基于声阻抗法的液体密度超声测量模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶综合电力推进系统是目前船舶动力发展的前沿方向,其中蓄电池储能技术及其能量管理模式研究是发展综合电力系统能量储存模块的关键技术。为了提高蓄电池的使用效益和寿命,保证其可靠运行,需要经常对蓄电池参数进行严格测量,以确保蓄电池组处于最佳的工作状况。
     铅酸蓄电池电解液是一种腐蚀性液体,其密度是反映铅酸蓄电池充放电状态的一个重要参数,而腐蚀性液体密度的快速、准确、在线测量恰是一个困扰此类工业行业发展的难题。本文利用超声波的快速响应和无损检测的特点,研究了一种基于声阻抗法的液体密度超声测量模型,以电解液为研究对象,期望实现一种针对船用铅酸蓄电池参数的在线、快速、精确的自动化测量方法。论文的主要研究内容和成果如下:
     (1)基于超声平面波的基本原理假设,建立了双分界面反射的液体密度超声测量模型。该模型采用双换能器和双延迟材的对称结构设计,其中一个换能器工作在脉冲回波模式,另一个换能器只作为接收换能器。研究了延迟材—液体分界面反射系数的表达通式,根据换能器上选取回波信号的不同组合,可对应不同方法确定反射系数。
     (2)针对于双分界面反射的液体密度超声测量模型,为其建立了超声传播的电声学系统等效模型。该模型以电—机—声动态类比为基础,建立了声学介质层的有损传输线等效电路,建立了压电层的受控源和传输线等效电路。研究了压电陶瓷、聚合物和液体三类材料特性与各自等效电路仿真参数的对应关系。
     (3)对仿真模型的回波信号特性进行分析,研究了一种超声信号处理的应用架构。在平均模式下对信号进行采集和采样—滤波—提取结构的预处理。利用时域互相关函数分析回波时延并计算声速,利用2范数频域积分分析回波幅度,并研究了超声数字信号的分析处理流程和等效数学模型。
     (4)研究并构建了液体密度超声测量的实验验证平台。研究了液体密度测量单元应用配置、测量不确定度、测量质量及系统特性评估方法和系统校正方法,并对密度测量实验结果进行分析。
     (5)利用液体密度超声测量模型进行船用蓄电池监测系统的设计。采用在线式铅酸蓄电池监测系统实现蓄电池运行状态参数的实时采集和监测。详细介绍了铅酸蓄电池监测系统的硬件和软件设计,并对测量结果进行分析。所设计的铅酸蓄电池监测系统其密度测量相对误差小于0.5%,能够满足快速、精确测量的技术要求。
Integrated electric propulsion system for ships is the forefront direction for the develop-ment of ship power. The research of battery energy storage technology and energy manage-ment mode is key technologies to develop energy storage module of IPS. In order to improve the efficiency and life of battery and to ensure reliable operation, the battery parameters need strict measurement to ensure a best working condition.
     Battery electrolyte is a kind of corrosive liquid, whose density is an important parameter to judge the battery charging and discharging state. The fast, accurate and online measurement for density of corrosive liquid is a problem for the development of this industry. This paper studies an ultrasonic measurement model of liquid density based on acoustic impedance me-thod, using the characteristics of fast response and nondestructive testing. The method treats the electrolyte as research object, and it is expected to achieve a fast, accurate and online measuring method for lead-acid battery parameters on ship. The research contents and achievements in this paper are as follows:
     (1) An ultrasonic impedance model of liquid density measurement is established, based on a basic hypothesis of ultrasonic plane wave. The model is in a symmetrical arrangement with double transducer and double buffer. One transducer acts as a transmitter and worked in pulse-echo mode, and the other operates in receiver mode. General expression of reflection coefficient at buffer-liquid interface is studied. According to the different combination of echo signals on two transducers, there are different methods to obtain the reflection coefficient.
     (2) An electrical-acoustic system equivalent model for ultrasonic propagation is estab-lished, based on the ultrasonic impedance model of liquid density measurement. The model uses the electric-machine-acoustic analogy method as a foundation to establish a lossy trans-mission line equivalent circuit of acoustic medium layer and controlled source and transmis-sion line equivalent circuit of piezoelectric layer. The acoustic characteristics and frequency and temperature dependent simulation parameters of piezoelectric ceramics, polymer and liq-uid are analyzed.
