利用新型DH群体构建小麦遗传图谱与SDG8和FT基因对拟南芥开花和分枝的协同调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
课题组前期构建了一个合成加倍单倍体群体,将其命名为SynDH群体,该群体是一个四倍化的六倍体DH群体,其A、B染色体在两个不同的四倍体小麦间发生了重组,而D染色体则来自同一个节节麦。我们利用该群体构建了一个遗传图谱,主要研究结果为:
     1.共选择了606个具有多态性的标记,其中有588(97%)个标记连锁到了不同的染色体上,包括513个DArT、72个SSR、1个ISBP和2个HMW-GS标记。该连锁群图覆盖基因组总长度为2048.79cM,标记间平均图距为3.48cM。
     2.该图谱与前人发表的遗传图谱相比,具有很多共享的标记,在标记顺序上表现出较高的一致性。
     3.利用该遗传图谱,成功鉴定了5个QTL位点,分别是位于7A和5B上的两个小穗数,7A和3B上的两个穗长及4B上的一个千粒重QTL。
     4.通过实验分析,我们认为两个四倍体小麦在可杂交性QTL的差异可能是在1A、3B和6B染色体上产生偏分离区域的原因。
     拟南芥SET domain group8(SDG8)蛋白是一个组蛋白甲基化转移酶,其参与调控一系列重要的植株发育过程,包括开花、分枝以及种子特异基因的表达。本文通过对sdg8-2突变体诱变后得到的表型回复突变体构建作图群体,克隆得到了一个在Flowering locus T(FT)基因发生点突变的突变体,将其命名为ft-11。通过对其开花时间、植株分枝及种子贮藏蛋白等研究发现,FT与SDG8在功能上协同调控植株形态及开花时间,但却没有参与种子特异基因的表达调控。主要研究结果如下:
     1.FT位点的突变抑制了sdg8导致的早开花表型。分别统计了野生型、单突变体sdg8-2、ft-1和ft-10及双突变体ft-11sdg8-2初生叶片数量和开花时间,结果一致,双突变体的开花时间趋于ft-1、ft-10和sdg8-2之间,与野生型基本一致,这说明在双突变体中ft-11可以抑制sdg8-2的早开花表型。实时定量PCR结果显示,双突变体中FLC表达量偏低,在SOC1的表达量偏高的情况下AP1的表达量仍然偏低,说明在双突变体中可能是由于降低的抑制因子FLC水平促进了下游基因AP1的表达。
     2.FT蛋白质中重要位点的单个氨基酸突变会影响其功能:选取了FT中一些重要的氨基酸位点构建了不同的点突变FT蛋白表达载体,通过荧光双分子互补实验(BiFC)和酵母双杂交实验(Y2H)检测了单个氨基酸突变的FT与FD基因及14-3-3蛋白的互作能力,发现不同FT突变蛋白与FD以及14-3-3的结合能力有一定的差异,并且此结合能力与突变植株的表型有一定的关联。
     3.FT位点的突变抑制了sdg8导致的多分枝表型:分枝统计结果显示双突变体ft-11sdg8-2的分枝趋于野生型Col和单突变体sdg8-2之间。RT-PCR和实时定量PCR结果显示一些控制植株分枝的关键基因的转录水平在野生型、单突变体和双突变体中产生了变化。其中SPS1基因在ft-11sdg8-2中的表达量高于sdg8-2,而UGT74E2基因在ft-11sdg8-2中的表达量高于ft-10并低于sdg8-2,说明ft-1.1sdg8-2的分枝受到了抑制。认为ft-11可能是通过调节激素平衡来抑制sdg8分枝表型的。
     4.ft突变位点对sdg8中种子特异基因的表达没有产生影响:通过构建将pCG::GUS报告基因引入ft-11sdg8-2群体来检测双突变体中种子特异基因的表达情况发现,ft-11位点的突变对sdg8-2中种子贮藏蛋白的表达没有产生影响,并在分子水平上证明了这一结果,其中At2S2和At7S1在野生型中没有明显的条带,在单突变体sdg8-2中均得到了表达,并同时出现在双突变体中且表达水平与sdg8-2基本一致。
In a previous study, we constructed a synthesizing double haploid (SynDH) hexaploid wheat population, which is actually tetraploidization-hexaploid DH population since they contain recombinant A and B chromosomes of two different T. turgidum genotypes while all the D chromosomes from Ae. tauschii are homogenous across the whole population. The present paper reports the development of a genetic map using this population. The major findings are:
     1. Of the606markers used to assemble the genetic map,588(97%) were assigned to linkage groups. They included513DArT (Diversity Arrays Technology) markers,72simple sequence repeats (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. This map has a length of2048.79cM and an average distance of3.48cM between adjacent markers.
     2. Compared with previously reported maps, most of shared markers showed highly consistent orders, indicating that this SynDH population is valid in generating genetic map.
     3. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes7A and5B, two for spike length on7A and3B, and one for1000-grain weight on4B.
     4. On the other hand, differences in crossability QTL between the two T. turgidum parents could be responsible for the existence of segregation distortion regions on chromosomes1A,3B, and6B.
     The Arabidopsis SET domain group8(SDG8) is a histone H3methyltransferase. It involves in a series of important plant development processes including flowering, branching and the control of seed specific gene expression. In this study, a mapping population was established from a suppressor mutant of sdg8-2. A new single point substitutional mutant allele of FT, which was named ft-11hereafter, was cloned via traditional map based cloning. Based on the characterization study of the double mutant on flowering time, plant architecture and seed storage protein expression, it was found that FT and SDG8function synergistically to regulate flowering time and plant archtecure, but FT did not involve in the regulation of seed specific gene expression. The major findings are:
     1. A single point mutant in FT can suppress the early flowering phenotype resulted from sdg8mutation:The flowering time was determined in wild type, single mutant sdg8-2,ft-1,ft-10and double mutant ft-11sdg8-2plants, by means of both dates and rosette leaf numbers. The flowering time of double mutant plants was in between that of sdg8and ft single mutant plants, similar to that of the wild type plants. This suggested that ft-11can suppress the early flowering phenotype of sdg8-2mutant plants. Based on realtime PCR analysis, FLC transcript level was reduced, while the API expression was at a low level when the SOC1expression was increased. This indicated that the reduction of the inhibitor FLC level may promote the expression of downstream API.
