小麦光周期基因Photoperiod-B1的DNA甲基化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光周期现象在植物中普遍存在,植物体内部的周期节律与外部环境的协调一致对植物的生存非常重要。小麦(Triticum aestivum L.)是全球重要粮食作物,光周期不敏感特性能够提高小麦的适应能力,扩大引种范围。Ppd-B1基因是小麦重要光周期基因。前人研究表明,拷贝数变异是造成Ppd-B1不敏感位点形成的原因。但是对于该基因,表观遗传修饰方面还未见报道。本文从DNA甲基化方面对小麦Ppd-B1基因进行了深入研究,进一步探索影响其光周期不敏感位点形成的因素。主要研究进展如下:(1)小麦Ppd-B1基因启动子区域甲基化水平在多样性小麦品种中存在多态性。
     利用亚硫酸氢盐测序技术对105份多样性小麦品种Ppd-B1基因启动子区域进行甲基化水平的检测。结果显示,不同小麦品种在测序区域的甲基化水平呈现丰富的多态性。根据测序区段每个胞嘧啶位点甲基化水平,通过聚类分析,将多样性材料划分为两种甲基化单倍型:甲基化单倍型a和甲基化单倍型b。(2)小麦Ppd-B1基因不同甲基化单倍型在总体甲基化水平和单个胞嘧啶位点甲基化水平呈现差异。
     从总体甲基化水平分析,单倍型b的甲基化程度在CG和CHG序列形式上较单倍型a高。从单个胞嘧啶位点甲基化水平分析,在CG序列形式上,单倍型b在绝大多数位点(12/13)的甲基化程度较高;在CHG序列形式上,单倍性b在多数位点(4/10)甲基化程度较高,少数位点(2/10)甲基化程度较低;在CHH序列形式上,两者在多数位点中甲基化差异不显著(29/40)。说明单倍型b为甲基化程度较高的类型,单倍型a为甲基化程度较低的类型。(3)小麦Ppd-B1基因不同甲基化单倍型与重要农艺性状相关联。
     将不同甲基化单倍型与一年三地多样性小麦材料农艺性状进行关联分析。结果显示,不同的甲基化单倍型在抽穗期、株高、千粒重等重要农艺性状差异显著。甲基化程度较高的单倍型b相对甲基化程度较低的单倍型a,具有较早的抽穗期、较矮的株高和较高的千粒重。将“复壮30×偃展1号”重组自交系F7代甲基化类型与两年两地抽穗期进行关联分析,发现低甲基化类型较高甲基化类型抽穗晚,说明高甲基化使Ppd-B1基因表现出光不敏感的特性。(4)小麦Ppd-B1基因高甲基化单倍型在小麦驯化过程中受到选择。
     不同的甲基化单倍型在野生种、地方品种和现代育成品种中的分布存在差异。低甲基化类型在野生小麦材料中占据主导地位。而在地方品种和现代育成品种中,高甲基化类型所占比重明显提高。说明Ppd-B1高甲基化类型在小麦驯化过程中受到选择。(5)小麦Ppd-B1基因甲基化与拷贝数变异之间不存在相关性。
     相关性分析结果显示,CG、CHG、CHH三种胞嘧啶序列形式的甲基化水平之间存在显著的正相关。但是拷贝数变异与任何一种序列形式的甲基化水平之间皆不存在相关性。说明Ppd-B1基因的DNA甲基化水平和拷贝数变异是两种独立作用的因素。(6)小麦Ppd-B1基因甲基化水平与表达量呈正相关。
     荧光实时定量结果显示,在多样性小麦品种和重组自交系材料中,不同甲基化单倍型的Ppd-B1基因表达水平存在差异。高甲基化单倍型的表达量显著高于低甲基化类型。多样性品种的总体甲基化水平和CG甲基化水平均与表达量呈正相关。(7)小麦Ppd-A1、Ppd-D1基因甲基化水平在代表材料中不存在差异。
     我们同时检测了A、D基因组对应Ppd-B1基因甲基化水平存在差异的区域。结果显示,Ppd-A1和Ppd-D1在代表材料测序区域的DNA甲基化程度无差异。所以推测DNA甲基化是B基因组独有的特征。
Photoperiod is a common phenomenon in plants and coordinated the internal circadianrhythms with external environment is very important for plant survival. Wheat (Triticumaestivum L.) is one of the world's most important food crops which also affected byPhotoperiod. Photoperiod insensitivity (day neutral phenotype) enabled wheat adapt to abroad range of environments. Photoperiod-B1a is an important photoperiod insensitive allelewhich conferred day neutral phenotype in wheat. Previous studies suggested that copynumber variation (CNV) played a significant role in Ppd-B1allele’s formation. But theepigenetic modifications for this gene have not been reported. In this study, we furtherinvestigate the mechanism underlying photoperiod insensitivity allele Ppd-B1a from theepigenetic perspective—DNA methylation. The main progresses were as follows:(1) DNA methylation patterns in Ppd-B1promotor region showed rich polymorphisms.
