月季品种分子鉴定与遗传关系分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物品种保护是一种新型的知识产权,主要宗旨是保护育种者合理权益。植物品种保护在不断发展的过程中也面临一些问题,与结合现代生物技术成为了未来植物品种保护实践工作的重要主题,分子标记技术在植物新品种保护中有着广阔的应用前景。本研究首先应用了现有的植物新品种DUS测试体系中的形态学性状调查方法分析月季栽培品种,其次采用SSR和AFLP分子标记技术开展了月季栽培品种分子鉴定研究和不同月季栽培群体的遗传关系分析,初步建立了以SSR标记为技术基础的月季栽培品种分子鉴定体系,为将来SSR标记应用于月季品种侵权繁殖材料的快速鉴定、已知品种和授权品种DNA指纹数据库构建等工作奠定技术基础并完成前期数据积累;也为未来月季新品种培育、种质资源保存等工作提供科学依据,主要研究结果:
     1.参考蔷薇属DUS测试指南,通过田间调查方法,研究了DUS测试性状在杂交茶香月季,微型月季以及多花月季群体间的表型多样性。研究结果显示:43个DUS测试性状共检测出162个等位变异,每个性状上等位变异范围为1~14,变异数均值为3.767;多态性位点(性状)数量为40,多态性比率为93.02%;有效等位变异数量介于1~7.365,均值为2.358;Shannon’s信息指数介于0~2.274之间,平均值为0.895。Nei’s遗传多样度平均值为0.487,变幅介于0~0.864之间。聚类分析和主成份分析结果表明,不同园艺组月季品种间遗传差异较大,但是也存在品种渗透现象。
     2. SSR标记多态性分析结果表明:41个位点上共检测到460个等位基因变异,等位基因变异数量介于为2~19个,平均每个位点等位基因数为11.2个;17个基因组SSR平均每个等位位点产生13.6个等位基因,24个EST-SSR平均每个位点产生9.5个等位基因;有效等位基因数量介于1.994~8.286,位点Rw55E12有效等位基因数量最多为8.286;41个SSR位点的等位基因表现型数量介于3~92之间;多态性信息含量变化范围在0.498~0.864之间。结果表明筛选的SSR位点具有良好的多态性,基因组SSR多态性高于EST-SSR。
     3.基于SSR标记的月季品种分子鉴定结果表明:41个位点品种鉴定分辨率存在明显差异,41个位点的特异等位基因表现型数目介于0~67之间,单位点品种特殊等位基因表型数量最多的是位点Rw10M24,最少的是H1F03;41个位点的品种鉴别力Dj范围介于0.315~0.988,品种鉴别力最小的是位点H1F03,品种鉴别力最大的是位点CTG623和Rw55E12。Rosa ‘Twenty Fifth’和Rosa ‘Peter Beals’,Rosa ‘Mary Rose’和Rosa ‘WinchesterCathedral’以及中国古老月季‘绿萼’和Rosa ‘Old Blush’在41个SSR位点上具有相同等位基因表型。而区分其余品种最少需要3个SSR位点,如位点RA013a,RA043a与Rw5D11组合,位点P1,Rw8B8与Rw59A12组合,位点Rw10M24,Rw5D11与位点CTG21组合等。研究结果显示,芽变品种与原始品种的SSR指纹具有高度一致性,而杂交月季品种之间SSR指纹差异明显。
     4.基于SSR标记的不同园艺组月季品种遗传关系研究结果显示:聚类分析将月季品种大致分为6类,第I聚类群主要包括了13个中国月季(Rosa ‘Chinas’)以及少数灌木月季(Rosa ‘Shrub’);第Ⅱ聚类群以杂交茶香月季(Rosa ‘Hybrid Tea’)为主;第Ⅲ聚类群包含3个杂交茶香月季,2个灌木月季,1个多花月季和藤本月季;第Ⅳ聚类群以矮灌木小花月季(Rosa ‘Polyantha’)和灌木月季为主,还包含杂交玫瑰(Rosa rugosa);第Ⅴ聚类群包含多数灌木月季;第Ⅵ聚类群由杂交茶香月季和微型月季(Rosa ‘Mininature’)组成。结果表明起源相同,亲缘关系较近的品种聚为一类,聚类结果与传统园艺分类之间具有较好的相似性。表型遗传差异与基于SSR标记的分子遗传差异相关性分析结果显示,两者之间存在弱相关,相关系数r为0.321。
     5.基于AFLP月季品种鉴定和遗传关系分析结果显示,14对AFLP引物组合共扩增出1803条片段,其中多态性片段1727条,多态性比率为95.78%;品种间Dice遗传距离范围介于0.111~0.631之间,结果表明基于AFLP分子标记技术,使用遗传距离进行品种分子鉴定是有效、可行的;具有相同杂交亲本的品种和亲缘关系近的品种之间遗传距离小,也证实了AFLP是用于品种鉴定有效检测方法。基于AFLP的聚类分析和主成份分析结果与SSR标记结果类似,不同园艺组月季之间遗传差异较大,而且组内遗传变异明显。基于AFLP标记和SSR标记遗传距离矩阵间相关性分析结果显示,两者间存在弱相关,相关性系数r为0.323。
     6.基于微卫星标记的9个遗传相似系数比较结果显示,9个遗传相似系数之间的相关系数介于0.735~1.000之间;共表型相关系数rc介于0.835~0.923;基于不同遗传相似系数的聚类树状图之间的CIc指数范围介于0.404~1.000之间,结果表明选择不同的遗传相似系数进行聚类分析,结果差异较大;不同遗传相似系数的S统计值介于17.19~27.92%之间,Russel and Rao系数的S值最低为17.19%,Russel and Rao等四个系数的拟合优度处于同一个水平。综合考虑SSR标记特性、Kruskal判定标准、相似系数计算原理等因素,并结合聚类分析和谱系分析比较结果,研究认为Dice系数、Jaccard系数、Ochiai系数比较适用于月季SSR遗传分析,其次是Simple Matching系数;而在遗传分析中最好避免使用Russel and Rao系数,Yule系数,Phi系数,Hamann系数。
Plant variety protection (PVP) is a novel system of intellectual property rights protection,which is aimed to protect the right of plant breeders. Some problems were emerged in theprocess of development of PVP, such as rapid identification of origin of plant materials,reducing the cycle of variety test, and molecular biology techniques become the most importanttools in practical operations of PVP. The potential applications of molecular marker techniquesare promising in PVP system. In this study, firstly morphological traits in DUS test wasinvestigated to evaluate phenotypic diversity of rose varieties; secondly SSR and AFLPmarkers were used to identify rose varieties and analyze genetic relationships among thevarieties. A preliminary identification system for rose varieties was established using SSRmarkers. It can be used for rapid identification of propagating materials for infringement cases,moreover it is an ideal approach to construction databases of DNA profiles of commonknowledge and protected varieties. Analysis of genetic relationship could supply some supplyscientific evidence for rose variety breeding and conservation of germplasm resource.