     2. Single amino aicd substitution at the key residues of the FT protein will greatly affect its function:Constructs expressing mutant version of FT proteins were constructed by targeted mutagenesis on several key amino acid residues. The physical associations between FT, including wild type and all mutant versions, and FD or14-3-3proteins were evaluated using BiFC and Y2H. It was found that the different FT mutant proteins showed altered binding capability to FD or14-3-3proteins, which was in line with the observed morphological phenotypes of the plants.
     3. A single point mutant in FT can suppress the more branch phenotype resulted from sdg8mutation:The branch number of the ft-11sdg8-2double mutant was less than that of sdg8-2single mutant, but still more than that of wild type or ft single mutant plants. RT-PCR and realtime PCR analysis demonstrated that the expressions of a few key regulatory genes on branch were altered in the double mutant. SPS1expression was increased in the double mutant compared to that of sdg8-2, while the UGT74E2expressopn was lower. These results indicated that the ft-11mutant resulted in altered auxin/cytokinin balance, therefore suppressed the more branch phenotype of sdg8.
     4. Mutation in FT did not affect the expression of seed specific genes:A pCG::GUS reporter system was introduced into the ft-11sdg8-2plants to determine the expression of seed specific genes. ft-11mutation did not affect the expression of seed storage proteins. RT-PCR analysis demonstrated that At2S2and At7S1were not expressed in wild type, but in sdg8-2and the double mutant. The expression levels of these genes were similar in sdg8-2and the double mutant.
引文
1. Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309,1052-1056.
    2. Aguilar-Martinez, J.A., Poza-Carrion, C., and Cubas, P. (2007). Arabidopsis BRANCHED 1 acts as an integrator of branching signals within axillary buds. Plant Cell 19,458-472.
    3. Akbari, M., Wenzl, P., Caig, V., Carling, J., Xia, L., Yang, S., Uszynski, G., Mohler, V., Lehmensiek, A., and Kuchel, H. (2006). Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113,1409-1420.
    4. Alexandre, C.M., and Hennig, L. (2008). FLC or not FLC:the other side of vernalization. J Exp Bot 59,1127-1135.
    5. Alheit, K.V., Reif, J.C., Maurer, H.P., Hahn, V., Weissmann, E.A., Miedaner, T., and Wiirschum, T. (2011). Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12,380.
    6. Arondel, V., Lemieux, B., Hwang, I., Gibson, S., Goodman, H.M., and Somerville, C.R. (1992). Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258,1353-1355.
    7. Aukerman, M.J., Lee, I., Weigel, D., and Amasino, R.M. (1999). The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant J 18,195-203.
    8. Baurle, I., and Dean, C. (2008). Differential interactions of the autonomous pathway RRM proteins and chromatin regulators in the silencing of Arabidopsis targets. PLoS One 3, e2733.
    9. Bastow, R., Mylne, J.S., Lister, C., Lippman, Z., Martienssen, R.A., and Dean, C. (2004). Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164-167.
    10. Baud, S., Boutin, J.-P., Miquel, M., Lepiniec, L., and Rochat, C. (2002). An integrated overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol Bioch 40,151-160.
    11. Bell, C.J., and Ecker, J.R. (1994). Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19,137-144.
    12. Bennett, T., and Leyser, O. (2006). Something on the Side:Axillary Meristems and Plant Development. Plant Mol Biol 60,843-854.
    13. Bennett, T., Sieberer, T., Willett, B., Booker, J., Luschnig, C., and Leyser, O. (2006). The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol 16,553-563.
    14. Bernier, G., Kinet, J.-M., and Sachs, R.M. (1981). The Physiology of Flowering. Boca Raton, Flonda: CRC Press Inc.
    15. Blanco, A., Bellomo, M.P., Cenci, A., De Giovanni, C., D'Ovidio, R., Iacono, E., Laddomada, B., Pagnotta, M.A., Porceddu, E., Sciancaiepore, A., Simeone, R., and Tanzarella, O.A. (1998). A genetic linkage map of durum wheat. Theor Appl Genet 97,721-728.
    16. Bolibok-Bragoszewska, H., Heller-Uszynska, K., Wenzl, P., Uszynski. G., Kilian, A., and Rakoczy-Trojanowska, M. (2009). DArT markers for the rye genome-genetic diversity and mapping. BMC Genomics 10,578.
    17. Booker, J., Auldridge, M., Wills, S., McCarty, D., Klee, H., and Leyser, O. (2004). MAX3/CCD7 Is a Carotenoid Cleavage Dioxygenase Required for the Synthesis of a Novel Plant Signaling Molecule. Curr Biol 14,1232-1238.
    18. Booker, J., Sieberer, T., Wright, W., Williamson, L., Willett, B., Stirnberg, P., Turnbull, C., Srinivasan, M., Goddard, P., and Leyser, O. (2005). MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8,443-449.
    19. Borner, R., Kampmann, G., Chandler, J., Gleissner, R., Wisman, E., Apel, K., and Melzer, S. (2000). A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24, 591-599.
    20. Boss, P.K., Bastow, R.M., Mylne, J.S., and Dean, C. (2004). Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16, S18-S31.
    21. Bushman, W., Thompson, J.F., Vargas, L., and Landy, A. (1985). Control of directionality in lambda site specific recombination. Science 230,906-911.
    22. Catterou, M., Dubois, F., Smets, R., Vaniet, S., Kichey, T., Van Onckelen, H., Sangwan-Norreel, B.S., and Sangwan, R.S. (2002). hoc:an Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity. Plant J 30,273-287.