     Using bisulfite genomic sequencing, we found DNA methylation patterns in Ppd-B1promotor region showed rich polymorphisms among a large germplasms. Two methylationhaplotypes (haplotype a&b) were classified according to the methylation polymorphisms ineach cytosine sites (single methylation polymorphisms, SMPs).(2) Methylation patterns varied between Ppd-B1methylation haplotypes.
     For the overall methylation patterns, haplotype b showed significantly highermethylation levels than haplotype a in both CG and CHG contexts. For each cytosine site, inCG and CHG motifs, haplotype b showed higher methylation levels in most positions (12/13and4/10). But for CHH, most cytosine site (29/40) showed no difference. In brief, themethylation levels were relative higher in haplotype b at both overall methylation level andeach cytosine site methylation level.(3) Ppd-B1methylation haplotypes associated with important agronomic traits
     Association analysis was conducted between different methylation haplotypes andagronomic traits among105diverse wheat cultivars under three different environments in2011, China. And the results suggested that there were significant associations betweendifferent methylation haplotypes and agricultural traits. Compared with haplotype a,haplotype b associated with more favorable traits such as earlier heading time, reduced plantheight and higher1000-kernel weight. A linkage analysis was conducted between‘Fuzhuang30×Yanzhan1’ F7population methylation types and heading dates and the result showed that the heading dates of haplotype b was earlier than haplotype a. Both associationanalysis and linkage analysis suggested that the high methylation haplotype associated withearlier heading dates and conferred this gene photoperiod insensitive characteristics.(4) Ppd-B1methylation haplotypes underwent selection during wheat domestication.
     Different methylation haplotypes were differently distributed among wild species,landraces and modern cultivars. Low methylation haplotype predominate in ancient species.But in landraces and modern cultivars, high methylation haplotype became the leadinghaplotype which indicated that during wheat domestication high methylation patterns ofPpd-B1gene was selected.(5) There was no correlation between Ppd-B1methylation and copy number variation
     Correlation analysis results showed that there were significant positive correlationsbetween different cytosine contexts methylation levels except CG and CHH. But there was nocorrelation between the relative copy number and methylation patterns in either cytosinemethylation context. So DNA methylation patterns and copy number variation were twoindependent factors affecting heading dates in wheat.(6) Positive correlation between Ppd-B1methylation and expression
     Quantitative Real-time PCR results suggested that the expression level of Ppd-B1wasaffected by DNA methylation—high methylation pattern associated with high expression.Correlation analysis results showed that there were significant positive correlations betweenthe CG as well as the total methylation levels and the relative expression amounts.(7) Methylation difference is a unique characteristic for B genome
     Using bisulfite genomic sequencing, we detected the corresponding regions whichshowed different methylation status of Ppd-B1in A and D genomes. But the methylationpatterns showed no differences in Ppd-A1and Ppd-D1alleles which indicated that differentmethylation patterns might be a unique feature for Ppd-B1.
引文
李梅兰,曾广文,朱祝军。5-氮杂胞苷促进白菜开花的效应分析。浙江大学学报(农业与生命科学版),2003,29(3):287-290
    彭凌涛。控制拟南芥和水稻开花时间光周期途径的分子机制。植物生理学通讯,2006,42(6):1021-1031
    雍伟东,种康,许智宏,谭克辉,朱自清。高等植物开花时间决定的基因调控研究。科学通报,2000,45(5):455-466
    曾群,赵仲华,赵淑清。植物开花时间调控的信号途径。遗传,2006,28(8):1031-1036
    Adams R. L. P. and Burdon R. H.. Molecular biology of DNA methylation. New York, Berlin,Heidelberg, Tokyo:Springer-Verlag,1985,1,1-14,182-183
    Alabadi D., Oyama T., Yanovsky M. J., Harmon F. G., Mas P. and Kay S. A.. Reciprocalregulation between TOC1and LHY/CCA1within the Arabidopsis circadian clock.Science,2001,293:880-883
    Batschauer A.. Light perception in higher plants. Cell Mol. Life Sci.,1999,55:153-166