     1. According to the Rosa guideline for the conduct of test for DUS, the phonotypicaldiversity of Rosa ‘Hybrid Tea’, Rosa ‘Miniature’ and Rosa ‘Floribunda’ was investigated bymeans of field surveys. The result showed that162allele variants were detected in43traits, thenumber of allels in each trait ranged from1to14with an average of3.767; the number ofpolymorphic trait (loci) was40, the ratio of polymorphism is93.02%; the number of effectivealleles per locus ranged from1to7.365with an average of2.358; Shannon information indexranged from0to2.274with an average of0.895and Nei’s genetic diversity index ranged from0to0.864with an average of0.487. The cluster analysis and principal component analysisindicated that genetic variation was evident among different horticultural rose groups, but afew varieties were overlapped among different horticultural groups.
     2. Analysis of polymorphism in SSR loci showed that460allele variants were detected in41SSR loci, the number of alleles at each locus ranged from2to19with an average of11.2; the average number of allele variants was13.6at17genomic SSR loci, and9.5at24EST-SSRloci; the number of effective alleles ranged from1.994to8.286at41loci, the greatest numberwas found at locus Rw55E12; the number of allelic phenotypes range from3to92, the valueof polymorphic information content ranged from0.498~0.864. It indicated that thepolymorphism of SSR locus was reliable, and genomic SSR was superior to EST-SSR.
     3. Molecular identification of rose varieties based on SSR marker showed that thediscriminating power was flexible at41SSR loci; the number of unique allelic phenotypesrange from0to67, and the largest was at Rw10M24, the least was at H1F03, the value of Djranged from0.315~0.988, the loci with largest values were CTG623and Rw55E12, the leastwas H1F03; three pairs of rose varieties shared the same allelic phenotype at41SSR loci,respectively; three SSR loci were necessary to discriminate the rest rose varieties completely atleast, such as combination of RA013a,RA043a and Rw5D11, combination of P1,Rw8B8andRw59A12, and combination of Rw10M24,Rw5D11and CTG21. It was found that the SSRDNA profiles were identical between the original rose variety and its mutatant varieties, andthe divergence of SSR DNA profiles among hybrid varieties was obvious. It was suggested thatSSR molecular marker are feasible in rapid identification of plant varieties.
     4. The result of analysis of different horticultural rose groups showed that all sampleswere divided into six groups. The first group included13varieties of Rosa ‘Chinas’ and a fewones of Rosa ‘Shrub’; the second group was mainly made up of the varieties of Rosa ‘Hybridtea’; the third group consisted of a few varieties of Rosa ‘Hybrid Tea’, Rosa ‘Floribunda’, Rosa‘Shrub’ and Rosa ‘Climber’; the forth group included those of Rosa ‘Polyantha’ and some ofRosa ‘Shrub’; the fifth group consisted of most varieties of Rosa ‘Shrub’; the sixth groupincluded those of Rosa ‘Mininature’ and Rosa ‘Hybrid Tea’. It was suggested that commonorigin and related rose varieties be clustered together based on SSR molecular markers. Theresult of clustering and principal components analysis based on molecular markers was similarto horticultural group in part. The result of correlation analysis between morphological dataand SSR data showed weak correlation, with a correlation coefficient of0.321.
     5. The result of variety identification and analysis of genetic relationship showed that1803DNA fragments were amplified in14primer combinations,1727fragments werepolymorphic, and percentage of polymorphic bands was93.02%; pairwise Dice dissimilarityin rose varieties ranged from0.111to0.631, it suggested that the genetic dissimilarity based onAFLP markers can be used for variety identification. The genetic dissimilarity of full-sibsfamily variety and related variety was small, which confirmed that AFLP is an effective tool forvariety identification. The result of clustering and principal components analysis based onAFLP markers was similar to the result on SSR markers; genetic divergence betweenhorticultural groups was distinct, but genetic differences in horticultural group was present.Correlation analysis indicated that there was a weak correlation between AFLP marker data andSSR marker data, with a correlation coefficient of0.323.
     6. Comparison of different genetic similarity coefficients based on microsatellite markersshowed, pairwise correlation coefficient ranged from0.735to1.000; cophenetic correlationcoefficient ranged from0.835to0.923; consensus fork index (CIc) between differentdendrograms which were constructed by different genetic similarity coefficients ranged from0.404to1.000, it indicated that the result of clustering varied according to different coefficients.The value of STRESS ranged from17.19~27.92%, Russell and Rao coefficient, Dicecoefficient, Jaccard coefficient and Ochiai coefficient were at the same level. Considering suchcharacteristics as molecular markers, analysis of goodness of fit, algorithm of coefficients, andcomparison between result of clustering and lineage analysis, it was suggested that Dicecoefficient, Jaccard coefficient and Ochiai coefficient are most appropriate for genetic analysisbased on microsatellite data from roses, and the next appropriate was the Simple Matchingcoefficient. Russell and Rao coefficient, Yule coefficient, Hamann coefficient and Phicoefficient should be avoided as much as possible.