    23. Cazzonelli, C.I., Roberts, A.C., Carmody, M.E., and Pogson, B.J. (2010). Transcriptional control of SET DOMAIN GROUP 8 and CAROTENOID ISOMERASE during Arabidopsis development. Mol Plant 3,174-191.
    24. Cazzonelli, C.I., Cuttriss, A.J., Cossetto, S.B., Pye, W., Crisp, P., Whelan, J., Finnegan, E.J., Turnbull, C., and Pogson, B.J. (2009). Regulation of Carotenoid Composition and Shoot Branching in Arabidopsis by a Chromatin Modifying Histone Methyltransferase, SDG8. Plant Cell 21,39-53.
    25. Chanvivattana, Y., Bishopp, A., Schubert, D., Stock, C., Moon, Y.H., Sung, Z.R., and Goodrich, J. (2004). Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131,5263-5276.
    26. Choe, S., Schmitz, R.J., Fujioka, S., Takatsuto, S., Lee, M.O., Yoshida, S., Feldmann, K.A., and Tax, F.E. (2002). Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3β-like kinase. Plant Physiol 130,1506-1515.
    27. Cline, M.G. (1994). The role of hormones in apical dominance. New approaches to an old problem in plant development. Physiol Plant 90,230-237.
    28. Crane, C.F., and Crane, Y.M. (2005). A nearest-neighboring-end algorithm for genetic mapping. Bioinformatics 21,1579-1591.
    29. Crossa, J., Burgueno, J., Dreisigacker, S., Vargas, M., Herrera-Foessel, S.A., Lillemo, M., Singh, R.P., Trethowan, R., Warburton, M., Franco, J., Reynolds, M., Crouch, J.H., and Ortiz, R. (2007). Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177,1889-1913.
    30. De Lucia, F., Crevillen, P., Jones, A.M., Greb, T., and Dean, C. (2008). A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci U S A 105,16831-16836.
    31. De Smet, I., and Jurgens, G. (2007). Patterning the axis in plants-auxin in control. Curr Opin Genet Dev 17,337-343.
    32. Domagalska, M.A., and Leyser, O. (2011). Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12,211-221.
    33. Dong, G, Ma, D.P., and Li, J. (2008). The histone methyltransferase SDG8 regulates shoot branching in Arabidopsis. Biochem Biophys Res Commun 373,659-664.
    34. Doyle, J.J., and Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bulletin 19:11-15.
    35. Elise, H.R., and Brown, J.K.M. (1997). AFLP markers for an adult plant resistance to powdery mildew in wheat In Plant and Animal Genome V Conference, Town & Cuuntry Hotel, San Diego, CA p.166.
    36. Elouafi, I, and Nachit, M.M. (2004). A genetic linkage map of the Durum x Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108,401-413.
    37. Eriksson, S., Bohlenius, H., Moritz, T., and Nilsson, O. (2006). GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18,2172-2181.
    38. Faris, J.D., Laddomada, B., and Gill, B.S. (1998). Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics 149,319-327.
    39. Francki, M.G., Walker, E., Crawford, A.C., Broughton, S., Ohm, H.W., Barclay, I., Wilson, R.E., and McLean, R. (2009). Comparison of genetic and cytogenetic maps of hexaploid wheat(Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 281,181-191.
    40. Garrison, R. (1955). Studies in the Development of Axillary Buds. Am J Bot 42,257-266.
    41. Gaudin, V., Libault, M., Pouteau, S., Juul, T., Zhao, G., Lefebvre, D., and Grandjean, O. (2001). Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. Development 128,4847-4858.
    42. Gene, I., Ozkan, H., and Yagbasanlar, T. (1996). Crossability of D-genome chromosome substitution lines of durum wheat (Triticumn turgidum ssp. turgidum conv. durum) with Secale cereale and Aegilops squarrosa. Wheat Information Service 83,1-6.
    43. Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F., and Goodman, H.M. (1992). Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4,1251-1261.
    44. Gonzalez-Guzman, M., Apostolova, N., Belles, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., Micol, J.L., Serrano, R., and Rodriguez, P.L. (2002). The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14,1833-1846.
    45. Grbic, V., and Bleecker, A.B. (2000). Axillary meristem development in Arabidopsis thaliana. Plant J 21,215-223.
    46. Greb, T., Clarenz, O., Schafer, E., Muller, D., Herrero, R., Schmitz, G., and Theres, K. (2003). Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17,1175-1187.
    47. Groot, S.P.C., Keizer, L.C.P., de Ruiter, W., and Dons, J.J.M. (1994). Seed and fruit set of the lateral suppressor mutant of tomato. Scientia Horticulturae 59,157-162.
    48. Guerche, P., Tire, C., De Sa, F.G., De Clercq, A., Van Montagu, M., and Krebbers, E. (1990). Differential Expression of the Arabidopsis 2S Albumin Genes and the Effect of Increasing Gene Family Size. Plant Cell 2,469-478.
    49. Gupta, P., Balyan, H., Edwards, K., Isaac, P., Korzun, V., Roder, M., Gautier, M.F., Joudrier, P., Schlatter, A., Dubcovsky, J., De la Pena, R., Khairallah, M., Penner, G., Hayden, M., Sharp, P., Keller, B., Wang, R., Hardouin, J., Jack, P., and Leroy, P. (2002). Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105,413-422.
    50. Gupta, P.K., Mir, R.R., Mohan, A., and Kumar, J. (2008). Wheat genomics:present status and future prospects. Int J Plant Genomics 2008,896451.
    51. Guyomarc'h, H., Sourdille, P., Charmet, G., Edwards, K., and Bernard, M. (2002). Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104,1164-1172.
    52. Hansen, C.H., Wittstock, U., Olsen, C.E., Hick, A.J., Pickett, J.A., and Halkier, B.A. (2001). Cytochrome p450 CYP79F1 from arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J Biol Chem 276,11078-11085.
