原位修复石油烃污染地下水的PRB技术及长效性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油作为一种重要能源,是国民经济发展的重要物质基础。然而,在进行石油开采、储存及生产加工等过程中,由于泄露及不合理排放等原因,使得大量石油烃进入环境,即而通过大气降水、土壤淋溶、地表水渗入等各种途径污染地下水。地下水是人类和其他一切生物的直接供水水源及与地表水发生水力联系的间接水源,对其污染的控制关系到人类的健康与生态的安全。因此,对石油烃污染地下水的修复至关重要。
     近年来,石油烃污染地下水的原位修复技术得到人们的关注,其中PRB技术因具有较长时间持续原位处理、安装施工方便、运行费用低等诸多优点被广泛使用。PRB技术应用于石油烃污染地下水修复时,大部分选择了生物PRB以达到高效、清洁、廉价的修复目标。然而,在采用生物PRB的实际修复过程中,存在由于地下水温度低、缺乏营养等因素使得微生物活性降低或由于微生物的繁殖、代谢造成PRB介质孔隙堵塞、渗透性下降等因素使得生物PRB不能长期、有效的运行。生物PRB运行的长效性主要取决于高效、持久的微生物降解活性以及PRB保持良好的渗透性。
     本文以石油烃污染地下水的原位生物PRB修复技术及其长效性为研究对象而展开,从PRB功能菌、填充介质、反应墙体的构建及PRB一旦失活或堵塞采取的技术措施各方面进行研究,确保PRB长期、有效的运行。从功能菌方面,对生物PRB的功能菌株进行紫外诱变,以提高功能菌在PRB长期运行过程中降解的稳定性;从填充介质方面,研究了三种材料在长期运行中的稳定性和对功能菌固定的有效性,添加新型填充材料—电气石作为PRB的活性反应材料,提高了PRB的生物活性和反应介质的渗透性;在确定功能菌和填充介质的基础上,为了保证PRB长期、有效的修复效果,预防PRB运行过程出现堵塞问题,设计、构建两种PRB—多介质组合PRB和复配介质PRB,并结合实际污染场地的水文地质及地下水化学条件进行室内模拟修复,研究、对比了两种PRB修复效果,并对PRB有效运行200d后的生物特性包括微生物数、脱氢酶活性及复配PRB的微生物群落分布进行分析,为了防止反应墙体中微生物的失活,初步研究了采用无机营养盐对微生物进行激活;为了解决PRB一旦发生堵塞而失效的问题,该研究还将在线监测系统应用于PRB运行过程中,对PRB运行过程中的堵塞部位进行在线自动识别并采用超声—高压水冲洗法进行解堵处理。以期为石油烃污染地下水实际修复工程的长期、有效运行提供理论参考依据和技术支持。
     对功能菌进行紫外诱变的研究中,根据对石油烃的降解效果,选取正突变菌株:S14、S21和S32,三株菌株对石油烃降解率诱变后均有所提高;与原菌相比,诱变菌经10次传代后具有遗传稳定性,在碱性或石油烃浓度较低的环境中能保持对石油烃高效降解的稳定性;在石油烃浓度较低条件下,诱变菌株对石油烃的降解符合一级反应动力学方程,浓度较高时,符合零级反应动力学方程;经紫外诱变后,石油烃降解菌中单菌的菌体及菌落形态未发生变化,仅在菌落所占比例方面有所变化,3种菌株紫外诱变后菌株的9项生理生化特性与原菌株一致。
     三种填充介质—泥炭、电气石和珍珠岩的特性研究表明,三种介质在与地下水经过长期接触后,无有机物质及重金属元素溶出,少量无机离子(Na+、Mg2+和Ca2+)的溶出使地下水的矿化度和硬度有较少的增加,但不会影响地下水水质,因此,三种材料作为PRB填充介质,在PRB长期运行中均安全、无害,且比较稳定。三种材料不能被微生物分解,具有生物稳定性。三种介质中,泥炭对功能菌固定化效果最好,24h固定化率达到85%以上,电气石和珍珠岩对功能菌也有固定化效果,固定化率为20%—30%。电气石具有辐射中远红外线的特性,在PRB修复石油烃污染地下水的过程中,添加电气石可以调节地下水的pH,增加溶解氧,提高微生物脱氢酶活性,减小水分子团结构,增强水的透过性,一定程度上缓解了PRB的堵塞。