引文
蔡健,兰伟,李飞天等.利用AFLP标记和形态性状检测皖北小麦主栽品种的遗传多样性.核农学报,2007,21(2):116~119.
    蔡一林,刘志斋,王天宇等.国内部分玉米地方品种的品质与农艺性状的表型多样性分析.植物遗传资源学报,2011,12(1):31~36
    陈向明,郑国生,孟丽.玫瑰、月季、蔷薇等蔷薇属植物RAPD分析.园艺学报,2002,29(1):78~80.
    杜菁,邓世豹. UPOV1978文本及国外植物新品种保护法律制度研究.求索,2008,7:151~152.
    国家林业局植物新品种保护办公室.2010中国林业植物授权新品种[M],北京:中国林业出版社.
    蒋洪蔚,李灿东,刘春燕等.大豆导入系群体芽期耐低温位点的基因型分析及QTL定位.作物学报,2009,35(7):1268~1273.
    柯卫东,傅新发,黄新芳等.莲藕部分种质资源数量性状的聚类分析与育种应用.园艺学报,2000,27(5):374-376.
    黎云昆.我国加入国际植物新品种保护组织的前前后后.国土绿化,2009,5:5~7.
    李灿东,蒋洪蔚,刘春燕等.大豆定向选择群体耐旱性位点基因型分析及QTL定位.中国油料作物学报,2009,3:285~292.
    李自超,张洪亮,曾亚文等.云南稻种资源表型遗传多样性的研究.作物学报,2001,27(6):832~837
    刘新龙,马丽,蔡青等.云南甘蔗品种表型性状的遗传多样性分析.植物遗传资源学报,2010,11(6):703~708.
    明军,张启翔.亲缘关系相近的梅花品种AFLP-DNA指纹分析.北京林业大学学报,2004,26(5):
    31~35.
    邱显钦,唐开学,蹇洪英等.2011.云南大花香水月季居群遗传多样性的SSR分析.华中农业大学学报,30(3):300~304.
    邱显钦,张颢,李树发等.基于SSR分子标记分析云南月季种质资源亲缘关系.西北植物学报,2009,9:1764~1771.
    唐浩,余汉勇,肖应辉等.基于DUS测试的水稻标准品种形态性状多样性分析.植物遗传资源学报,2011,12(6):853~859.
    唐开学,邱显钦,张颢等.云南蔷薇属部分种质资源的SSR遗传多样性研究.园艺学报,2008,35(8):1227~1232.
    王凤格,易红梅,赵久然等.适于玉米SSR核心引物的通用PCR扩增反应程序的建立.玉米科学,2008,16(3):19~21.
    王凤格,赵久然,戴景瑞等.利用SSR标记进行玉米品种一致性检测研究.分子植物育种,2007,5(1):95~104.
    王凤格,赵久然,戴景瑞等.玉米DNA指纹数据库建库标准规范的建立.玉米科学.2006,14(6):66~68.
    王凤格,赵久然,佘花娣等.中国玉米新品种DNA指纹库建立系列研究Ⅲ.多重PCR技术在玉米SSR引物扩增中的应用.玉米科学,2003,11(4):3~6.
    王凤格,赵久然,孙世贤等.我国玉米DNA指纹数据库管理系统的建立.玉米科学,2010,18(2):44~49.
    王国良,上田善弘,巫水钦.切花月季芽变品种的分子标记与鉴别研究.江苏林业科技,2001,28(1):1~9.
    王立新,季伟,李宏博等.以DNA位点纯合率评价小麦品种的一致性和稳定性.作物学报,2009,35(12):2197~2204.
    王利,邢世岩,杨克强等.银杏观赏品种遗传关系的AFLP分析.遗传学报,2006,33(11):1020~1026.
    王汝锋,崔野韩.国际植物新品种保护的起源、现状与发展趋势.中国种业,2003,(1):1~4.
    王彦荣,崔野韩,南志标等.植物新品种DUS测试指南中的性状选择与标样品种确定.草业科学,2002,19(2):44~46.
    王志本.从UPOV1991文本与1978文本比较看国际植物新品种保护的发展趋向.中国种业2003,(02)1-4.
    吴征镒,中国科学院中国植物志编辑委员会.1999.中国植物志[M],北京科学出版社.
    中国科学院中国植物志编辑委员会.2004.中国植物志(英文版)[M],第9卷,北京:科学出版社.
    武耀廷,张天真,殷剑美等.利用分子标记和形态学性状检测的陆地棉栽培品种遗传多样性.遗传学报,2001,28(11):1040~1050.
    武耀廷,张天真,朱协飞等.陆地棉遗传距离与杂种F1、F2产量及杂种优势的相关分析.中国农业科学,2002,35(1):22~28.
    徐宗大,赵兰勇,张玲等.玫瑰SRAP遗传多样性分析与品种指纹图谱构建.中国农业科学,2011,44(8):1662~1669.
    易干军,霍合强,陈大成等.荔枝品种亲缘关系的AFLP分析.园艺学报,2003,30(4):399~403.
    应杰政,施勇烽,庄杰云等.应用微卫星标记评估我国水稻主栽品种的一致性.中国水稻科学,2006,20(4):367~371.
    张莉俊,秦红梅,王敏等.二月兰形态性状的变异分析.生物多样性,2005,13(6):535~545.
    张运涛,冯志广,李天忠等.草莓品种亲缘关系的AFLP分子标记分析.园艺学报,2006,33(6):1199~1202.
    赵建华,安巍,石志刚等.枸杞种质资源若干植物学数量性状描述指标的探讨.园艺学报2008,35(2):301~306.