    Beales J., Turner A., Griffiths S., Snape J. W. and Laurie D. A.. A Pseudo-Response Regulatoris misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticumaestivum L.). Theoretical and Applied Genetics,2007,115:721-733
    Bentley A. R., Turner A. S., Gosman N., Leigh F. J., Maccaferri M., Dreisigacker S.,Greenland A. and Laurie D. A.. Frequency of photoperiod-insensitive Ppd-A1a alleles intetraploid, hexaploid and synthetic hexaploid wheat germplasm. Plant Breeding,2011,130:10-15
    Bernier G., Kinet J. M. and Sachs R. M.. The physiology of flowering,1981, Vol. I. BocaRaton, FL: CRC Press
    Borlaug N. E..Contributions of conventional plant breeding to food production. Science,1983,219:689-693
    B rner A., Korzun V. and Worland A. J.. Comparative genetic mapping of loci affecting plantheight and development in cereals. Euphytica,1998,100:245-248
    Briggs W. R. and Christie J. M.. Phototropins1and2, versatile plant bluelight receptors.Trends in Plant Science,2002,7:204-210
    Burn J. E., Bagnall D. J., Metzger J. M., Dennis E. S. and Peacock W. J.. DNA methylation,vernalization, and the initiation of flowering. Proc. Natl. Acad. Sci. USA,1993,90:287-291
    Cashmore A. R., Jarillo J. A. and Wu Y. J.. Cryptochromes: blue light receptors for plants andanimals. Science,1999,284:760-765
    Chan S. W., Henderson I. R. and Jacobsen S. E.. Gardening the genome: DNA methylation inArabidopsis thaliana. Nat. Rev. Genet.,2005,6(5):351-360
    Cockram J., Jones H., Leigh F. J., O'Sullivan D., Powell W., Laurie D. A. and Greenland A. J..Control of flowering time in temperate cereals: genes, domestication, and sustainableproductivity. J. Exp. Bot.,2007,58(6):1231-1244
    Cokus S. J., Feng S., Zhang X., Chen Z., Merriman B., Haudenschild C. D., Pradhan S.,Nelson S. F., Pellegrini M. and Jacobsen S. E.. Shotgun bisulfite sequencing of theArabidopsis genome reveals DNA methylation patterning. Nature,2008,452(7184):215-219
    Cooper G. M., Nickerson D. A. and Eichler E.E.. Mutational and selective effects oncopy-number variants in the human genome. Nature Genetics,2007,39: S22-29
    Corbesier L., Vincent C., Jang S., Fornara F., Fan Q., Searle I., Giakountis A., Farrona S.,Gissot L., Turnbull C. and Coupland G.. FT protein movement contributes tolong-distance signaling in floral induction of Arabidopsis. Science,2007,316(5827):1030-1033
    Covington M. F., Panda S., Liu X. L., Strayer C. A., Wagner D. R. and Kay S. A.. ELF3modulates resetting of the circadian clock in Arabidopsis. Plant Cell,2001,13:1305-1315
    Díaz A., Zikhali M., Turner A. S., Isaac P. and Laurie D. A.. Copy number variation affectingthe Photoperiod-B1and Vernalization-A1genes is associated with altered flowering timein wheat (Triticum aestivum). PLoS One,2012,7(3): e33234
    Doi K., Izawa T., Fuse T., Yamanouchi U., Kubo T., Shimatani Z., Yano M. and Yoshimura A..Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering andcontrols FT-like gene expression independently of Hd1. Genes Dev.,2004,18:926-936
    Doyle M. R., Davis S. J., Bastow R. M., McWatters H. G., Kozma-Bognár L., Nagy F., MillarA. J. and Amasina R. M.. The ELF4gene controls circadian rhythms and flowering timein Arabidopsis thaliana. Nature,2002,379(6902):694-699
    Dunford R. P., Griffiths S., Christodoulou V. and Laurie D. A.. Characterization of a barley(Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulatorGIGANTEA. Theor. Appl. Genet.,2005,110:925-931
    Evans L. T.. Flower induction and the florigen concept. Plant Mol. Biol.,1971,22:365-394
    Faure S., Turner A. S., Gruszka D., Christodoulou V., Davis S. J., von Korff M. and Laurie D.A.. Mutation at the circadian clock gene EARLY MATURITY8adapts domesticatedbarley (Hordeum vulgare) to short growing seasons. Proc. Natl. Acad. Sci. USA,2012,190(21):8328-8333
    Feuk L., Carson A. R. and Scherer S. W.. Structural variation in the human genome. Nat. Rev.Genet.,2006,7(2):85-97
    Finnegan E. J., Genger R. K., Kovac K., Peacock W. J. and Dennis E. S.. DNA methylationand the promotion of flowering by vernalization. Proc. Natl. Acad. Sci. USA,1998,95:5824-5829
    Finnegan E. J., Peacock W. J. and Dennis E.S.. Reduced DNA methylation in Arabidopsisthaliana results in abnormal plant development. Proc. Natl. Acad. Sci. USA,1996,93(16):8449-8454
