生物素放大酶联免疫方法检测氯霉素残留.[硕士学位论文]天津:天津科技大学.2010
    [177]Kramer P.M., Kremmer E., Forster S., Goodrow M.H. Extending the Working Range of Immunoanalysis by Exploitation of Two Monoclonal Antibodies. Journal Of Agricultural And Food Chemistry.2004,52 (21):6394-6401
    [178]Gonzalez-Martinez M.A., Puchades R., Maquieira A. Comparison of Multianalyte Immunosensor Formats for on-Line Determination of Organic Compounds. Analytical Chemistry.2001,73 (17): 4326-4332
    [179]张祯.动物组织中氯霉素和莱克多巴胺残留的时间分辨荧光免疫检测方法的研究[硕士学位论文]北京:中国农业大学.2006
    [180]Chen R., Li H., Zhang H., Zhang S., Shi W., Shen J., Wang Z. Development of a Lateral Flow Fluorescent Microsphere Immunoassay for the Determination of Sulfamethazine in Milk. Analytical and Bioanalytical Chemistry.2013,405 (21):6783-6789
    [181]邢仕歌,熊齐荣,钟强,张悦,卞素敏,金涌,储晓刚.量子点抗体偶联技术研究进展.分析化学.2013,41(6):949-955
    [182]Beloglazova N.V., Shmelin P.S., Speranskaya E.S., Lucas B., Helmbrecht C., Knopp D., Niessner R., De Saeger S., Goryacheva I.Y. Quantum Dot Loaded Liposomes as Fluorescent Labels for Immunoassay. Analytical Chemistry.2013,85 (15):7197-7204
    [183]Beloglazova N.V., Shmelin P.S., Goryacheva I.Y., De Saeger S. Liposomes Loaded with Quantum Dots for Ultrasensitive on-Site Determination of Aflatoxin M1 in Milk Products. Analytical and Bioanalytical Chemistry.2013,405 (24):7795-7802
    [184]Beloglazova N.V., Goryacheva I.Y., Mikhirev D.A., de Saeger S., Niessner R., Knopp D. New Immunochemically-Based Field Test for Monitoring Benzo[a]Pyrene in Aqueous Samples. Analytical Sciences.2008,24 (12):1613-1617
    [185]Goryacheva I.Y., Beloglazova N.V., Eremin S.A., Mikhirev D.A., Niessner R., Knopp D. Gel-Based Immunoassay for Non-Instrumental Detection of Pyrene in Water Samples. Talanta.2008,75 (2): 517-522
    [186]Beloglazova N., Goryacheva I., Niessner R., Knopp D. A Comparison of Horseradish Peroxidase, Gold Nanoparticles and Qantum Dots as Labels in Non-Instrumental Gel-Based Immunoassay. Microchimica Acta.2011,175 (3-4):361-367
    [187]崔巍,王硕仁,朱陵群.平均光密度值分析法和阳性染色面积分析法在免疫组化图像分析中的对比研究.2008中华中医药学会内科分会中医内科学科建设研讨会论文汇编.2008
    [188]李涛,范好,刘芳.免疫组织化学图像光密度分析的标准化方法.解剖学杂志.2008,31(5):727-728
    [189]Beloglazova N.V., Speranskaya E.S., De Saeger S., Hens Z., Abe S., Goryacheva I.Y. Quantum Dot Based Rapid Tests for Zearalenone Detection. Analytical and Bioanalytical Chemistry.2012,403 (10): 3013-3024
    [190]Chen C.-S., Yao J., Durst R. Liposome Encapsulation of Fluorescent Nanoparticles:Quantum Dots and Silica Nanoparticles. Journal of Nanoparticle Research.2006,8 (6):1033-1038
    [191]Edwards K.A., Baeumner A.J. DNA-Oligonucleotide Encapsulating Liposomes as a Secondary Signal Amplification Means. Analytical Chemistry.2007,79 (5):1806-1815
    [192]刘中伟.鲤鱼和鸡肌肉组织中恩诺沙星残留脂质体免疫裂解检测法的建立[硕士学位论文]北京:中国农业大学.2008
    [193]刘超英.酶联免疫吸附实验原理和酶标仪原理及维修.医疗卫生装备.2009,30(2):110-111
    [194]曾俊,张丹桂,王革非,陈小璇,李康生.酶标仪参数及性能检测.汕头大学医学院学报.2008,21(3):176-177
    [195]郑伟,汪宝军,叶立民.灰度值,光学密度值与免疫组化片阳性表达强弱的关系.临床与实验病理学杂志.2004,19(5):566-567
    [196]Cheng C.M., Martinez A.W., Gong J., Mace C.R., Phillips S.T., Carrilho E., Mirica K.A., Whitesides G.M. Paper-Based Elisa. Angewandte Chemie International Edition.2010,49 (28):4771-4774

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700