    赵久然,王凤格,郭景伦.中国玉米品种标准DNA指纹库构建研究进展.华中农业大学学报,2004,34:68~73.
    赵凯歌.用形态标记和分子标记研究蜡梅栽培种质的遗传多样性.华中农业大学博士学位论文,2007,47~51.
    朱敏,高爱平,邓穗生等.杧果种质资源果实主要数量性状评价指标探讨.植物遗传资源学报,2010,11(4):418~423.
    祝军,王涛,赵玉军等.应用AFLP分子标记鉴定苹果品种.园艺学报,2000,27(2):102~106
    Agrafioti I. and M. Stumpf.2007. SNPSTR: a database of compound microsatellite-SNP markers. Nucleicacids research35(S1):71-75.
    Allum J., D. Bringloe and A. Roberts2010. Interactions of four pathotypes of Diplocarpon rosae withspecies and hybrids of Rosa. Plant Pathology59(3):516-522.
    Arens P., C. Mansilla, D. Deinum, et al.2010. Development and evaluation of robust molecular markerslinked to disease resistance in tomato for distinctness, uniformity and stability testing. Theoretical andApplied Genetics120(3):655-664.
    Atienza S. G., A. M. Torres, T. millan, et al.2005. Genetic Diversity in Rosa as Revealed by RAPDs.Agriculturae Conspectus Scientificus70(3):75-85.
    Balestre M., R. Von Pinho, J. Souza, et al.2008. Comparison of maize similarity and dissimilarity geneticcoefficients based on microsatellite markers. Genet. Mol. Res7:695-705.
    Barik S., S. K. Senapati, S. Aparajita, et al.2006. Identification and genetic variation among Hibiscusspecies (Malvaceae) using RAPD markers. Zeitschrift fur Naturforschung C-Journal of Biosciences61(1-2):123-128.
    Basaki T., M. Mardi, M. J. Kermani, et al.2009. Assessing Rosa persica genetic diversity using amplifiedfragment length polymorphisms analysis. Scientia Horticulturae120(4):538-543.
    Becher S. A., K. Steinmetz, K. Weising, et al.2000. Microsatellites for cultivar identification in Pelargonium.Theoretical and Applied Genetics101(4):643-651.
    Belaj A., Z. Satovic, G. Cipriani et al.2003. Comparative study of the discriminating capacity of RAPD,AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive.Theoretical and Applied Genetics107(4):736-744.
    Biber A., H. Kaufmann, M. Linde, et al.2010. Molecular markers from a BAC contig spanning the Rdr1locus: a tool for marker-assisted selection in roses.. Theoretical and applied genetics. Theoretische undangewandte Genetik120(4):765.
    Biswas M. K., L. Chai, M. H. Amar et al.2011. Comparative analysis of genetic diversity in Citrusgermplasm collection using AFLP, SSAP, SAMPL and SSR markers. Scientia Horticulturae129(4):798-803.
    Bonow S., E. V. R. Von Pinho, M. G. C. Vieira, et al.2009. Microsatellite Markers in and around Rice Genes:Applications in Variety Identification and DUS Testing. Crop Sci.49(3):880-886.
    Borchert T., J. Krueger and A. Hohe2008. Implementation of a model for identifying Essentially DerivedVarieties in vegetatively propagated Calluna vulgaris varieties. BMC Genetics9(1):56.
    Caramante M., R. Rao, L. M. Monti, et al.2009. Discrimination of San Marzano'accessions: A comparisonof minisatellite, CAPS and SSR markers in relation to morphological traits. Scientia Horticulturae120(4):560-564.
    Chabane K., G. A. Ablett, G. M. Cordeiro, et al.2005. EST versus genomic derived microsatellite markersfor genotyping wild and cultivated barley. Genetic Resources and Crop Evolution52(7):903-909.
    Chakrabarty D. and S. Datta2010. Application of RAPD markers for characterization of γ-ray-induced rosemutants and assessment of genetic diversity. Plant Biotechnology Reports4(3):237-242.
    Chmelnitsky I., E. Khayat and N. Zieslin2003. Involvement of RAG, a rose homologue of Agamous, inphyllody development of Rosa hybrida cv. Motrea. Plant growth regulation39(1):63-66.
    Conti G., M. Bassi, D. Maffi, et al.1986. Host‐Parasite Relationship in a Susceptible and a Resistant RoseCultivar Inoculated with Sphaerotheca pannosa. Journal of phytopathology117(4):312-320.
    Cooke R. J., G. M. M. Bredemeijer, M. W. Ganal, et al.2003. Assessment of the uniformity of wheat andtomato varieties at DNA microsatellite loci. Euphytica132(3):331-341.
    Corbett G., D. Lee, P. Donini, et al.2001. Identification of potato varieties by DNA profiling. Actahorticulturae:387-390.
    Crespel L., D. Zhang, J. Meynet, et al.2001. Estimation of heterozygosity in two botanic rose species usingAFLP markers. Acta horticulturae:187-191.
    Crespel L., S. Gudin, J. Meynet, et al.2002. AFLP-based estimation of2n gametophytic heterozygosity intwo parthenogenetically derived dihaploids of Rosa hybrida L. Theoretical and Applied Genetics104(2):451-456.
    Crespel L., A. Pernet, M. Le Bris, et al.2009. Application of ISSRs for cultivar identification and assessmentof genetic relationships in rose. Plant Breeding128(5):501-506.
    Creste S., A. Tulmann Neto, S. de Oliveira Silva, et al.2003. Genetic characterization of banana cultivars(Musa spp.) from Brazil using microsatellite markers. Euphytica132(3):259-268.
    Cubero J. I., T. Millan, F. Osuna, et al.1995. Varietal identification in Rosa by using isozyme and RAPDmarkers.