    Finnegan E. J. and Kovac K. A.. Plant DNA methyltransferases. Plant Mol. Biol.,2000,43:189-201
    Freeman J. L., Perry G. H., Feuk L., Redon R., McCarroll S. A., Altshuler D. M., Aburatani H.,Jones K. W., Tyler-Smith C., Hurles M. E., Carter N. P., Scherer S. W. and Lee C.. Copynumber variation: new insights in genome diversity. Genome Res.,2006,16(8):949-961
    Furuya M. and Schafer E.. Photo perception and signaling of induction reactions bydifferent phytochromes. Trends Plant Sci.,1996,1:301-307
    Genger R. K., Kovac K. A., Dennis E. S., Peacock W. J. and Finnegan E. J.. Multiple DNAmethyltransferases genes in Arabidopsis thaliana. Plant Mol. Biol.,1999,41(2):269-278
    Goidts V., Cooper D. N., Armengol L., Schempp W., Conroy J., Estivill X., Nowak N.,Hameister H. and Kehrer-Sawatzki H.. Complex patterns of copy number variation atsites of segmental duplications: an important category of structural variation in thehuman genome. Hum. Genet.,2006,120(2):270-284
    Green R. M. and Tobin E. M.. Loss of the circadian clock associated protein1in Arabidopsisresults in altered clock-regulated gene expression. Proc. Natl. Acad. Sci. USA,1999,96:4176-4179
    Greenup A., Peacock W. J., Dennis E. S. and Trevaskis B.. The molecular biology of seasonalflowering-responses in Arabidopsis and the cereals. Ann. Bot.,2009,103(8):1165-1172
    Griffiths S., Dunford R. P., Coupland G., Laurie D. A..The evolution of CONSTANS-like genefamilies in barley (Hordeum vulgare), rice (Oryza sativa) and Arabidopsis thaliana.Plant Physiol.,2003,131:1855-1867
    Gruenbaum Y., Naveh-Many T., Cedar H. and Razin A.. Sequence specificity of methylationin higher plant DNA. Nature,1981,292(5826):860-862
    Gruntman E., Qi Y., Slotkin R. K., Roeder T., Martienssen R. A. and Sachidanandam R..Kismeth: Analyzer of plant methylation states through bisulfite sequencing. BMCBioinformatics,2008,9:371
    Guo Z., Song Y., Zhou R., Ren Z. and Jia J.. Discovery, evaluation and distribution ofhaplotypes of the wheat Ppd-D1gene. New Phytol.,2010,185(3):841-851
    Halliday K. J., Salter M. G., Thingnaes E. and Whitelam G. C.. Phytochrome control offlowering is temperature sensitive and correlates with expression of the floral integratorFT. Plant J.,2003,33:875-885
    Harmer S. L., Hogenesch J. B., Straume M., Chang H. S., Han B., Zhu T., Wang X., Kreps J.A. and Kay S. A.. Orchestrated transcription of key pathways in Arabidopsis by thecircadian clock. Science,2000,290:2110-2113
    Hayama R., Izawa T. and Shimamoto K.. Isolation of rice genes possibly involved in thephotoperiodic control of flowering by a fluorescent differential display method. PlantCell Physiol.,2002,43:494-504
    Hayama R., Yokoi S., Tamaki S., Yano M. and Shimamoto K.. Adaptation of photoperiodiccontrol pathways produces short-day flowering in rice. Nature,2003,422:719-722
    Hayashi N., Inoue H., Kato T., Funao T., Shirota M., Shimizu T., Kanamori H., Yamane H.,Hayano-Saito Y., Matsumoto T., Yano M. and Takatsuji H.. Durable panicleblast-resistance gene Pb1encodes an atypical CC-NBS-LRR protein and was generatedby acquiring a promoter through local genome duplication. Plant J.,2010,64:498-510
    Henderson I. R., Chan S. R., Cao X., Johnson L. and Jacobsen S. E.. Accurate sodiumbisulfite sequencing in plants. Epigenetics,2010,5(1):47-49
    Iafrate A. J., Feuk L., Rivera M. N., Listewnik M. L., Donahoe P. K., Qi Y., Scherer S. W. andLee C.. Detection of large-scale variation in the human genome. Nat. Genet.,2004,36(9):949-951
    Izawa T., Oikawa T., Sugiyama N., Tanisaka T., Yano M. and Shimamoto K.. Phytochromemediates the external light signal to repress FT orthologs in photoperiodic flowering ofrice. Genes Dev.,2002,16(15):2006-2020
    Izawa T., Takahashi Y. and Yano M.. Comparative biology comes into bloom: genomic andgenetic comparison of flowering pathways in rice and Arabidopsis. Curr. Opin. PlantBiol.,2003,6(2):113-120
    Jacobsen S. E. and Meyerowitz E. M.. Hypermethylated SUPERMAN epigenetic alleles inArabidopsis. Science,1997,277:1100-1103