     (3) Based on the characteristics analysis of echo signals in simulation model, an ultra-sonic signal processing application architecture is studied. The signal is sampled at average mode and pretreated in sampling-filtering-extraction structure. The time domain cross-correlation function is used to analyze flight time and calculate sound velocity, and the l2-norm frequency domain integral method is used to analyze echo amplitude. The analysis and processing of ultrasonic digital signals and equivalent mathematical model is studied.
     (4) An experimental platform of ultrasonic measurement of liquid density is studied and established. The application configuration of measurement cell, uncertainty of liquid density, measuring quality evaluation method and system correction method are studied. The meas-ured results are analyzed.
     (5) A battery monitoring system on ship is designed using ultrasonic measurement model of liquid density. An on-line lead-acid battery monitoring system is used to achieve the real-time data acquisition and monitoring of battery operation parameters. The design of the lead-acid battery monitoring system is introduced in detail, and the measured results are ana-lyzed. The relative error of density measurement of the lead-acid battery monitoring system is less than0.5%, which meets the technical requirement of fast and accurate measurement.
引文
[1]徐绍佐,刘赞,顾海宏.船舶综合全电力推进系统[J].柴油机.2003,(2):17-20.
    [2]李冬丽.舰船综合全电力系统暂态稳定性分析及其仿真[D].哈尔滨:哈尔滨工程大学,2004.
    [3]马会普.船舶电力推进原理与操作仿真的研究[D].大连:大连海事大学,2008.
    [4]俞文胜.船舶电力推进未来发展方向[J].世界海运.2007,(3):43-45.
    [5]朱玉萍.模糊控制APF在电力推进船舶电网中的应用[D].大连:大连海事大学,2010.
    [6]林安平.船舶电力推进系统中PMSM模糊矢量控制仿真研究[D].大连:大连海事大学,2007.
    [7]李兴华.密度浓度测量[M].北京:中国计量出版社,1991.
    [8]施文康,马伟方,侯毅.基于兰姆波技术的液体密度声传感器[J].上海交通大学学报.2001,(9):1340-1342.
    [9]李跃华,陈昌.振动管式液体密度传感器数学模型研究[J].传感器世界.2006,(11):17-19.
    [10]王海峰,熊刚,赵小凯.基于超声波特性的油品密度仪设计[J].声学技术.2007,(5):887-890.
    [11]张欲晓,郑德智,樊尚春.谐振膜式密度传感器[J].仪表技术与传感器.2009,(7):7-9.
    [12]熊文强.铅酸蓄电池电解液密度超声波测量方法研究[D].大连:大连理工大学,2010.
    [13]李辉.面向管道原油密度测量的超声波飞越时间测量方法研究[D].北京:北京化工大学,2008.
    [14]桂兴春,王华,张滨华.一种音叉式液体密度传感器的研究[J].自动化仪表.2006,(3):28-30.
    [15]吴彩霞,刘斌,刘定华等.U型振动管法测定乙烯焦油密度的研究[J].石油化工应用.2006,(6):33-36.
    [16]李楠,吕俊芳.利用放射性同位素γ射线测量飞机燃油密度的方法研究[J].航空学报.2002,(6):587-590.
    [17]张志伟.光纤CCD技术在液体比重测量上的实验研究[J].山西电子技术.1994,(2):1-3.
    [18]刘东红.液态食品超声传播特性及品质超声检测技术的研究[D].杭州:浙江大学,2006,
    [19]吴艳阳.超声散斑相关法测量新技术研究[D].武汉:华中科技大学,2006.
    [20]周宏.利用压电波动法的混凝土结构损伤识别试验研究[D].沈阳:沈阳建筑大学,2009.
    [21]PUTTMER A, LUCKLUM R, HENNING B, et al. Improved ultrasonic density sensor with reduced diffraction influence [J]. Sensors and Actuators A-Physical.1998,67(1-3):8-12.
    [22]WEIGHT J P. A model for the propagation of short pulses of ultrasound in a solid [J]. Journal of the Acoustical Society of America.1987,81(4):815-826.
    [23]马大猷.现代声学理论基础[M].北京:科学出版社,2004.