     构建的两种PRB反应器中,多介质组合PRB按渗透系数K逐层增大的原则,确定3层填充介质为粗砂、电气石、珍珠岩分别以体积比4:1与固定化泥炭混合,复配介质PRB选取粗砂、固定泥炭、电气石,体积比为3:1:1作为的填充介质。结合实际污染场地条件的模拟修复效果表明,两种PRB均能高效修复石油烃污染地下水,在运行的200d内出水中未检出石油烃,石油烃的污染羽随时间逐渐扩大,且石油烃首先出现在反应介质的底层,然后出现在表层,随后扩散至整个介质层。两种PRB对比可以看出,从修复效果来看,复配介质PRB更高效,从渗透性来看,多介质组合PRB的渗透性能较好。复配介质PRB运行200d后,反应介质前端30cm地下水中TPH为0.74mg/L—5.42mg/L,后端30cm地下水中TPH较低且分布较均匀,均低于0.29mg/L。从渗透性方面来说,多介质组合PRB前端0—10cm在反应器运行150d后,渗透系数低于污染场地含水层的渗透系数,10cm—30cm在反应器运行200d后,渗透系数低于污染场地含水层的渗透系数,30cm—50cm、50cm—60cm的渗透系数K在运行的200d内变化微小,远远大于场地的渗透系数。
     两种PRB运行200d后,对其微生物特性包括微生物数、脱氢酶活性及对复配介质PRB的微生物群落分布的研究表明,地下水中TPH较高的部位,介质中的微生物数量也较多。不同介质中微生物的脱氢酶活性存在差异,但同一介质层的脱氢酶活性随深度的变化趋势大致相同,呈现脱氢酶活性随深度先增加后逐渐降低的趋势。总体来看,微生物数量多的层位,相应地微生物所产生的脱氢酶活性也较高,且具有一定的相关性。200d后复配介质PRB中微生物群落的DGGE图谱分析表明,PRB中微生物群落结构的相似性随着距离的增大而降低,其中B2与B5的相似度最高,达83.1%。微生物群落的Shannon多样性指数在1.78—2.19之间,多样性随距离的增大而增大。结合PRB中TPH分布来看,TPH浓度高的部位,微生物群落较为稳定,多样性较低。反之,TPH浓度低的部位,微生物群落不稳定,多样性较高。PRB运行200d后,PRB6个点位样品中都存在固定化功能菌且它们在整个系统中相对数量占优势。位于PRB的前端,功能菌群的相对数量较高,随着PRB距离的增大,功能菌的相对数量有降低的趋势。Yarrowia sp.菌在运行的200d内在PRB中相对数量均较高且占优势,Pseudomonassp.和Acinetobacter sp.菌在PRB前端相对数量较高,在PRB的后端,相对数量较低,优势不明显。添加无机营养盐对微生物脱氢酶活性有一定的激活效果,未添加无机营养盐的培养液经激活后,微生物脱氢酶活性不但没有继续降低,反而有所提高,激活后第2d微生物脱氢酶活性升高到32μgTTC/(L·h),微生物对石油烃的降解率在激活后也随之提高。
     采用Diver地下水水位自动监测仪对PRB水位进行在线监测,对PRB堵塞部位进行自动识别,监测结果表明堵塞部位易发生在反应器首段0—15cm内,采用超声—高压水冲洗法进行解堵处理,根据其对微生物脱氢酶活性、微生物降解石油烃效果和渗透系数的影响确定最佳解堵条件为声能密度0.5W/ml、超声时间8min、冲洗水量100ml/min、冲洗时间20min,在该条件下处理后,PRB堵塞部位得到了有效解除。
As one of the essential energy sources, petroleum is an important material basisfor the development of national economy. However, a great deal of petroleumhydrocarbons has entered into environment due to leakage, unreasonable recharge andother factors during the petroleum exploitation, reserve and production, whichcontaminated groundwater through atmospheric precipitation, soil leaching, surfacewater leakage and other ways. Groundwater is a direct water supply source for humanand other living things and is an indirect water source connecting with surface water,the contamination of which will affect humans’ health and the safety of ecology.Therefore, the remediation of groundwater contaminated by petroleum hydrocarbonsis significant.