    Jacobsen S. E., Sakai H., Finnegan E. J., Cao X. and Meyerowitz E. M.. Ectopichypermethylation of flower-specific genes in Arabidopsis. Curr. Biol.,2000,10(4):179-186
    Johnson M. E., Viggiano L., Bailey J. A., Abdul-Rauf M., Goodwin G., Rocchi M. and EichlerE. E.. Positive selection of a gene family during the emergence of humans and Africanapes. Nature,2001,413(6855):514-519
    Pruneda-Paz J. L., Breton G., Para A. and Kay S. A.. A functional genomics approach revealsCHE as a component of the Arabidopsis circadian clock. Science,2009,323:1481-1484
    Kazazian H. H. Jr. and Moran J. V.. The impact of L1retrotransposons on the human genome.Nat. Genet.,1998,19(1):19-24
    Kidd J. M., Cooper G. M., Donahue W. F., et al. Mapping and sequencing of structuralvariation from eight human genomes. Nature,2008,453:56-64
    Kikuchi R., Kawahigashi H., Ando T., Tonooka T. and Handa H.. Molecular and functionalcharacterization of PEBP genes in barley reveal the diversification of their roles inflowering. Plant Physiol.,2009,149:1341-1353
    Kim W. Y., Fujiwara S., Suh S. S., Kim J., Kim Y., Han L., David K., Putterill J., Nam H. G.and Somers D. E.. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA inblue light. Nature,2007,449:356-360
    Kim S. L., Lee S., Kim H. J., Nam H. G., An G.. OsMADS51is a short-day floweringpromoter that functions upstream of Ehdl, OsMADS14, and Hd3a. Plant Physiol.,2007,145:1484-1494
    Kleinjan D. A. and van Heyningen V.. Long-range control of gene expression: emergingmechanisms and disruption in disease. Am. J. Hum. Genet.,2005,76(1):8-32
    Knox A. K., Dhillon T., Cheng H., Tondelli A., Pecchioni N. and Stockinger E. J.. CBF genecopy number variation at Frost Resistance-2is associated with levels of freezingtolerance in temperate-climate cereals. Theor. Appl. Genet.,2010,121(1):21-35
    Kojima S., Takahashi Y., Kobayashi Y., Monna L., Sasaki T., Araki T. and Yano M.. Hd3a, arice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstreamof Hd1under short-day conditions. Plant Cell Physiol.,2002,43:1096-1105
    Lai A. Y., Fatemi M., Dhasarathy A., Malone C., Sobol E. S., Geigerman C., Jaye D. L., MavD., Shah R., Li L. and Wade P. A.. DNA methylation prevents CTCF-mediated silencingof the oncogene BCL6in B cell lymphomas.J. Exp. Med.,2010,207(9):1939-1950
    Lang A.. Physiology of flower initiation. Encyclopedia of Plant Physiology,1965, Vol. XV,Part1(Ruhland, W., ed.), Berlin: Springer Verlag.,1380-1536
    Lang A.. Physiology of flowering. Annu. Rev. Plant Physiol.,1952,3:265-306
    Laurie D. A., Pratchett N., Snape J. W. and Bezant J. H.. RFLP mapping of five major genesand eight quantitative trait loci controlling flowering time in a winter×spring barley(Hordeum vulgare L.) cross. Genome,1995,38:575-585
    Laurie D. A.. Comparative genetics of flowering time. Plant Mol. Biol.,1997,35:167-177
    Law C. N., Sutka J. and Worland A. J.. A genetic study of day-length response in wheat.Heredity,1978,41:185-191
    Law J. A. and Jacobsen S. E.. Establishing, maintaining and modifying DNA methylationpatterns in plants and animals. Nat. Rev. Genet.,2010,11(3):204-220
    Levy Y. Y. and Dean C.. The transition to flowering. Plant Cell,1998,10(12):1973-1990
    Li W., Liu H., Cheng Z. J., Su Y. H., Han H. N., Zhang Y. and Zhang X. S.. DNA methylationand histone modifications regulate de novo shoot regeneration in Arabidopsis bymodulating WUSCHEL expression and auxin signaling. PLoS Genet.,2011,7(8):e1002243
    Li Y., Xiao J., Wu J., Duan J., Liu Y., Ye X., Zhang X., Guo X., Gu Y., Zhang L., Jia J. andKong X.. A tandem segmental duplication (TSD) in green revolution gene Rht-D1bregion underlies plant height variation. New Phytologist,2012,196(1):282-291
    Lin C.. Photoreceptors and regulation of flowering time. Plant Physiol.,2000,123:39-50
    Lin C.. Plant blue-light receptors. Trends Plant Sci.,2000,5:337-342
    Liu X. L., Covington M. F., Fankhauser C., Chory J. and Wagner D. R.. ELF3encodes acircadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signaltransduction pathway. Plant Cell,2001,13:1293-1304
    Livak K. J. and Schmittgen T. D.. Analysis of relative gene expression data using real-timequantitative PCR and the2-ΔΔCtmethod. Methods,2001,25:402-408