    [24]金长善.超声工程[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [25]MATSON J, MARIANO C H, KHRAKOVSKY 0, et al. Ultrasonic mass flowmeters using clamp-on or wetted transducers [C].5th International Symposium on Fluid Flow Measurements, Arlington, Virginia,2002:
    [26]RYCHAGOV M N, TERESHCHENKO S, MASLOBOEV Y, et al. Mass flowmeters for fluids with density gradient [J].2002 IEEE Ultrasonics Symposium Proceedings, Vols 1 and 2.2002,1: 465-470.
    [27]SWOBODA C A, FREDRICKSON D R, GABELNICK S D, et al. Development of an ultrasonic technique to measure specific-gravity in lead-acid-battery electrolyte[J]. IEEE Transactions on Sonics and Ultrasonics.1983,30(2):69-77.
    [28]熊文强,刘佳鑫,干志强等.铅酸蓄电池超声波电解液密度测量方法[J].仪表技术与传感器.2011,(5):90-93.
    [29]LIU J X, LI G F, XIONG W Q, et al. An ultrasonic approach to measure the density of battery electrolyte [C]. Electrical and Control Engineering (ICECE),2010 Inter-national Conference on,2010:414-418.
    [30]李国锋,刘佳鑫,王宁会等.便携式蓄电池电解液超声比重计:中国,201010502045.0[P].2010,09,30.
    [31]SWOBODA C A, Ultrasonic hydrometer:US,4442700 [P].1984,4,17.
    [32]黄智伟,李富英,汪时云.超声波密度仪的研制[J].工业仪表与自动化装置.2000,(6):46-48.
    [33]姚明林,陈先中,张争.超声波液体密度传感器[J].传感器技术.2005,(5):57-60.
    [34]VRAY D, BERCHOUZ D, DELACHARTRE P, et al. Speed of sound in sulfuric acid solution: application to density measurement[C]. Ultrasonics Symposium,1992. Proceedings. IEEE 1992,1992:969-972.
    [35]WANG Z J, NUR A M, BATZLE M L. Acoustic velocities in petroleum oils[J]. Journal of Petroleum Technology.1990,42(2):192-200.
    [36]WANG Z J, NUR A. Ultrasonic velocities in pure hydrocarbons and mixtures[J]. Journal of the Acoustical Society of America.1991,89(6):2725-2730.
    [37]WANG Z, NUR A. Wave velocities in hydrocarbon-saturated rocks-experimental results [J]. Geophysics.1990,55(6):723-733.
    [38]KUO H L. Variation of ultrasonic velocity and absorption with temperature and frequency in high viscosity vegetable oils [J]. Japanese Journal of Applied Physics.1971,10(2): 167.
    [39]MARKS G W. Acoustic velocity with relation to chemical constitution in alco-hols [J]. Journal of the Acoustical Society of America.1967,41(1):103.
    [40]LYNNWORTH L C. Slow torsional wave densitometer:US,4193291 [P].1978,2,27.
    [41]LYNNWORTH L C. Slow torsional wave sensors[J]. IEEE Transactions on Sonics and Ultrasonics.1978,25(4):231-232.
    [42]DRESS W B. A high-resolution ultrasonic densitometer[J]. IEEE Transactions on Sonics and Ultrasonics.1985,32(1):120-121.
    [43]LYNNWORTH L C, COHEN R, NGUYEN T H. Clamp-on shear transducers simplify torsional and extensional investigations [J].2004 IEEE Ultrasonics Symposium, Vols 1-3.2004: 1603-1607.
    [44]JACOBSON S A, KORBA J M, LYNNWORTH L C, et al. Low-gravity sensing of liquid-vapor interface and transient liquid flow [J]. IEEE Transactions on Ultrasonics Fer-roelectrics and Frequency Control.1987,34(2):212-224.
    [45]SHEPARD C L, BURGHARD B J, FRIESEL L A, et al. Measurements of density and viscosity of one-and two-phase fluids with torsional waveguides[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control.1999,46(3):536-548.
    [46]SMIT C, SMITH E D. The analysis and results of a continuous wave ultrasonic den-sitometer [J]. Journal of the Acoustical Society of America.1998,104(3Part 1): 1413-1417.