     In recent years, the remediation of groundwater contaminated by petroleumhydrocarbons has gained considerable attention. Among all the techniques, the PRBtechnique was adopted widely for its long in situ remediation, convenient installationand low cost. When it was applied in the remediation of groundwater contaminated bypetroleum hydrocarbons, the bio-PRB was adopted for its cleanness and cost-effective.However, the microbe activity degradation due to low temperature, nutrientsdeficiency and porosity clogging, permeability reduction caused by microbe growthaffected the long-term efficiency of the PRB. Therefore, the long-term efficiency ofthe PRB depends on the high biodegradation efficiency and hydraulic conductivity.
     Aiming to the PRB technique and its long-term efficiency for the in-situremediation of groundwater contaminated by petroleum hydrocarbons, the microbes,fillings, the construction of PRB and the techniques for microbe activation andclogging removal were studied. For the microbes, it was mutated by ultravioletmutagenesis to improve stability of biodegradation in PRB. For fillings, the stabilityand the immobilization of three materials were investigated, and the tourmaline wasadded as an active material in the PRB, which had abilities to promote the biological activity and the hydraulic conductivity of PRB. Two biological reactive barriers weredesigned and constructed on the basis of the optimization of bacteria and filling, theywere multi-layer PRB and mixed-media PRB. Combined with the hydrogeology andchemical conditions of the polluted field, the bioremediation simulation by tworeactors operated200days, and the remediation efficiency of two PRBs were studiedand compared. After a200-d operation, the microbes, dehydrogenase activity andmicrobial community of mixed PRB was investigated. Activation by inorganic saltswas also studied once the microbes lost activity. The on-line monitoring system wasapplied in PRB when it was in operation to guard against PRB clogging and identifythe clogging position. Moreover, the ultrasonic combined with high pressure washingtechnique to remove the PRB clogging was studied. It is expected that the study cancontribute to the practical application of PRB in the remediation of groundwatercontaminated by petroleum hydrocarbons.
     The results of ultraviolet mutagenesis suggested that the biodegradation ofpetroleum hydrocarbons by three positive mutant strains S14, S21and S32was allimproved. The hereditary character of high degradation ability of mutant microbeswas stable and the mutant microbes kept degrading petroleum hydrocarbons whenthey were in basic and low concentration environment. The biodegradation ofpetroleum hydrocarbons by mutant microbes followed first-order kinetics in lowerconcentration while it followed zero-order kinetics in higher concentration. Inaddition, the shape, physiological and biochemical characteristics of the strains andcolony after mutagenesis was the same as before, the only difference was the ratio ofthe colony.
     The study on the characteristics of three materials peat, tourmaline and perliteindicated that there were no organic substances but a few inorganic substances afterthey contacted with groundwater for a long time, which would increase the mineralcontent and hardness of groundwater but not influence the groundwater quality.Therefore, the material was safe and stable. Meanwhile, they could not bebiodegraded by microbes and had ability of immobilization, the immobilizedefficiency of peat reached85%and it was20%to30%for two others after24hours. The tourmaline had ability to radiate infrared and it adjusted pH, reduced watercluster and promoted hydraulic conductivity and microbial activity during theremediation.
     Among two PRBs, the multi-layer PRB was designed according to thepermeability coefficient that was increased with the length and the fillings of threelayers were coarse sand, tourmaline and perlite mixed with immobilized peatrespectively, the ratio was4to1for each of them. The filling of mixed-media PRBwas mixed coarse sand, immobilized peat and tourmaline, the ratio was3:1:1. BothPRBs remediated polluted groundwater efficiently and there was no petroleumhydrocarbons detected in the effluent during a200-d operation. With the passage oftime, the polluted plume of petroleum hydrocarbons appeared and diffused gradually,which appeared in the bottom at first and then in the surface layer until it diffused tothe entire media. The contrast of the two PRBs indicated that the mixed-media PRBhad high removal efficiency and the multi-layer PRB was preferable in hydraulicconductivity. In the mixed-media PRB, the THP concentration ranged from0.74mg/Lto5.42mg/L in the fore-end30cm of the reactor, while it reached lower than0.29mg/L in the back-end and distributed averagely after a200-d bioremediation. In themulti-layer PRB, the permeability coefficient in the for-end0to10cm was lower thanthe field after150days, in10cm to30cm it was lower than the field after200days, in30cm to50cm and50cm to60cm of the system, there was little changes and thepermeability coefficient was much greater than the field.