    Da Silva Meyer A., A. A. F. Garcia, A. P. de Souza, et al.2004. Comparison of similarity coefficients usedfor cluster analysis with dominant markers in maize (Zea mays L.). Genetics and Molecular Biology27:83-91.
    Dalirsefat S. B., A. da Silva Meyer and S. Z. Mirhoseini2009. Comparison of Similarity Coefficients usedfor Cluster Analysis with Amplified Fragment Length Polymorphism Markers in the Silkworm, Bombyxmori. Journal of Insect Science9(71):1-8.
    Debener T. and L. Mattiesch.1999. Construction of a genetic linkage map for roses using RAPD and AFLPmarkers. Theoretical and Applied Genetics99(5):891-899.
    Debener T., C. Bartels and L. Mattiesch1996. RAPD analysis of genetic variation between a group of rosecultivars and selected wild rose species. Molecular Breeding2(4):321-327.
    Dice L. R.1945. Measures of the amount of ecologic association between species. Ecology26(3):297-302.
    Donini P. D. P., G. C. G. Corrado, M. Maurizio La Mura, et al.2009. Relationships of Campanian olivecultivars: comparative analysis of molecular and phenotypic data. Genome52(8):692-700.
    Doveri S., F. Sabino Gil, A. Díaz, et al.2008. Standardization of a set of microsatellite markers for use incultivar identification studies in olive (Olea europaea L.). Scientia Horticulturae116(4):367-373.
    Duarte J. M., J. B. Santos and L. C. Melo1999. Comparison of similarity coefficients based on RAPDmarkers in the common bean. Genetics and Molecular Biology22(3):427-432.
    Dugo M. L., Z. Satovic, T. Millan, et al.2005. Genetic mapping of QTLs controlling horticultural traits indiploid roses. Theoretical and Applied Genetics111(3):511-520.
    Ellis J. and J. Burke2007. EST-SSRs as a resource for population genetic analyses. Heredity99(2):125-132.
    Ellis M., W. Spielmeyer, K. Gale et al.2002. Perfect markers for the Rht-B1b and Rht-D1b dwarfing genesin wheat. Theoretical and Applied Genetics105(6):1038-1042.
    Emadpour M., R. Hosseini and E. Beiramizadeh2009. A high genetic diversity revealed betweencommercial rose cultivars by RAPD-PCR technique. International Journal of Plant Production3(4):61-66.
    Esselink G., M. Smulders and B. Vosman2003. Identification of cut rose (Rosa hybrida) and rootstockvarieties using robust sequence tagged microsatellite site markers. Theoretical and Applied Genetics106(2):277-286.
    Feng S., W. Li, H. Huang, et al.2009. Development, characterization and cross-species/genera transferabilityof EST-SSR markers for rubber tree (Hevea brasiliensis). Molecular Breeding23(1):85-97.
    Fossati T., I. Zapelli, S. Bisoffi et al.2005. Genetic relationships and clonal identity in a collection ofcommercially relevant poplar cultivars assessed by AFLP and SSR. Tree Genetics and Genomes1(1):11-20.
    Gethi J. G., J. A. Labate, K. R. Lamkey, et al.2002. SSR variation in important US maize inbred lines. CropScience42(3):951-957.
    Ghislain M., D. M. Spooner, F. Rodríguez, et al.2004. Selection of highly informative and user-friendlymicrosatellites (SSRs) for genotyping of cultivated potato. Theoretical and Applied Genetics108(5):881-890.
    Giancola S., S. Marcucci Poltri, P. Lacaze, et al.2002. Feasibility of integration of molecular markers andmorphological descriptors in a real case study of a plant variety protection system for soybean.Euphytica127(1):95-113.
    G ktürk Baydar N., H. Baydar and T. Debener2004. Analysis of genetic relationships among Rosadamascena plants grown in Turkey by using AFLP and microsatellite markers. Journal ofBiotechnology111(3):263-267.
    Graham J., K. Smith, K. MacKenzie, et al.2004. The construction of a genetic linkage map of red raspberry(Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theoretical andApplied Genetics109(4):740-749.
    Gunjaca J., I. Buhinicek, M. Jukic, et al.2008. Discriminating maize inbred lines using molecular and DUSdata. Euphytica161(1):165-172.
    Gupta P., S. Rustgi, S. Sharma, et al.2003. Transferable EST-SSR markers for the study of polymorphismand genetic diversity in bread wheat. Molecular Genetics and Genomics270(4):315-323.
    Hattendorf A., M. Linde, L. Mattiesch, et al.2004. Genetic analysis of rose resistance genes and theirlocalisation in the rose genome. Acta Hort.(ISHS)651:123-130
    Hayden M. J., T. Nguyen, A. Waterman, et al.2008. Application of multiplex-ready PCR forfluorescence-based SSR genotyping in barley and wheat. Molecular Breeding21(3):271-281.
    Heckenberger M., J. R. van der Voort, J. Peleman et al.2003. Variation of DNA fingerprints amongaccessions within maize inbred lines and implications for identification of essentially derivedvarieties:II. Genetic and technical sources of variation in AFLP data and comparison with SSR data.Molecular Breeding12(2):97-106.
    Hibrand-Saint Oyant L., L. Crespel, S. Rajapakse, et al.2008. Genetic linkage maps of rose constructed withnew microsatellite markers and locating QTL controlling flowering traits. Tree Genetics and Genomes4(1):11-23.
    Hirsch H., H. Zimmermann, C. M. Ritz, et al.2011. Tracking the origin of invasive Rosa rubiginosapopulations in Argentina. International Journal of Plant Sciences172(4):530-540.
    Holley J. and J. Guilford1964. A Note on the G Index of Agreement. Educational and PsychologicalMeasurement24(4):749-753.
    Ibá ez J., M. Vélez, M. de Andrés et al.2009. Molecular markers for establishing distinctness in vegetativelypropagated crops:a case study in grapevine. Theoretical and Applied Genetics119(7):1213-1222.