    Lupski J. R. and Stankiewicz P.. Genomic disorders: molecular mechanisms forrearrangements and conveyed phenotypes. PLoS Genet.,2005,1(6): e49
    Lupski J. R.. Retrotransposition and structural variation in the human genome. Cell,2010,141:1110-1112
    Matsubara K., Yamanouchi U., Wang Z. X., Minobe Y., Izawa T. and Yano M.. Ehd2, a riceortholog of the maize ID1gene, promotes flowering by upregulating Ehd1. PlantPhysiol.,2008,148(3):1425-1435
    Matsumoto N., Hirano T., Iwasaki T. and Yamamoto N.. Functional analysis and intracellularlocalization of rice cryptochromes. Plant Physiol.,2003,133(4):1494-1503
    Matsushika A., Makino S., kojima M. and Mizuno T.. Circadian waves of expression of theAPRR1/TOC1family of pseudo-response regulators in Arabidopsis thaliana: insight intothe plant circadian clock. Plant Cell Physiol.,2000,41(9):1002-1012
    McCarroll S. A., Hadnott T. N., Perry G. H., Sabeti P. C., Zody M. C., Barrett J. C., Dallaire S.,Gabriel S. B., Lee C., Daly M. J. and Altshuler D. M.. Common deletion polymorphismsin the human genome. Nat. Genet.,2006,38(1):86-92
    McWatters H. G., Bastow R. M., Hall A. and Millar A.J.. The ELF3zeitnehmer regulates lightsignalling to the circadian clock. Nature,2000,408:716-720
    Millar A. J., Carré I. A., Strayer C. A., Chua N. H. and Kay S. A.. Circadian clock mutants inArabidopsis identified by luciferase imaging. Science,1995,267:1161-1163
    Mizoguchi T., Wheatley K., Hanzawa Y., Wright L., Mizoguchi M., Song H. R., Carré I. A.and Coupland G.. LHY and CCA1are partially redundant genes required to maintaincircadian rhythms in Arabidopsis. Dev. Cell,2002,2:629-641
    Mizoguchi T., Wright L., Fujiwara S., Cremer F., Lee K., Onouchi H., Mouradov A., FowlerS., Kamada H., Putterill J. and Coupland G.. Distinct roles of GIGANTEA in promotingflowering and regulating circadian rhythms in Arabidopsis. Plant Cell,2005,17(8):2255-2270
    Moore G., Devos K. M., Wang Z. and Gale M. D.. Cereal genome evolution. Grasses, line upand form a circle. Curr. Biol.,1995,5:737-739
    Murakami M., Matsushika A., Ashikari M., Yamashino T. and Mizuno T..Circadian-associated rice pseudo response regulators (OsPRRs): insight into the controlof flowering time. Biosci. Biotechnol. Biochem.,2005,69(2):410-414
    Murakami M., Tago Y., Yamashino T. and Mizuno T.. Characterization of the rice circadianclock-associated pseudo-response regulators in Arabidopsis thaliana. Biosci. Biotechnol.Biochem.,2007,71:1107-1110
    Nakano Y., Steward N., Sekine M., Kusano T. and Sano H.. A tobacco NtMET1cDNAencoding a DNA methyltransferase: molecular characterization and abnormal phenotypesof transgenic tobacco plants. Plant Cell Physiol.,2000,41(4):448-457
    Nelson D. C., Lasswell J., Rogg L. E., Cohen M. A. and Bartel B.. FKF1, a clock-controlledgene that regulates the transition to flowering in Arabidopsis. Cell,2000,101:331-340
    Nemoto Y., Kisaka M., Fuse T., Yano M. and Ogihara Y.. Characterization and functionalanalysis of three wheat genes with homology to the CONSTANS flowering time gene intransgenic rice. Plant J.,2003,36:82-93
    Ng H. H. and Bird A.. DNA methylation and chromatin modification. Current OpinionGenetic Development,1999,9:158-163
    Niinum A. K., Nakagawa M., Calvino M., et al. Dance of plants with circadian clock. PlantBiotechnol.,2007,24:87-97
    Nakamichi N., Kiba T., Henriques R., Mizuno T., Chua N. H. and Sakakibara H.. PSEUDO-RESPONSE REGULATORS9,7, and5are transcriptional repressors in the Arabidopsiscircadian clock. Plant Cell,2010,22:594-605
    Putterill J., Robson F., Lee K., Simon R. and Coupland G.. The CONSTANS gene ofArabidopsis promotes flowering and encodes a protein showing similarities to zincfinger transcription factors. Cell,1995,180(6):847-857
    Quail P. H.. Phytochrome photosensory signaling networks. Nat. Rev. Mol. Cell Biol.,2002,3:85-93
    Razin A. and Cedar H.. DNA methylation and gene expression. Microbiol. Rev.,1991,55(3):451-458
    Richards E. J.. DNA methylation and plant development. Trends In Genetics,1997,13(8):319-322
    Robson F., Costa M. M., Hepworth S. R., Vizir I., Pi eiro M., Reeves P. H., Putterill J.and Coupland G.. Functional importance of conserved domains in the flowering-timegene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. PlantJ.,2001,28:619-631