     After a200-d bioremediation of two PRBs, the investigation of microbes,dehydrogenase activity and microbial community indicated that there were moremicrobes in the position with higher TPH. The dehydrogenase activity was differentin each layer and the change with depth in the same layer was similar, it increased atfirst and then decreased with the depth. In general, the more the microbes, the higherthe dehydrogenase activity, and they were correlated with each other. The atlas ofDGGE showed that the similarity of microbial community in the PRB decreased withlength and the highest reached83.1%between B2and B5. The Shannon diversityindex was from1.78to2.19and the microbial diversity increased with length. Combined with the distribution of TPH, it illustrated that the microbial communityprofiles were more stable and was less diversiform in the position with high THP.Conversely, the microbial community was less stable and was more diversiform in theposition with low THP. The results indicated that the functional immobilizedmicroorganism existed and was dominant in each position of PRB after200-dbioremediation, among which Yarrowia sp. had high band density in each positionwhile Pseudomonas sp. and Acinetobacter sp. had high band density in fore-end ofPRB and low band density in back-end. The microbe could be activated by addinginorganic salts. The dehydrogenase activity improved after it was activated and itreached32μgTTC/(L·h) after2days. Meanwhile, the biodegradation efficiency ofpetroleum hydrocarbons improved.
     To identify the clogging in the PRB on line, the Diver automatic water levelmonitoring instrument was applied during its operation. The monitoring data showedthat the clogging would probably appear in the fore-end0to15cm of the reactor. Toremove the clogging in the PRB, the ultrasonic combined with high pressure washingtechnique was investigated, ultrasonic density0.5W/ml, ultrasonic time8min,flushing flow100ml/min、flushing time20min were determined according to theinfluence on the microbes, dehydrogenase activity, biodegradation efficiency andpermeability coefficient, under which, the clogging was removed efficiently.
引文
[1] Farhad Nadim, George E. Hoag, Shili Liu, et al. Detection and remediation of soil andaquifer systems contaminated with petroleum products: an overview[J]. Journal of PetroleumScience and Engineering,2000(26):169–178.
    [2] Lesage S, Hao X, Kent S N. Distinguishing natural hydrocarbons from anthropogeniccontamination in groundwater[J]. Groundwater,1997,35(1):149-160.
    [3] Vazquez D, Mansoori G A. Identification and measurement of petroleum recipitates [J]. PetroSci Engineer,2000(26):49-55.
    [4] Wang Zhendi, Li K, Fingas M, et al. Characterization and source identification ofhydrocarbons in water samples using multiple analytical techniques[J]. Journal ofChromatography A,2002,971(1-2):173-184.
    [5]詹研.中国土壤石油污染的危害及治理对策[J].环境污染与防治,2008,30(3):91-96.
    [6]程金香,马俊杰,王伯铎,等.石油开发工程生态环境影响分析与评价[J].环境科学与技术,2004,27(6):64-65.
    [7]陆秀君,郭书海,孙清,等.石油污染土壤的修复技术研究现状及展望[J].沈阳农业大学学报,2003,34(1):63-67.
    [8]陈晓东.沈抚灌区土壤生态恢复途径初步研究[J].环境保护科学,2002,28(2):33-35.
    [9]马莹,马俊杰.石油开采对地下水的污染及防治对策[J].地下水,2010,32(2):56-57.
    [10]张学佳,纪巍,康志军,等.水环境中石油类污染物的危害及其处理技术[J].石化技术与应用,2009,27(2):181-182.
    [11] Temesgen Garoma, Mirat D. Gurol, Olufisayo Osibodu, et al. Treatment of groundwatercontaminated with gasoline components by an ozone/UV process[J].Chemosphere,2008(73):825–831.
    [12] Chen, Z.,2000. Integrated environmental modeling and risk assessment under uncertainty.Ph.D. Thesis, University of Regina, Regina, Saskatchewan.
    [13]王玉梅,党俊芳.油气田地区的地下水污染分析[J].地质灾害与环境护,2000,11(3):271-273.