    [47]KIM J 0, BAU H H, LIU Y, et al. Torsional sensor applications in two-phase flu-ids[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions On.1993,40 (5):563-576.
    [48]ARAVE A E. Ultrasonic densitometer development[J]. IEEE Transactions on Sonics and Ultrasonics.1980,27(3):154.
    [49]MELNIKOV V I, KHOKHLOV V N. Waveguide ultrasonic liquid level transducer for nuclear power plant steam generator[J]. Nuclear Engineering and Design.1997,176(3):225-232.
    [50]GUPTA S V. Practical density measurement and hydrometry. In:Institute of Physics Publishing,2002.
    [51]MARCZAK W. Water as a standard in the measurements of speed of sound in liquids [J]. Journal of the Acoustical Society of America.1997,102 (5Part 1):2776-2779.
    [52]DELSING J. A new type of ultrasonic densitometer, on ultrasonic flowmeters:in-vestigations and improvements or the sing-around flow meter [D]. Lund:Lund Institute of Technology,1988.
    [53]DELSING J. Method and apparatus for measuring mass flow, US,5214966 [P].1991,4,29.
    [54]van DEVENTER J. Material investigations and simulation tools towards a design strategy for an ultrasonic densitometer[D]. Lule University of Technology,2001.
    [55]van DEVENTER J, DELSING J. Thermostatic and dynamic performance of an ultrasonic density probe [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control.2001, 48(3):675-682.
    [56]FISHER B, MAGORI V, VON JENA A. Ultrasonic device for measuring specific density of a fluid, EP,0483491 Al [P].1991,9,5.
    [57]PUTTMER A. Ultrasonic density sensor for liquids [D]. Aachen:Shaker Verlag,1998.
    [58]LYNNWORTH L C, PEDERSEN N E, CARNEVALE E N. Ultrasonic mass flowmeter for army aircraft engine diagnostics. In:VA:Springfield,1973:
    [59]JENSEN B R. Measuring equipment for acoustic determination of the specific gravity of liquids, US,4297608 [P].1980,5,1.
    [60]PUTTMER A, HAUPTMANN P. Ultrasonic density sensor for liquids[C]. Ultrasonics Symposium, 1998. Proceedings.,1998 IEEE,1998:497-500.
    [61]PUTTMER A, HAUPTMANN P, HENNING B.Ultrasonic density sensor for liquids[J]. IEEE Transactions On Ultrasonics Ferroelectrics and Frequency Control.2000,47 (1):85-92.
    [62]PUTTMER A, HAUPTMANN P, LUCKLUM R, et al. Spice model for lossy piezoceramic transducers [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control.1997, 44(1):60-66.
    [63]PUTTMER A, HOPPE N, HENNING B, et al. Ultrasonic density sensor-analysis of errors due to thin layers of deposits on the sensor surface[J]. Sensors and Actuators a-Physical.1999,76(1-3):122-126.
    [64]SALAZAR J, TURO A, CHAVEZ J A, et al. Ultrasonic inspection of batters for on-line process monitoring[J]. Ultrasonics.2004,42(1-9):155-159.
    [65]GUILBERT A R, SANDERSON M L. A high accuracy ultrasonic mass flowmeter for liq-uids[C].FLOMEKO 96 proceedings,1996:244-249.
    [66]PAPADAKIS E P. Buffer-rod system for ultrasonic attenuation measurements[J]. Journal of the Acoustical Society of America.1968,44(5):1437.
    [67]SACHSE W. Density determination of a fluid inclusion in an elastic solid from ultrasonic spectroscopy measurements [J]. IEEE Transactions on Sonics and Ultrasonics.1975, SU22(3):240.
    [68]KLINE B R. System and method for ultrasonic determination of density, US,4991124 [P]. 1988,10,11.
    [69]ADAMOWSKI J C, BUIOCHI F, SIMON C, et al. Ultrasonic measurement of density of liquids[J]. Journal of the Acoustical Society of America.1995,97(1):354-361.
    [70]ADAMOWSKI J C, BUIOCHI F, SIGELMANN R A. Ultrasonic measurement of density of liquids flowing in tubes[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control.1998,45(1):48-56.
    [71]HIGUTI R T, ADAMOWSKI J C. Ultrasonic densitometer using a multiple reflection technique[J]. IEEE Transactions On Ultrasonics Ferroelectrics and Frequency Con-trol.2002,49(9):1260-1268.