    Rubio V. and Deng X. W.. Plant science. Standing on the shoulders of GIGANTEA. Science,2007,318:206-207
    Samach A. and Coupland G.. Time measurement and the control of flowering in plants.Bioessays,2000,22:38-47
    Sawa M., Nusinow D. A., Kay S. A. and Imaizumi T.. FKF1and GIGANTEA complexformation is required for day-length measurement in Arabidopsis. Science,2007,318:261-265
    Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., Carré I. A. and Coupland G.. Thelate elongated hypocotyls mutation of Arabidopsis disrupts circadian rhythms and thephotoperiodic control of flowering. Cell,1998,93:1219-1229
    Schultz T. F., Kiyosue T., Yanovsky M., Wada M. and Kay S. A.. A role for LKP2in thecircadian clock of Arabidopsis. Plant Cell,2001,13:2659-2670
    Sebat J., Lakshmi B., Troge J., Alexander J., Young J., Lundin P., Maner S., Massa H., WalkerM., Chi M., Navin N., Lucito R., Healy J., Hicks J., Ye K., Reiner A., Gilliam T. C.,Trask B., Patterson N., Zetterberg A. and Wigler M.. Large-scale copy numberpolymorphism in the human genome. Science,2004,305(5683):525-528
    Sharp A. J., Locke D. P., McGrath S. D., Cheng Z., Bailey J. A., Vallente R. U., Pertz L. M.,Clark R. A., Schwartz S., Segraves R., Oseroff V. V., Albertson D. G., Pinkel D. andEichler E. E.. Segmental duplications and copy-number variation in the human genome.Am. J. Hum. Genet.,2005,77(1):78-88
    Sharp P. J., Kreis M., Shewry P. R. and Gale M.D.. Location of b-amylase sequences in wheatand its relatives. Theoretical and Applied Genetics,1988,75:286-290
    Shaw L. M., Turner A. S. and Laurie D. A.. The impact of photoperiod insensitive Ppd-1amutations on the photoperiod pathway across the three genomes of hexaploid wheat(Triticum aestivum). Plant J.,2012,71(1):71-84
    Sherman J. and Talbert L.. Vernalization-induced changes of the DNA methylation pattern inwinter wheat. Genome,2002,45:253-260
    Slack A., Thornton P. C., Magner D. B., Rosenberg S. M. and Hastings P. J.. On themechanism of gene amplification induced under stress in Escherichia coli. PLoSGenetics,2006,2: e48
    Small K. S., Brudno M., Hill M. M., et al. Extrcmc genomic variation in a natural population.Proc. Natl. Acad. Sci. USA,2007,104:5698-5703
    Somers D. E., Schultz T. F., Milnamow M. and Kay S. A.. ZEITLUPE encodes a novelclock-associated PAS protein from Arabidopsis. Cell,2000,101:319-329
    Stankiewicz P. and Lupski J. R.. Genome architecture, rearrangements and genomic disorders.Trends in Genetics,2002,18:74-82
    Stranger B. E., Forrest M. S., Dunning M., Ingle C. E., Beazley C., Thorne N., Redon R., BirdC. P., de Grassi A., Lee C., Tyler-Smith C., Carter N., Scherer S. W., Tavare S., DeloukasP., Hurles M. E. and Dermitzakis E. T.. Relative impact of nucleotide and copy numbervariation on gene expression phenotypes. Science,2007,315(5813):848-853
    Strayer C., Oyama T., Schultz T. F., Raman R., Somers D. E., Mas P., Panda S., Kreps J. A.and Kay S. A.. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory responseregulator homolog. Science,2000,289:768-771
    Suarez-Lopez P., Wheatley K., Robson F., Onouchi H., Valverde F. and Coupland G..CONSTANS mediates between the circadian clock and the control of flowering inArabidopsis. Nature,2001,410(6832):1116-1120
    Sutton T., Baumann U., Hayes J., Collins N. C., Shi B. J., Schnurbusch T., Hay A., Mayo G.,Pallotta M., Tester M. and Langridge P.. Boron-toxicity tolerance in barley arising fromefflux transporter amplification. Science,2007,318:1446-1449
    Takahashi Y., Shomura A., Sasaki T. and Yano M.. Hd6, a rice quantitative trait locus involvedin photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc. Natl.Acad. Sci. USA,2001,98:7922-7927
    Takano M., Inagaki N., Xie X., Yuzurihara N., Hihara F., Ishizuka T., Yano M., NishimuraM., Miyao A., Hirochika H. and Shinomura T.. Distinct and cooperative functions ofphytochromes A, B, and C in the control of detiolation and flowering in rice. Plant Cell,2005,17:3311-3325
    Takezaki N. and Nei M.. Genomic drift and evolution of microsatellite DNAs in humanpopulations. Molecular Biology and Evolution,2009,26:1835-1840