    [14]李铎,宋雪琳,牛平山.大武水源地地下水环境模拟与石油污染控制研究[J].北京地质,2001,13(4):20-24.
    [15]陈余道,朱学愚,武三三.淄博市临淄地区地下水源地石油烃污染特征[J].中国岩溶,1997,16(1):35-40.
    [16]李广贺,贾道昌,任增平.大武水源地东部地下水石油化工污染特征及防治措施[R].北京:清华大学,1997.
    [17]黄艺,礼晓,蔡佳亮.石油污染生物修复研究进展[J].生态环境学报,2009,18(1):361-367.
    [18]方大伟,王媛媛,杨轶珣,等.分子生物技术在石油降解微生物研究中的应用[J].化学工业与工程技术,2007,28(6):5-8.
    [19]袁红莉,杨金水,王占生,等.降解石油微生物菌种的筛选及降解特性[J].中国环境科学,2003,23(2):157-161.
    [20] Bassim E. Abbassi, Walid D. Shquirat. Kinetics of indigenous isolated bacteria used forex-situ bioremediation of petroleum contaminated soil[J].Water Air Soil Pollut,2008(192):221-226.
    [21]王红旗,熊樱,陈延君.土壤中石油污染物微生物修复动力学和机理初探[J].环境化学,2008,27(3):339-344.
    [22] Andreoni V, Cavalca L, Rao M A, et al. Bacterial communities and enzyme activities ofPAHs polluted soils[J].Chemosphere,2004,57(5):401-412.
    [23]陈延君,王红旗,熊樱.正十六烷微生物降解酶的定域和酶促降解性[J].环境科学研究,2007,20(6):120-125.
    [24] April TM, AbbottSP, Foght JM. Degradation of hydrocarbons in crude oil by the ascomycetePseudallescheria boyclii (Microascaceae)[J].Can J Microbiol.1998,44(3):270-278.
    [25] Oudot J, Merlin FX, Pinvidic P. Weathering rates of oil components in a bioremediationexperiment in estuarine sediments[J]. Mar Environ Res.1998,45(2):113-125.
    [26] Jeffrey A. Cunningham, Gary D. Hopkins, Carmen A. Lebron. Enhanced anaerobicbioremediation of groundwater contaminated by fuel hydrocarbons at Seal Beach,California[J]. Biodegradation,2000(11):159–170.
    [27] Schmitt R, Langguth HR, Puettmann W. Aromatic hydrocarbon degradation and metabolitesformation in aquifers of a former gasworks site: Influence of soil and groundwaterreclamations. Groundwater[J].1998,3(2):78-86.
    [28] Ana C. Moran, Nelda Olivera, Marta Commendatore, et al. Enhancement of hydrocarbonwaste biodegradation by addition of a biosurfactant from Bacillus subtilis O9[J].Biodegradation,2000(11):65-71.
    [29] Pierre Juteau, Jean-Guy Bisaillon, Fran ois Lepine,et al. Improving the biotreatment ofhydrocarbons-contaminated soils by addition of activated sludge taken from the wastewatertreatment facilities of an oil refinery[J]. Biodegradation,2003(14):31–40.
    [30]李艳红,解庆林,申泰铭,等.紫外诱变选育除油细菌处理采油废水的试验[J].环境科学与技术,2009,32(2):164-167.
    [31]周双飞,蒲万芬,吴凯,等.石油降解微生物的物理化学诱变育种研究[J].油田化学,2009,26(3):328-330.
    [32]刘永军,郑昕,金鹏康,等.石油集输系统中微生物群落结构研究[J].微生物学杂志,2009,29(3):25-30.
    [33]]Gerrit Voodrdouw, Stephen M Armstrong,Monika F Reimer,et al. Characterization of16SrRNA genes from oil field microbial communities indicates the presence of a variety ofsulfate-reducing, fermentative, and sulfide-oxidizing bacteria[J]. Appl. Envir. Microbiol,1996,62(5):1623-1629.
    [34] Selvaratnam S,Schoedel B A,Mefarland B L,et al. Application of the polymerase chainreaction (NCR) and reverse transcriptase/YCR for determining the fate of phenol-degradingI'seudomonas putida A'CCC11172in a bioaugmented sequencing batch reactor[J].ApplMicrobiol Biotechnol,1997(47):236-240.