    53. Hartley, J.L., Temple, G.F., and Brasch, M.A. (2000). DNA cloning using in vitro site-specific recombination. Genome Res 10,1788-1795.
    54. Hayama, R., and Coupland, G. (2004). The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol 135,677-684.
    55. He, Y. (2009). Control of the transition to flowering by chromatin modifications. Mol Plant 2, 554-564.
    56. Hempel, F.D., and Feldman, L.J. (1994). Bi-directional inflorescence development in Arabidopsis thaliana: Acropetal initiation of flowers and basipetal initiation of paraclades. Planta 192, 276-286.
    57. Henderson, J.T., Li, H.C., Rider, S.D., Mordhorst, A.P., Romero-Severson, J., Cheng, J.C., Robey, J., Sung, Z.R., de Vries, S.C., and Ogas, J. (2004). PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Physiol 134,995-1005.
    58. Hepworth, S.R., Valverde, F., Ravenscroft, D., Mouradov, A., and Coupland, G. (2002). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. Embo J 21,4327-4337.
    59. Hisamatsu, T., and King, R.W. (2008). The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellin. J Exp Bot 59,3821-3829.
    60. Jaccoud, D., Peng, K., Feinstein, D., and Kilian, A. (2001). Diversity arrays:a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29, E25.
    61. Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M., and Last, R.L. (2002). Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129,440-450.
    62. Jannink, J.L., Lorenz, A.J., and Iwata, H. (2010). Genomic selection in plant breeding:from theory to practice. Brief Funct Genomics 9,166-177.
    63. Jeuken, M., van Wijk, R., Peleman, J., and Lindhout, P. (2001). An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. sativa(?)×(?)L. saligna F2 populations. Theor Appl Genet 103,638-647.
    64. Jeuken, M., van Wijk, R., Peleman, J., and Lindhout, P.. (2001). An integrated interspecific AFLP map of lettuce(Lactuca) based on two L. sativa(?)×(?)L. saligna F2 populations. Theor Appl Genet 103(4):638-647.
    65. Jiang, D., Wang, Y., and He, Y. (2008). Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components. PLoS One 3(10): e3404.
    66. Jing, H.C., Bayon, C., Kanyuka, K., Berry, S., Wenzl, P., Huttner, E., Kilian, A., and Hammond-Kosack, K.E. (2009). DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genomics 10,458.
    67. Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., and Dean, C. (2000). Molecular Analysis of FRIGIDA, a Major Determinant of Natural Variation in Arabidopsis Flowering Time. Science 290,344-347.
    68. Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., and Weigel, D. (1999). Activation tagging of the floral inducer FT. Science 286, 1962-1965.
    69. Kim, S.Y., Zhu, T., and Sung, Z.R. (2010). Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis. Plant Physiol 152,516-528.
    70. Klose, R.J., Kallin, E.M., and Zhang, Y. (2006). JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7,715-727.
    71. Kobayashi, Y, and Weigel, D. (2007). Move on up, it's time for change--mobile signals controlling photoperiod-dependent flowering. Genes Dev 21,2371-2384.
    72. Kobayashi, Y, Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286,1960-1962.
    73. Koenig, D., Bayer, E., Kang, J., Kuhlemeier, C., and Sinha, N. (2009). Auxin patterns Solanum lycopersicum leaf morphogenesis. Development 136,2997-3006.
    74. Komeda, Y. (2004). Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55,521-535.
    75. Konieczny, A., and Ausubel, F.M. (1993). A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4,403-410.
    76. Kumar, S., Gill, B.S., and Faris, J.D. (2007). Identification and characterization of segregation distortion loci along chromosome 5B in tetraploid wheat. Mol Genet Genomics 278,187-196.
    77. Laibach, F. (1943). Arabidopsis thaliana (L.) Heynh. als Objekt fur genetische und entwicklungsphysiologische Untersuchungen. Bot. Archiv.44,439-455
    78. Lan, F., Nottke, A.C., and Shi, Y. (2008). Mechanisms involved in the regulation of histone lysine demethylases. Curr Opin Cell Biol 20,316-325.
    79. Landy, A. (1989). Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem 58,913-949.
    80. Laurie, D.A., and Bennett, M.D. (1987). The effect of the crossability loci Krl and Kr2 on fertilization frequency in hexaploid wheat x maize crosses. Theor Appl Genet 73,403-409.
    81. Laurie, D.A., and Bennett, M.D. (1988). The production of haploid wheat plants from wheat x maize crosses. Theor Appl Genet 76,393-397.
    82. Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J.H., Kim, S.G., Lee, J.S., Kwon, Y.M., and Lee, I. (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14,2366-2376.
    83. Lee, J.-H., Cho, Y.-S., Yoon, H.-S., Suh, M., Moon, J., Lee, I., Weigel, D., Yun, C.-H., and Kim, J.-K. (2005). Conservation and Divergence of FCA Function between Arabidopsis and Rice. Plant Mol Biol 58,823-838.
    84. Leyser, O. (2003). Regulation of shoot branching by auxin. Trends in Plant Science 8,541-545.
    85. Leyser, O. (2009). The control of shoot branching:an example of plant information processing. Plant, Cell & Environment 32,694-703.
    86. Li, H., Ye, G., and Wang, J. (2007). A modified algorithm for the improvement of composite interval mapping. Genetics 175,361-374.
    87. Li, H.C., Chuang, K., Henderson, J.T., Rider, S.D., Jr., Bai, Y., Zhang, H., Fountain, M., Gerber, J., and Ogas, J. (2005). PICKLE acts during germination to repress expression of embryonic traits. Plant J 44,1010-1022.
    88. Lincoln, S., Daly, M., and Lander, E. (1992). Mapping genetic mapping with MAPMAKER/EXP3.0 (Cambridge:Whitehead institute Technical Report).
    89. Liu, D.C., Yen, C., Yang, J.L., Lan, X.J., and Zheng, Y.L. (1998). The chromosome distribution of crossability gene in durum wheat cv. Langdon. Wheat Information Service 87,1-4.