    [72]HIGUTI R T, BUIOCHI F, ADAMOWSKI J C, et al. Ultrasonic density measurement cell design and simulation of non-ideal effects[J]. Ultrasonics.2006,44(3):302-309.
    [73]HIGUTI R T, de ESPINOSA F, ADAMOWSKI J C. Energy method to calculate the density of liquids using ultrasonic reflection techniques[J].2001 IEEE Ultrasonics Symposium Proceedings, Vols 1 and 2.2001,319-322.
    [74]HIRNSCHRODT M, LERCH R.Resonance anti-reflection for ultrasonic density meas-ure-ment[C]. Ultrasonics Symposium,1999. Proceedings.1999 IEEE,1999:517-520.
    [75]HIRNSCHRODT M, von JENA A, VONTZ T, et al. Ultrasonic characterization of liquids using resonance antireflection[J]. Ultrasonics.2000,38(1-8):200-205.
    [76]HIRNSCHRODT M, von JENA A, VONTZ T, et al. Time domain evaluation of resonance antireflection (rar) signals for ultrasonic density measurement [J]. IEEE Trans-actions on Ultrasonics Ferroelectrics and Frequency Control.2000,47(6):1530-1539.
    [77]LIU J X, WANG Z Q, LI G F, et al. Acoustic method for obtaining the pressure reflection coefficient using a half-wave layer[J]. Ultrasonics.2011,51(3):359-368.
    [78]孙选.牛奶质量超声检测基础理论及实验研究[D].天津:天津大学,2007.
    [79]LIU J X, LI G F. Frequency and temperature characteristics of an ultrasonic method for measuring the specific gravity of lead-acid battery electrolyte[J]. Japanese Journal of Applied Physics.2012,51(0266012Part 1).
    [80]MUTTAKIN I, ARIF N M, NOOH S M, et al. Analog spice implementation of multi-frequency ultrasound system [J]. International Journal of Circuits, Systems and Signal Processing.2012,6(1):113-121.
    [81]KINO G S. Acoustic waves:devices, imaging, and analog signal processing[M]. NJ:1988.
    [82]KRIMHOLTZ R, LEEDOM D A, MATTHEI G L. New equivalent circuits for elementary pie-zoelectric transducer[J]. Electron. Lett.1970,6):398-399.
    [83]LEACH W M. Controlled-source analogous circuits and spice models for piezoelectric transducers[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control.1994,41(1):60-66.
    [84]全绍辉.微波技术基础[M].北京:高等教育出版社,2011.
    [85]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2001.
    [86]PIERCE A D. Acoustics:an introduction to its physical principles and applica-tions[M]. New York:Woodbury,1989.
    [87]劳振花,姜兆波.液体体积弹性模量与温度关系测量实验研究[J].科学技术与工程.2009,(2):386-390.
    [88]张凤兰,计新.液体的体积弹性模量测定[J].延边大学学报(自然科学版).2002,(3):168-170.
    [89]杨金海.超声粘度测量的新方法研究[J].西南石油学院学报.1992,(S1):11-14.
    [90]马大猷.声学手册[M].北京:科学出版社,2004.
    [91]FUNG Y C. Foundations of solid mechanics[M]. New York:Englewood Cliffs,1965.
    [92]RIETVELD J. Viscoelasticity. In:OH:Metals Park,1988.
    [93]BHATIA A B. Ultrasonic absorption:an introduction to the theory of sound absorption and dispersion in gases, liquids and sol ids[M]. London:1967.
    [94]FERRY J D. Viscoelastic properties of polymers[M]. New York:1980.
    [95]KLINE R A. Measurement of attenuation and dispersion using an ultrasonic spectroscopy technique[J]. Journal of the Acoustical Society of America.1984,76(2):498-504.
    [96]周湄生.最新温标纯水密度表[J].计量技术.2000,(3):40-42.
    [97]LIDE D R.Crc handbook of chemistry and physics[M]. Cleveland:OH,1998.
    [98]LABY G W C K. Tables of physical and chemical constants[M]. Harlow, UK:Longman Group Limited,1995.
    [99]DELGROSS. V A, MADER C W. Speed of sound in pure water[J]. Journal of the Acoustical Society of America.1972,52(5):1442.