    Iwata H., T. Kato and S. Ohno2000. Triparental origin of Damask roses. Gene259(1):53-59.
    Jaccard P.1901. Etude Comparative de la Distribution dans une Portion des Alpes et du Jura. Bulletin de laSociete Vaudoise des Sciences Naturelle4.
    Jackson D. A., K. M. Somers and H. H. Harvey1989. Similarity coefficients: measures of co-occurrence andassociation or simply measures of occurrence? American Naturalist:436-453.
    Jan C., D. Byrne, J. Manhart, et al.1999. Rose germplasm analysis with RAPD markers. HortScience34(2):341-345.
    Jester C. A., S. Kresovich, A. K. Szewc-McFadden, et al.1997. Application of Multiplex PCR andFlourescence-Based, Semi-Automated Allele Sizing Technology for Genotyping Plant GeneticResources. Crop Science37(2):617-624.
    Joly S., J. R. Starr, W. H. Lewis, et al.2006. Polyploid and hybrid evolution in roses east of the RockyMountains. American Journal of Botany93(3):412-425.
    Jürgens A., B. Seitz and I. Kowarik2007. Genetic differentiation of Rosa canina (L.) at regional andcontinental scales. Plant Systematics and Evolution269(1):39-53.
    Kiani M., Z. Zamani, A. Khalighi, et al.2010. Microsatellite analysis of Iranian Damask rose (Rosadamascena Mill.) germplasm. Plant Breeding129(5):551-557.
    Kim G. J., G. Y. Gi, J. H. Lee, et al.2011. Application of the septet classification system on rose cultivars.Horticulture, Environment, and Biotechnology52(1):58-64.
    Kim Y. and D. H. Byrne1996. Interspecific hybrid verification of Rosa with isozymes. HortScience31(7):1207-1209.
    Kimura T., C. Nishitani, H. Iketani, et al.2006. Development of microsatellite markers in rose. MolecularEcology Notes6(3):810-812.
    Kimura M. and J. F. Crow1964. The number of alleles that can be maintained in a finite population.Genetics49(4):725.
    Koopman W. J. M., V. Wissemann, K. De Cock, et al.2008. AFLP markers as a tool to reconstruct complexrelationships: a case study in Rosa (Rosaceae). American Journal of Botany95(3):353-366.
    Kosman E. and K. Leonard2005. Similarity coefficients for molecular markers in studies of geneticrelationships between individuals for haploid, diploid, and polyploid species. Molecular Ecology14(2):415-424.
    Krichen L., N. Trifi-Farah,M. Marrakchi et al.2010. Comparative Analysis of Tunisian Apricot Accessionson Morphological and Molecular Markers. Acta horticulturae:173-178.
    Kruskal J. B.1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika29(1):1-27.
    Tessier C., J. David, P. This, et al.1999. Optimization of the choice of molecular markers for varietalidentification in Vitis vinifera L. Theoretical and Applied Genetics98(1):171-177.
    Kwon YS, Lee JM and Yi GB2005. Use of SSR markers to complement tests of distinctiveness, uniformity,and stability (DUS) of pepper (Capsicum annuum L.) varieties. Molecular Cells19(3):8.
    La Rota M., R. Kantety, J. K. Yu, et al.2005. Nonrandom distribution and frequencies of genomic andEST-derived microsatellite markers in rice, wheat, and barley. BMC genomics6(1):23.
    Lande R. and R. Thompson1990. Efficiency of marker-assisted selection in the improvement of quantitativetraits. Genetics124(3):743-756.
    Rodrigues D. H., F. de Alcantara Neto and I. Schuster2008. Identification of essentially derived soybeancultivars using microsatellite markers. Crop Breeding and Applied Technology.8(1):74-76.
    Law J. R., P. Donini, R. M. D. Koebner, et al.1998. DNA profiling and plant variety registration. III: Thestatistical assessment of distinctness in wheat using amplified fragment length polymorphisms.Euphytica102(3):335-342.
    Leigh F., V. Lea, J. Law, et al.2003. Assessment of EST-and genomic microsatellite markers for varietydiscrimination and genetic diversity studies in wheat. Euphytica133(3):359-366.
    Leus L., E. Demuynck and J. Riek2000. Genetic diversity of a collection of rose species and cultivarsevaluated by fluorescent AFLP, Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen.65(3):455-459.
    Leus L., F. Jeanneteau, J. Van Huylenbroeck, et al.2004. Molecular evaluation of a collection of rose speciesand cultivars by AFLP, ITS, rbcL and matK. Acta Hort ISHS651:141-147
    Lewontin R. C.1974. The genetic basis of evolutionary change,Columbia University Press New York.
    Linde M., L. Mattiesch and T. Debener2004. Rpp1,a dominant gene providing race-specific resistance torose powdery mildew (Podosphaera pannosa) molecular mapping, SCAR development andconfirmation of disease resistance data. Theoretical and Applied Genetics109(6):1261-1266.
    Macaulay M., L. Ramsay, W. Powell, et al.2001. A representative, highly informative genotyping set ofbarley SSRs. Theoretical and Applied Genetics102(6):801-809.
    Mantel N.1967. The detection of disease clustering and a generalized regression approach. Cancer research27(2):209.
    Marchant R., M. R. Davey, J. A. Lucas, et al.1998. Expression of a chitinase transgene in rose (Rosa hybridaL.) reduces development of blackspot disease (Diplocarpon rosae Wolf). Molecular Breeding4(3):187-194.
    Martin M., F. Piola, D. Chessel et al.2001. The domestication process of the Modern Rose: genetic structureand allelic composition of the rose complex. Theoretical and Applied Genetics102(2):398-404.
    Matsumoto S., M. Kouchi, J. Yabuki, et al.1998. Phylogenetic analyses of the genus Rosa using the matKsequence: molecular evidence for the narrow genetic background of modern roses. ScientiaHorticulturae77(1-2):73-82.