    90. Liu, D.C., Yen, C., Yang, J.L., Zheng, Y.L., and Lan, X.J. (1999). The chromosomal locations of high crossability genes in tetraploid wheat Triticum turgidum L. cv. Ailanmai native to Sichuan, China. Euphytica 108,79-82.
    91. Long, J., and Barton, M.K. (2000). Initiation of Axillary and Floral Meristems in Arabidopsis. Developmental Biology 218,341-353.
    92. Lukowitz, W., Gillmor, C.S., and Scheible, W.R. (2000). Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol 123,795-805.
    93. Lyttle, T.W. (1991). Segregation distorters. Annu. Rev. Genet.25,511-557.
    94. Ma, J., Li, H.B., Zhang, C.Y., Yang, X.M., Liu, Y.X., Yan, G.J., and Liu, C.J. (2010). Identification and validation of a major QTL conferring crown rot resistance in hexaploid wheat. Theor Appl Genet 120,1119-1128.
    95. Ma, Z.Q., Sorrells, M.E., and Tanksley, S.D. (1994). RFLP markers linked to powdery mildew resistance genes Pml, Pm2, Pm3, and Pm4 in wheat. Genome 37,871-875.
    96. Makarevich, G., Leroy, O., Akinci, U., Schubert, D., Clarenz, O., Goodrich, J., Grossniklaus, U., and Kohler, C. (2006). Different Polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep 7,947-952.
    97. Mantovani, P., Maccaferri, M., Sanguineti, M., Tuberosa, R., Catizone, I., Wenzl, P., Thomson, B., Carling, J., Huttner, E., DeAmbrogio, E., and Kilian, A. (2008). An integrated DArT-SSR linkage map of durum wheat. Mol Breeding 22,629-648.
    98. Marsischky, G, and LaBaer, J. (2004). Many paths to many clones: a comparative look at high-throughput cloning methods. Genome Res 14,2020-2028.
    99. McClung, C.R. (2006). Plant circadian rhythms. Plant Cell 18,792-803.
    100. Mckinney, H.H., and Sando, W.J. (1933). Earliness and seasonal growth habit in wheat. J Hered 24,169-179.
    101. Meinke, D.W., Cherry, J.M., Dean, C., Rounsley, S.D., and Koornneef, M. (1998). Arabidopsis thaliana: a model plant for genome analysis. Science 282,662,679-682.
    102. Messmer, M.M., Keller, M., Zanetti, S., and Keller, B. (1999). Genetic linkage map of a wheat x spelt cross. Theor Appl Genet 98,1163-1170.
    103. Meuwissen, T.H., Hayes, B.J., and Goddard, M.E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157,1819-1829.
    104. Meyerowitz, E.M. (2001). Prehistory and history of Arabidopsis research. Plant Physiol 125, 15-19.
    105. Michaels, S.D., and Amasino, R.M. (1998). A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J 14,381-385.
    106. Michaels, S.D., and Amasino, R.M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11,949-956.
    107. Michaels, S.D., and Amasino, R.M. (2001). Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13,935-941.
    108. Michaels, S.D., Himelblau, E., Kim, S.Y., Schomburg, F.M., and Amasino, R.M. (2005). Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol 137,149-156.
    109. Michelmore, R.W., Paran, I., and Kesseli, R.V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A 88, 9828-9832.
    110. Millar, A.J. (2003). A suite of photoreceptors entrains the plant circadian clock. J Biol Rhythms 18, 217-226.
    111. Moon, J., Lee, H., Kim, M., and Lee, I. (2005). Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46,292-299.
    112. Moon, Y.H., Chen, L., Pan, R.L., Chang, H.S., Zhu, T., Maffeo, D.M., and Sung, Z.R. (2003). EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. Plant Cell 15,681-693.
    113. Moore, S.S., Sargeant, L.L., King, T.J., Mattick, J.S., Georges, M., and Hetzel, D.J. (1991). The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics 10,654-660.
    114. Mott, I.W., Larson, S.R., Jones, T.A., Robins, J.G., Jensen, K.B., and Peel, M.D. (2011). A molecular genetic linkage map identifying the St and H subgenomes of Elymus (Poaceae: Triticeae) wheatgrass. Genome 54,819-828.
    115. Mylne, J.S., Barrett, L., Tessadori, F., Mesnage, S., Johnson, L., Bernatavichute, Y.V., Jacobsen, S.E., Fransz, P., and Dean, C. (2006). LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN 1, is required for epigenetic silencing of FLC. Proc Natl Acad Sci U S A 103,5012-5017.
    116. Nath, U., Crawford, B.C.W., Carpenter, R., and Coen, E. (2003). Genetic Control of Surface Curvature. Science 299,1404-1407.
    117. Ongaro, V., and Leyser, O. (2008). Hormonal control of shoot branching. J Exp Bot 59,67-74.
    118. Page, D.R., and Grossniklaus, U. (2002). THE ART AND DESIGN OF GENETIC SCREENS: ARABIDOPSIS THALIANA. Macmillan Magazines Ltd 3,124-136.
    119. Paillard, S., Schnurbusch, T., Winzeler, M., Messmer, M., Sourdille, P., Abderhalden, O., Keller, B., and Schachermayr, G. (2003). An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107,1235-1242.
    120. Parcy, F., Nilsson, O., Busch, M.A., Lee, I., and Weigel, D. (1998). A genetic framework for floral patterning. Nature 395,561-566.
    121. Paux, E., Sourdille, P., Salse, J., Saintenac, C., Choulet, F., Leroy, P., Korol, A., Michalak, M., Kianian, S., Spielmeyer, W., Lagudah, E., Somers, D., Kilian, A., Alaux, M., Vautrin, S., Berges, H., Eversole, K., Appels, R., Safar, J., Simkova, H., Dolezel, J., Bernard, M., and Feuillet, C. (2008). A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322,101-104.