    Tamaki S., Matsuo S., Wong H. L., Yokoi S. and Shimamoto K.. Hd3a Protein is a mobileflowering signal in rice. Science,2007,316(5827):1033-1036
    Thomas B. and Vince-Prue D.. Photoperiodism in plants.2nd edn. London: Academic Press,1997:249
    Turner A., Beales J., Faure S., Dunford R. P. and Laurie D. A.. The pseudo-response regulatorPpd-H1provides adaptation to photoperiod in barley. Science,2005,310:1031-1034
    Valverde F., Mouradov A., Soppe W., Ravenscroft D., Samach A. and Coupland G..Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science,2004,303:1003-1006
    Vanyushin B. F. and Kirnos M. D.. DNA methylation in plants. Gene,1988,74:117-121
    Vaughn M. W., Tanurd i M., Lippman Z., Jiang H., Carrasquillo R., Rabinowicz P. D.,Dedhia N., McCombie W. R., Agier N., Bulski A., Colot V., Doerge R. W. andMartienssen R. A.. Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol.,2007,5(7): e174
    Wang Z. Y. and Tobin E. M.. Constitutive expression of the CIRCADIAN CLOCKASSOCIATED1(CCA1) gene disrupts circadian rhythms and suppresses its ownexpression. Cell,1998,93:1207-1217
    Welsh J. R., Keim D. L., Pirasteh B., et al. Genetic control of photoperiod response in wheat.Proceeding of the4th International Wheat Genetics Symposium. University of Missouri,Columbia, Mo, USA.1973:897-884
    Wilhelm E. P., Turner A. S. and Laurie D. A.. Photoperiod insensitive Ppd-A1a mutations intetraploid wheat (Triticum durum Desf.). Theoretical and Applied Genetics,2009,118:285-294
    Wu Ct. and Morris J. R.. Genes, genetics, and epigenetics: a correspondence. Science,2001,293(5532):1103-1105
    Xu K., Xu X., Fukao T., Canlas P., Maghirang-Rodriguez R., Heuer S., Ismail A. M.,Bailey-Serres J., Ronald P. C. and Mackill D.J.. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature,2006,442:705-708
    Xue W., Xing Y., Weng X., Zhao Y., Tang W., Wang L., Zhou H., Yu S., Xu C., Li X. andZhang Q.. Natural variation in Ghd7is an important regulator of heading date and yieldpotential in rice. Nat. Genet.,2008,40(6):761-767
    Yan L., Fu D., Li C., Blechl A., Tranquilli G., Bonafede M., Sanchez A., Valarik M., Yasuda S.and Dubcovsky J.. The wheat and barley vernalization gene VRN3is an orthologue of FT.Proc. Natl. Acad. Sci. USA,2006,103:19581-19586
    Yano M., Katayose Y., Ashikari M., Yamanouchi U., Monna L., Fuse T., Baba T., YamamotoK., Umehara Y., Nagamura Y. and Sasaki T.. Hd1, a major photoperiod sensitivityquantitative trait locus in rice, is closely related to the Arabidopsis flowering time geneCONSTANS. Plant Cell,2000,12:2473-2484
    Yoo S. K., Chung K. S., Kim J., Lee J. H., Hong S. M., Yoo S. J., Yoo S.Y., Lee J. S. and AhnJ. H.. CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1through FLOWERING LUCUS T to promote flowering in Arabidopsis. Plant Physiol.,2005,139(2):770-778
    Yu J. W., Rubio V., Lee N. Y., Bai S., Lee S. Y., Kim S. S., Liu L., Zhang Y., Irigoyen M.L., Sullivan J. A., Zhang Y., Lee I., Xie Q., Paek N. C. and Deng X. W.. COP1and ELF3control circadian function and photoperiodic flowering by regulating GI stability.Molecular Cell,2008,32(5):617-630
    Zhang L., Cheng Z., Qin R., Qiu Y., Wang J. L., Cui X., Gu L., Zhang X., Guo X., Wang D.,Jiang L., Wu C. Y., Wang H., Cao X. and Wan J.. Identification and characterization of anepi-allele of FIE1reveals a regulatory linkage between two epigenetic marks in rice.Plant Cell,2012,24(11):4407-4421
    Zhang X., Yazaki J., Sundaresan A., Cokus S., Chan S. W., Chen H., Henderson I. R., Shinn P.,Pellegrini M., Jacobsen S. E. and Ecker J. R.. Genome-wide high-resolution mappingand functional analysis of DNA methylation in Arabidopsis. Cell,2006,126(6):1189-1201
    Zhao X. Y., Liu M. S., Li J. R., Guan C. M. and Zhang X. S.. The wheat TaGI1, involved inphotoperiodic flowering, encodes an Arabidopsis GI ortholog. Plant Mol. Biol.,2005,58(1):53-64
    Zilberman D., Gehring M., Tran R. K., Ballinger T. and Henikoff S.. Genome-wide analysisof Arabidopsis thaliana DNA methylation uncovers an interdependence betweenmethylation and transcription. Nat. Genet.,2007,39(1):61-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700