    Millan T., F. Osuna, S. Cobos, et al.1996. Using RAPDs to study phylogenetic relationships in Rosa.Theoretical and Applied Genetics92(2):273-277.
    Mohan M., S. Nair, A. Bhagwat, et al.1997. Genome mapping, molecular markers and marker-assistedselection in crop plants. Molecular Breeding3(2):87-103.
    Mohapatra A. and G. R. Rout2005. Identification and analysis of genetic variation among rose cultivarsusing random amplified polymorphic DNA. Zeitschrift fur Naturforschung C-Journal of Biosciences60(7-8):611-617.
    Murguía M. and J. L. Villase or.2003. Estimating the effect of the similarity coefficient and the clusteralgorithm on biogeographic classifications. Ann. Bot. Fennici40:415-421
    Nei M.1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy ofSciences70(12):3321.
    Noli E., M. Teriaca, M. Sanguineti, et al.2008. Utilization of SSR and AFLP markers for the assessment ofdistinctness in durum wheat. Molecular Breeding22(2):301-313.
    Noli E., M. S. Teriaca and S. Conti2012. Identification of a threshold level to assess essential derivation indurum wheat. Molecular Breeding:1-12.
    Nybom H.1990. DNA fingerprints in sports of ‘Red Delicious' apples.HortScience25(12):1641-1642.
    Nybom H., G. Esselink, G. Werlemark, et al.2003. Microsatellite DNA marker inheritance indicatespreferential pairing between two highly homologous genomes in polyploid and hemisexual dog-roses,Rosa L. Sect. Caninae DC. Heredity92(3):139-150.
    Nybom H., G. Esselink, G. Werlemark, et al.2006. Unique genomic configuration revealed by microsatelliteDNA in polyploid dogroses, Rosa sect. Caninae. Journal of evolutionary biology19(2):635-648.
    Ochiai, A.1957. Zoogeographic studies on the soleoid fishes found in Japan and its neighbouring regions.Bull. Jpn. Soc. Sci. Fish22:526-530.
    Park Y. H., S. G. Ahn, Y. M. Choi, et al.2010. Rose (Rosa hybrida L.) EST-derived microsatellite markersand their transferability to strawberry (Fragaria spp.). Scientia Horticulturae125(4):733-739.
    Perrier X. and J. Jacquemoud-Collet2006. DARwin software. Darwin software.
    Perry D.2004. Identification of Canadian durum wheat varieties using a single PCR. Theoretical andApplied Genetics109(1):55-61.
    Perumalsamy S., M. Bharani, M. Sudha, et al.2010. Functional marker-assisted selection for bacterial leafblight resistance genes in rice (Oryza sativa L.). Plant Breeding129(4):400-406.
    Pirseyedi S. M., M. Mardi, S. Davazdahemami, et al.2005. Analysis of the genetic diversity12IranianDamask rose (Rosa damascena Mill.) genotypes using amplified fragment length polymorphismmarkers. Iranian Journal of Biotechnology.3(4).:225-230
    Rajapakse S., M. Hubbard, J. W. Kelly, et al.1992. Identification of rose cultivars by restriction fragmentlength polymorphism. Scientia Horticulturae52(3):237-245.
    Rajapakse S., D. Byrne, L. Zhang, et al.2001. Two genetic linkage maps of tetraploid roses. Theoretical andApplied Genetics103(4):575-583.
    R der Wendehake, Korzun, et al.2002. Construction and analysis of a microsatellite-based database ofEuropean wheat varieties. Theoretical and Applied Genetics106(1):67-73.
    Rogers D. J. and T. T. Tanimoto1960. A computer program for classifying plants. Science132(34):1115.
    Rolf, F.2000. NTSYS-pc. Numerical taxonomy and multivariate analysis system. Version2.1
    Sparinska A., Zarina, R. and Rostoks, N.2009. Diversity in Rosa rugosa×Rosa hybrida interspecificcultivars. Acta Hort.(ISHS)836:111-116
    Russell P. F. and T. R. Rao (1940). On Habitat and Association of Species of Anopheline Larvae inSouth-Eastern Madras. Journal of the Malaria Institute of India3(1):153-178.
    Saddoud O., G. Baraket, K. Chatti, et al.2011. Using Morphological Characters and Simple SequenceRepeat (SSR) Markers to Characterize Tunisian Fig (Ficus Carica L.) Cultivars. Acta BiologicaCracoviensia Series Botanica53(2):7-14.
    Saha M. C., M. A. R. Mian, I. Eujayl, et al.2004. Tall fescue EST-SSR markers with transferability acrossseveral grass species. Theoretical and Applied Genetics109(4):783-791.
    Sallaud C., M. Lorieux, E. Roumen et al.2003. Identification of five new blast resistance genes in the highlyblast-resistant rice variety IR64using a QTL mapping strategy. Theoretical and Applied Genetics106(5):794-803.
    Scariot V., A. Akkak and R. Botta2006. Characterization and genetic relationships of wild species and oldgarden roses based on microsatellite analysis. Journal of the American Society for Horticultural Science131(1):66-73.
    Scariot V.,E. De Keyser, T. Handa et al.2007. Comparative study of the discriminating capacity andeffectiveness of AFLP, STMS and EST markers in assessing genetic relationships among evergreenazaleas. Plant Breeding126(2):207-212.
    Shen X., W. Guo, X. Zhu, et al.2005. Molecular mapping of QTLs for fiber qualities in three diverse lines inUpland cotton using SSR markers. Molecular Breeding15(2):169-181.
    Simko I.2009. Development of EST-SSR markers for the study of population structure in lettuce (Lactucasativa L.). Journal of Heredity100(2):256-262.
    Sokal R. R. and C. D. Michener1958. A statistical method for evaluating systematic relationships. Univ.Kans. Sci. Bull.38:1409-1438.