    122. Peleg, Z., Saranga, Y., Suprunova, T., Ronin, Y, Roder, M.S., Kilian, A., Korol, A.B., and Fahima, T. (2008). High-density genetic map of durum wheat x wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117,103-115.
    123. Peng, J., Korol, A.B., Fahima, T., Roder, M.S., Ronin, Y.I., Li, Y.C., and Nevo, E. (2000). Molecular genetic maps in wild emmer wheat, Triticum dicoccoides:genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10,1509-1531.
    124. Peters, J.L., Cnudde, F., and Gerats, T. (2003). Forward genetics and map-based cloning approaches. Trends Plant Sci 8,484-491.
    125. Philips, I.D.J. (1975). Apical dominance. Annu Rev Plant Physiol 26,341-367.
    126. Putterill, J., Laurie, R., and Macknight, R. (2004). It's time to flower: the genetic control of flowering time. Bioessays 26,363-373.
    127. Pysh, L.D., Wysocka-Diller, J.W., Camilleri, C., Bouchez, D., and Benfey, P.N. (1999). The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18,111-119.
    128. Qin, G., Gu, H., Zhao, Y., Ma, Z., Shi, G., Yang, Y, Pichersky, E., Chen, H., Liu, M., Chen, Z., and Qu, L.J. (2005). An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell 17,2693-2704.
    129. Roder, M.S., Korzun, V, Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., and Ganal, M.W. (1998). A microsatellite map of wheat. Genetics 149,2007-2023.
    130. Rafalski, A. (2002). Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5,94-100.
    131. Reintanz, B., Lehnen, M., Reichelt, M., Gershenzon, J., Kowalczyk, M., Sandberg, G., Godde, M., Uhl, R., and Palme, K. (2001). bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13,351-367.
    132. Riley, R., and Chapman, V. (1967). The inheritance in wheat of crossability with rye. Genetical Res 9,259-267.
    133. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, A.R., and Allard, R.W. (1984). Ribosomal DNA spacer length polymorphism in barley:Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci U S A 81,8014-8018.
    134. Salome, P.A., and McClung, C.R. (2004). The Arabidopsis thaliana clock. J Biol Rhythms 19, 425-435.
    135. Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., and Coupland, G. (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288,1613-1616.
    136. Sambrook, J., Williams, J., Sharp, P.A., and Grodzicker, T. (1975). Physical mapping of temperature-sensitive mutations of adenoviruses. J Mol Biol 97,369-390.
    137. Sandler, L., and Novitski, E. (1957). Meiotic drive as an evolutionary force. Am Nat 91,105-110.
    138. Schlotterer, C., Amos, B., and Tautz, D. (1991). Conservation of polymorphic simple sequence loci in cetacean species. Nature 354,63-65.
    139. Schubert, D., Clarenz, O., and Goodrich, J. (2005). Epigenetic control of plant development by Polycomb-group proteins. Curr Opin Plant Biol 8,553-561.
    140. Schumacher, K., Schmitt, T., Rossberg, M., Schmitz, G., and Theres, K. (1999). The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci U S A 96,290-295.
    141. Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Krober, S., Amasino, R.A., and Coupland, G. (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20, 898-912.
    142. Semagn, K., Bjφrnstad, A., Skinnes, H., Marφy, A.G., Tarkegne, Y., and William, M. (2006). Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49,545-555.
    143. Sharma, R., Aggarwal, R.A., Kumar, R., Mohapatra, T., and Sharma, R.P. (2002). Construction of an RAPD linkage map and localization of QTLs for oleic acid level using recombinant inbreds in mustard (Brassica juncea). Genome 45,467-472.
    144. Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J., and Dennis, E.S. (2000). The molecular basis of vernalization:the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA97,3753-3758.
    145. Shimizu-Sato, S., and Mori, H. (2001). Control of outgrowth and dormancy in axillary buds. Plant Physiol 127,1405-1413.
    146. Singh, K., Ghai, M., Garg, M., Chhuneja, P., Kaur, P., Schnurbusch, T., Keller, B., and Dhaliwal, H.S. (2007). An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum x T. monococcum RIL population. TheorAppl Genet 115,301-312.
    147. Snape, J.W., Chapman, V., and Moss, J. (1979). The cross abilities of wheat varieties with Hordeumbulbousm. Heredity 42,291-298.
    148. Snow, M., and Snow, R. (1942). The Determination of Axillary Buds. New Phytologist 41,13-22.
    149. Somers, D.J., Isaac, P., and Edwards, K. (2004). A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.). Theor Appl Genet 109,1105-1114.
    150. Song, Q.J., Shi, J.R., Singh, S., Fickus, E.W., Costa, J.M., Lewis, J., Gill, B.S., Ward, R., and Cregan, P.B. (2005). Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110,550-560.
    151. Sorefan, K., Booker, J., Haurogne, K., Goussot, M., Bainbridge, K., Foo, E., Chatfield, S., Ward, S., Beveridge, C., Rameau, C., and Leyser, O. (2003). MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17, 1469-1474.
    152. Sourdille, P., Singh, S., Cadalen, T., Brown-Guedira, G.L., Gay, G., Qi, L., Gill, B.S., Dufour, P., Murigneux, A., and Bernard, M. (2004). Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4,12-25.
    153. Steeves, T.A., and Sussex, I.M. (1989). In Patterns in plant development (Cambridge, U. K.: Cambridge University Press), pp.124-146.
    154. Stephenson, P., Bryan, G., Kirby, J., Collins, A., Devos, K., Busso, C., and Gale, M. (1998). Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet 97,946-949.
    155. Stirnberg, P., Chatfield, S.P., and Leyser, H.M.O. (1999). AXR1 Acts after Lateral Bud Formation to Inhibit Lateral Bud Growth in Arabidopsis. Plant Physiol 121,839-847.
    156. Stirnberg, P, van De Sande, K., and Leyser, H.M. (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129,1131-1141.