    [100]WUNDERLICH W. Physical constants of polymethylmethaacrylate. InrNew York:Wiley interscience,1989.
    [101]van DEVENTER J, DELSING J. An ultrasonic density probe[C]. Ultrasonics Symposium,1997. Proceedings.,1997 IEEE,1997:871-875.
    [102]RAUM K, OZGULER A, MORRIS S A, et al. Channel defect detection in food packages using integrated backscatter ultrasound imaging[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions On.1998,45(1):30-40.
    [103]白晓清,赫冀成,何北星.超声波作用下声学参数对悬浮液中微粒凝聚的影响[J].应用声学.2001,(6):28-32.
    [104]PUTTMER A, HOPPE N, HENNING B, et al. Ultrasonic density sensor-analysis of errors due to thin layers of deposits on the sensor surface [J]. Sensors and actuators A-Physical.1999,76(1-3):122-126.
    [105]MCCLEMENTS D J, FAIRLEY P. Ultrasonic pulse echo reflectome-ter [J]. Ultrasonics.1991, 29(1):58-62.
    [106]KUSHIBIKI J, AKASHI N, SANNOMIYA T, et al. Vhf uhf range bioultrasonic spectroscopy system and method[J]. IEEE Transactions On Ultrasonics Ferroelectrics and Frequency Control.1995,42(6):1028-1039.
    [107]HOPPE N, PUTTMER A, HAUPTMANN P. Optimization of buffer rod geometry for ultrasonic sensors with reference path[J]. IEEE Transactions On Ultrasonics Ferroelectrics and Frequency Control.2003,50(2):170-178.
    [108]BJORNDAL E, FROYSA K E, ENGESETH S A.A novel approach to acoustic liquid density measurements using a buffer rod based measuring cell[J]. IEEE Transactions On Ultrasonics Ferroelectrics and Frequency Control.2008,55(8):1794-1808.
    [109]KINSLER L E, FREY A R, COPPENS A B, et al. Fundamentals of acoustics[M]. New York:John Wiley & Sons,1982.
    [110]HARTMANN B. Elastic properties of polymers. In:San Diego, CA:Academic Press,2001.
    [111]van DEVENTER J, LOFQVIST T, DELSING J. Pspice simulation of ultrasonic systems [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control.2000,47(4): 1014-1024.
    [112]MARCZAK W. Water as a standard in the measurements of speed of sound in liquids [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA.1997,102(5Part 1):2776-2779.
    [113]BERREBI J. Self-diagnosis techniques and their applications to error reduction for ultrasonic flow measurement[D]. Lulea University of Technology,2004.
    [114]LEEMAN S, FERRARI L, JONES J P, et al. Perspectives on attenuation estimation from pulse-echo signals [J]. IEEE Transactions on Sonics and Ultrasonics.1984,31(4): 352-361.
    [115]陈海凌,欧阳清.潜艇蓄电池保养装置总体方案研究[J].中国修船.2009,(3):31-34.
    [116]罗永胜.基于电力线载波通信的船用蓄电池监测系统[D].大连:大连理工大学,2006.
    [117]赵云鹏.浅谈船用蓄电池的维护与检验[J].中国修船.2005,(4):35-36.
    [118]张春甫.BMS—100型潜艇蓄电池监视系统[J].船电技术.1996,(4):24-28.
    [119]Msp430x13x, msp430x14x, msp430x14xl mixed signal microcontroller[Z].2004.
    [120]苏奎峰,吕强,耿庆锋等.TMS320F2812原理与开发[M].北京:电子工业出版社,2005.
    [121]单惠瑜.基于TMS320F2812实验系统的设计与应用[D].北京:北京化工大学,2009.
    [122]张娟娟.基于C8051F310的温度测量设计[J].电脑知识与技术.2011,(10):2299-2300.
    [123]单成祥,牛彦文,王兴英等.热敏电阻传感器线性化的应用[J].传感技术学报.1994,(2):18-20.
    [124]丁丽娟,宋寿鹏,高福学等.超声管外测压中发射电路的设计[J].仪表技术与传感器.2009,(8):94-96.
    [125]何鹏.基于TMS320F2812的相关法超声波流量计研究[D].西安:长安大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700