    Sokal R. R. and F. J. Rohlf.1981. Taxonomic congruence in the Leptopodomorpha re-examined. SystematicZoology30(3):309-325.
    Suo Z, W. Li, J. Yao, et al.2005. Applicability of leaf morphology and intersimple sequence repeat markersin classification of tree peony (Paeoniaceae) cultivars. HortScience40(2):329-334.
    Tams S., A. Melchinger and E. Bauer2005. Genetic similarity among European winter triticale elitegermplasms assessed with AFLP and comparisons with SSR and pedigree data. Plant Breeding124(2):154-160.
    Terefe D. and T. Debener.2011. An SSR from the leucine-rich repeat region of the rose Rdr1gene family is auseful resistance gene analogue marker for roses and other Rosaceae. Plant Breeding130(2):291-293.
    This P., A. Jung, P. Boccacci, et al.2004. Development of a standard set of microsatellite reference alleles foridentification of grape cultivars. Theoretical and Applied Genetics109(7):1448-1458.
    Tommasini L., N. Yahiaoui, P. Srichumpa et al.2006. Development of functional markers specific for sevenPm3resistance alleles and their validation in the bread wheat gene pool. Theoretical and AppliedGenetics114(1):165-175.
    Torres A., T. Millan and J. Cubero.1993. Identifying rose cultivars using random amplified polymorphicDNA markers. HortScience28(4):333-334.
    Trigiano R., M. Scott and G. Caetano-Anollés.1998. Genetic signatures from amplification profilescharacterize DNA mutation in somatic and radiation-induced sports of chrysanthemum. Journal of theAmerican Society for Horticultural Science123(4):642-646.
    Udny Yule, G.1900. On the Association of Attributes in Statistics: With Illustrations from the Material of theChildhood Society. Royal Society of London Philosophical Transactions Series A194:257-319.
    Varshney, R. K., A. Graner and M. E. Sorrells2005. Genic microsatellite markers in plants: features andapplications. Trends in Biotechnology23(1):48-55.
    Varshney R. K., K. Chabane, P. S. Hendre, et al.2007. Comparative assessment of EST-SSR, EST-SNP andAFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild,cultivated and elite barleys. Plant Science173(6):638-649.
    Von Malek B., W. Weber and T. Debener.2000. Identification of molecular markers linked to Rdr1, a geneconferring resistance to blackspot in roses. Theoretical and Applied Genetics101(5):977-983.
    Von Pinho E. V. R., S. Bonow, M. G. C. Vieira, et al.2009. Microsatellite markers in and around rice genes:Applications in variety identification and DUS testing. Crop Science49(3):880-886.
    Vos P., R. Hogers, M. Bleeker et al.1995. AFLP: a new technique for DNA fingerprinting. Nucleic acidsresearch23(21):4407-4414.
    Vosman B., R. Cooke, M. Ganal, et al.2001. Standardization and application of microsatellite markers forvariety identification in tomato and wheat. Acta horticulturae:307-316.
    Vosman B., D. Visser, J. R. van der Voort et al.2004. The establishment of ‘essential derivation’among rosevarieties, using AFLP. Theoretical and Applied Genetics109(8):1718-1725.
    Wall S. J., G. Cole, J. S. C. Smith et al.2009. Genetic diversity among US sunflower inbreds and hybrids:Assessing probability of ancestry and potential for use in plant variety protection. Crop Science49(4):1295-1303.
    Wen X. and X. Deng2005. Micropropagation of chestnut rose (Rosa roxburghii Tratt) and assessment ofgenetic stability in in vitro plants using RAPD and AFLP markers. Journal of horticultural science andbiotechnology80(1):54-60.
    Whitaker V. M., J. M. Bradeen, T. Debener, et al.2010. Rdr3, a novel locus conferring black spot diseaseresistance in tetraploid rose: genetic analysis, LRR profiling, and SCAR marker development.Theoretical and Applied Genetics120(3):573-585.
    Wu S., Nishihara, S. and Ueda, Y.2001. Phylogenetic analysis of section Synstylae in the genus Rosa basedon RAPD markers. Acta horticulturae547:391-402
    Yan Z., O. Dolstra, C. Dennebom, et al.2003. Genetic mapping of QTLs associated with growth vigour inrose. Acta horticulturae612:89-94.
    Yan Z., C. Denneboom, A. Hattendorf, et al.2005. Construction of an integrated map of rose with AFLP,SSR, PK, RGA, RFLP, SCAR and morphological markers. Theoretical and Applied Genetics110(4):766-777.
    Yan H. J., H. Zhang, J. R. Xie, et al.2009. Development of new SSR markers from EST of SSH cDNAlibraries on rose fragrance. Yi Chuan31(9):962-966.(in chinese)
    Yule G. U.1912. On the methods of measuring association between two attributes. Journal of the RoyalStatistical Society75(6):579-652.
    Zhang D., C. Besse, M. Cao, et al.2001. Evaluation of AFLPs for variety identification in modern rose(Rosa hybrida L.). Acta Horticulturae546:351-357.
    Zhang T., Y. Yuan, J. Yu, et al.2003. Molecular tagging of a major QTL for fiber strength in Upland cottonand its marker-assisted selection. Theoretical and Applied Genetics106(2):262-268.
    Zhang L., D. Byrne, R. Ballard, et al.2006. Microsatellite marker development in rose and its application intetraploid mapping. Journal of the American Society for Horticultural Science131(3):380-387.
    Zhang K., J. Tian, L. Zhao, et al.2008. Mapping QTLs with epistatic effects and QTL environmentinteractions for plant height using a doubled haploid population in cultivated wheat. Journal of Geneticsand Genomics35(2):119-127.
    Zielinski J., A. Petrova and K. Tan.2004. Taxonomic status of the roses (Rosa) described by SG Dimitrovfrom Bulgaria. Ann. Bot. Fenn41:449-451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700