    157. Sun, T.P., and Kamiya, Y. (1994). The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6,1509-1518.
    158. Sung, S., Schmitz, R.J., and Amasino, R.M. (2006). A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Genes Dev 20,3244-3248.
    159. Sussex, I.M. (1955). Morphogenesis in Solanum tuberosum L.:Experimental investigation of leaf dorsiventrality and orientation in the juvenile shoot. Phytomorphology 5,286-300.
    160. Takano, M., Inagaki, N., Xie, X., Yuzurihara, N., Hihara, F., Ishizuka, T., Yano, M., Nishimura, M., Miyao, A., Hirochika, H., and Shinomura, T. (2005). Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17, 3311-3325.
    161. Tanaka, M., Kikuchi, A., and Kamada, H. (2008). The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol 146,149-161.
    162. Tang, X., Lim, M.H., Pelletier, J., Tang, M., Nguyen, V., Keller, W.A., Tsang, E.W., Wang, A., Rothstein, S.J., Harada, J.J., and Cui, Y. (2012). Synergistic repression of the embryonic programme by SET DOMAIN GROUP 8 and EMBRYONIC FLOWER 2 in Arabidopsis seedlings. J Exp Bot 63,1391-1404.
    163. Tang, X., Hou, A., Babu, M., Nguyen, V., Hurtado, L., Lu, Q., Reyes, J.C., Wang, A., Keller, W.A., Harada, J.J., Tsang, E.W., and Cui, Y. (2008). The Arabidopsis BRAHMA chromatin-remodeling ATPase is involved in repression of seed maturation genes in leaves. Plant Physiol 147,1143-1157.
    164. Tantikanjana, T., Yong, J.W., Letham, D.S., Griffith, M., Hussain, M., Ljung, K., Sandberg, G, and Sundaresan, V. (2001). Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes Dev 15,1577-1588.
    165. Taoka, K.-i., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C, Purwestri, Y.A., Tamaki, S., Ogaki, Y., Shimada, C., Nakagawa, A., Kojima, C., and Shimamoto, K. (2011).14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476,332-335.
    166. Templeman, T.S., Demaggio, A.E., and Stetler, D.A. (1987). Biochemistry of Fern Spore Germination:Globulin Storage Proteins in Matteuccia struthiopteris L. Plant Physiol 85, 343-349.
    167. Teper-Bamnolker, P., and Samach, A. (2005). The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell 17,2661-2675.
    168. Thimann, K.V. (1937). On the Nature of Inhibitions Caused by Auxin. Am J Bot 24,407-412.
    169. Thimann, K.V., and Skoog, F. (1934). On the Inhibition of Bud Development and other Functions of Growth Substance in Vicia Faba. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 114,317-339.
    170. Tixier, M.H., Sourdille, P., Charmet, G., Gay, G., Jaby, C., Cadalen, T., Bernard, S., Nicolas, P., and Bernard, M. (1998). Detection of QTLs for crossability in wheat using a doubled-haploid population. Theor Appl Genet 97,1076-1082.
    171. Turck, F., Fornara, F., and Coupland, G. (2008). Regulation and identity of florigen:FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59,573-594.
    172. Turck, F., Roudier, F., Farrona, S., Martin-Magniette, M.L., Guillaume, E., Buisine, N., Gagnot, S., Martienssen, R.A., Coupland, G., and Colot, V. (2007). Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3, e86.
    173. Turnbull, C.G.N., Booker, J.P., and Leyser, H.M.O. (2002). Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J 32,255-262.
    174. Tyrka, M., Bednarek, P.T., Kilian, A., Wedzony, M., Hura, T., and Bauer, E. (2011). Genetic map of triticale compiling DArT, SSR, and AFLP markers. Genome 54,391-401.
    175. Van Aken, O., Pecenkova, T., Van De Cotte, B., De Rycke, R., Eeckhout, D., Fromm, H., De Jaeger, G., Witters, E., Beemster, G.T.S., Inze, D., and Van Breusegem, F. (2007). Mitochondrial type-Ⅰ prohibitins of Arabidopsis thaliana are required for supporting proficient meristem development. Plant J 52,850-864.
    176. Varshney, R.K., Langridge, P., and Graner, A. (2007). Application of genomics to molecular breeding of wheat and barley. Adv Genet 58,121-155.
    177. Veley, K.M., and Michaels, S.D. (2008). Functional redundancy and new roles for genes of the autonomous floral-promotion pathway. Plant Physiol 147,682-695.
    178. Veyrieras, J.B., Camus-Kulandaivelu, L., Gouesnard, B., Manicacci, D., and Charcosset, A. (2007). Bridging Genomics and Genetic Diversity:Linkage Disequilibrium Structure and Association Mapping in Maize and Other Cereals. Crop Sci 47,60-71.
    179. Vicente-Carbajosa, J., and Carbonero, P. (2005). Seed maturation: developing an intrusive phase to accomplish a quiescent state. Int J Dev Biol 49,645-651.
    180. Ward, S.P., and Leyser, O. (2004). Shoot branching. Curr Opin Plant Biol 7,73-78.
    181. Wenzl, P., Carling, J., Kudrna, D., Jaccoud, D., Huttner, E., Kleinhofs, A., and Kilian, A. (2004). Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101,9915-9920.
    182. Wenzl, P., Li, H., Carling, J., Zhou, M., Raman, H., Paul, E., Hearnden, P., Maier, C., Xia, L., Caig, V., Ovesna, J., Cakir, M., Poulsen, D., Wang, J., Raman, R., Smith, K.P., Muehlbauer, G.J., Chalmers, K.J., Kleinhofs, A., Huttner, E., and Kilian, A. (2006). A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7,206.
    183. White, J., Law, J.R., MacKay, I., Chalmers, K.J., Smith, J.S., Kilian, A., and Powell, W. (2008). The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116,439-453.
    184. Wigge, P.A. (2011). FT, A Mobile Developmental Signal in Plants. Curr Biol 21,374-378.
    185. Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W, Schmid, M., Lohmann, J.U., and Weigel, D. (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309,1056-1059.
    186. Williamson, V.M., Ho, J.Y., Wu, F.F., Miller, N., and Kaloshian, I. (1994). A PCR-based marker tightly linked to the nematode resistance gene, Mi, in tomato. Theor Appl Genet 87,757-763.
    187. Xu, L., Zhao, Z., Dong, A., Soubigou-Taconnat, L., Renou, J.P., Steinmetz, A., and Shen, W.H. (2008). Di-and tri-but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol Cell Biol 28,1348-1360.
    188. Xu, Y., Zhu, L., Xiao, J., Huang, N., and McCouch, S.R. (1997). Chromosomal regions associated with segregation distortion of molecular markers in F2(?), backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253,535-545.
    189. Yaish, M.W.F., Peng, M., and Rothstein, S J. (2009). AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation. Plant J 59, 123-135.
    190. Yamaguchi, S., and Kyozuka, J. (2010). Branching hormone is busy both underground and overground. Plant Cell Physiol 51,1091-1094.
    191. Yang, W., Jiang, D., Jiang, J., and He, Y. (2010). A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis. Plant J 62,663-673.
    192. Yoo, S.K., Chung, K.S., Kim, J., Lee, J.H., Hong, S.M., Yoo, S.J., Yoo, S.Y., Lee, J.S., and Ahn, J.H. (2005). CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol 139, 770-778.
    193. Yu, X., Li, L., Guo, M., Chory, J., and Yin, Y. (2008). Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci U S A 105,7618-7623.
    194. Zabeau, M., and Vos, P. (1993). Selective restriction fragment amplification: a general method for DNA fingerprinting, E.P. Office, ed (Paris).
    195. Zenkteler, M., and Nitzsche, W. (1984). Wide hybridization experiments in cereals. Theor Appl Genet 68,311-315.
    196. Zhang, L.Q., Yen, Y, Zheng, Y.L., and Liu, D.C. (2007a). Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sexual Plant Reproduction 20,159-166.
    197. Zhang, L.Q., Liu, D.C., Zheng, Y.L., Yan, Z.H., Dai, S.F., Li, Y.F., Jiang, Q., Ye, Y.Q., and Yen, Y. (2010). Frequent occurrence of unreduced gametes in Triticum turgidum-Aegilops tauschii hybrids. Euphytica 172,285-294.
    198. Zhang, L., Liu, D., Yan, Z., Lan, X., Zheng, Y., and Zhou, Y. (2004). Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Sci China C Life Sci 47,553-561.
    199. Zhang, L., Sun, G., Yan, Z., Chen, Q., Yuan, Z., Lan, X., Zheng, Y., and Liu, D. (2007b). Comparison of newly synthetic hexaploid wheat with its donors on SSR products. J Genet Genomics 34,939-946.
    200. Zhang, L., Zhang, L., Luo, J., Chen, W., Hao, M., Liu, B., Yan, Z., Zhang, B., Zhang, H., Zheng, Y., Liu, D., and Yen, Y. (2011). Synthesizing double haploid hexaploid wheat populations based on a spontaneous alloploidization process. J Genet Genomics 38,89-94.
    201. Zhang, X., Germann, S., Blus, B.J., Khorasanizadeh, S., Gaudin, V., and Jacobsen, S.E. (2007c). The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol 14,869-871.
    202. Zhang, X., Clarenz, O., Cokus, S., Bernatavichute, Y.V., Pellegrini, M., Goodrich, J., and Jacobsen, S.E. (2007d). Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5, e129.
    203. Zhao, Z., Yu, Y., Meyer, D., Wu, C., and Shen, W.H. (2005). Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat Cell Biol 7,1256-1260.
    204.蔡华,马传喜,黄正来,乔玉强,陆维忠.(2006).小麦X玉米诱导小麦单倍体高效系统的建立.核农学报20,90-94.
    205.程新奇,邹烁,赵丽君,张立华.(2005).甜玉米分蘖与籽粒产量关系的初步研究.湖南文理学院学报(自然科学版)1,71-73.
    206.巩鹏涛,李迪.(2005).植物分枝发育的遗传调控.分子植物育种3,151-162.
    207.顾坚,刘琨,李绍祥,田玉仙,杨和仙,杨木军.(2008).小麦X玉米杂交诱导小麦单倍体的割穗离体培养研究.麦类作物学报28,1-5.
    208.李合生.(2002).现代植物生理学.(高等教育出版社).
    209.梁康迳,林文雄,王雪仁,陈志雄,郭玉春,梁义元,陈芳育,李亚娟.(2002).籼型三系杂交水稻茎蘖数的发育研究.中国农业科学35,1033-1039.
    210.刘传光,张桂权.(2006).水稻单核苷酸多态性及其应用.遗传6,737-744.
    211.刘登才,兰秀锦,杨足君,郑有良,魏育明,周永红.(2002).远缘杂交不需幼胚培养的节节麦基因型.植物学报44,708-713.
    212.刘霞,王松文,李传友,施利利,张欣,郭玉华,刘芳.(2005).水稻ms91(t)基因定位群体的研究.天津农学院学报12,6-9.
    213.齐莉莉,刘大钧.(1999).小麦基因组研究进展.麦类作物19,1-5.
    214.许智宏.(1999).植物发育与生殖的研究:进展和展望.植物学报41,909-920.
    215.张正斌.(2001).小麦遗传学.(北京:中国农业出版社).
    216.种康,雍伟东,谭克辉.(1999).高等植物春化作用研究进展.植物学通报16,481-487.
    217.庄巧生.(2003).中国小麦品种改良及系谱分析.(北京:中国农业出版社).
    218.邹喻苹,葛颂.2003.新一代分子标记-SNPs及其应用.生物多样性5(4):11-15.
    219.庄巧生.2003.中国小麦品种改良及系谱分析.中国农业出版社,北京.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700