    [35] Kazuya Watanabe, Yumiko Kodama, NatsukoHamamura,et al.Diversity, abundance, andactivity of archaeal populations in oil-contaminated groundwater accumulated at the bottomof an underground crude oil storage cavity[J].Appl.Envir.Microbiol,2002,68(8):3899-3907.
    [36]钱家忠,吴剑锋,朱学愚.地下水资源评价与管理数学模型的研究进展[J].科学通报,2001,46(2):99-105.
    [37] A. Kermanshahi pour, D. Karamanev, A. Margaritis. Biodegradation of petroleumhydrocarbons in an immobilized cell airlift bioreactor[J].Water Research,2005(39):3704-3714.
    [38]马振民,于玮玮,吕华.地下水系统石油烃污染研究进展[J].矿冶,2008,17(4):64-67.
    [39]陈余道,朱学愚,武三三.淄博市临淄地区地下水源地石油烃污染特征[J].中国岩溶,1997,16(1):35-40.
    [40]张渤,韩洁.石油烃类污染物在地下水中自然衰减特性[J].重庆环境科学,2002,24(5):35-38.
    [41]刘新华,傅家谟,沈照理.油类污染过程中地下水地球化学环境的变化—以山东省淄博市某地下水源地为例[J].地球化学,1996,25(4):331-338.
    [42]王东海,李广贺.石油类污染物在砂砾石层中的迁移与分布[J].环境科学,1998(5):18-21.
    [43]刘新华,沈照理,钟佐焱木.淄博市地下水水源地石油化工型油类污染及其治理方案研究[J].现代地质,1995(1):17-18.
    [44] Clark L. Groundwater contamination by oils-control and clean up[J].Water and WasteTreatment,1990,33(2):36-40.
    [45] Baehr A.L. Selective transport of hydrocarbons in the unsaturated zone due to aqueous andvapor phase partitioning[J]. Water Resour,1987,23(4):1926-1938.
    [46] Miller R N. A field-scal investigation of petroleum hydrocarbon bio-degradation in thevadose zone enhanced by soil venting at tyndall AFB[J]. MA,1991:283-302.
    [49]吴玉成,治理地下水有机污染抽出处理技术影响因素分析[J].水文地质工程地质,1998(1):27-29.
    [48] Mackay DM, Cherry JA. Groundwater contamination: Pump-and-treat remediation[J].Environ. Sci. Technol,1989(23):630–636.
    [49] Travis CC, Doty CB. Can contaminated aquifers at Superfund sites be remediated?[J].Environ. Sci. Technol,1990(24):1464-1466.
    [50] Gillham R W, O’Hannesin S F. Enhanced degradation of halogenated aliphatics by zero2valent iron [J].Ground Water,1994,32(6):958-967.
    [51]罗育池,李传生.PRB技术及其在地下水污染修复中的应用[J].安徽农业科学,2007,35(27):8656-8657.
    [52]钟佐橤.地下水有机污染控制及就地恢复技术研究进展(三)[J].水文地质工程地质,2001,28(5):76-79.
    [53]刘玲,徐文彬,甘树福.PRB技术在地下水污染修复中的研究进展[J].水资源保护,2006,22(6):76-80.
    [54] BENNERML, STANFORD S M, LEE L S,et al.Field and numerical analysis of in-situ airsparging: a case study[J].Journal of Hazardous Materials,2000,72(2-3):217-236.
    [55] JOHNSTON C D, RAYNER J L, PATTERSON B M,et al.Volatilisation and biodegradationduring air sparging of dissolved BTEX-contaminated groundwater[J].Journal ofContaminated Hydrology,1998,33(3-4):377-404.
    [56] MURRAY WA, LUNARDINI JR R C, ULLO JR F J,et al. Site5air sparging pilot test,naval air station cecil field, Jacksonville, Florida[J].Journal of Hazardous Materials,2000,72(2-3):121-145.
    [57]王志强,武强,邹祖光,等.地下水石油污染曝气治理技术研究[J].环境科学,2007,28(4):755-760.
    [58]张兰英,阿布巴卡尔·达布雷,林学钰,等.模拟地下水环境微生物降解甲苯的研究[J].环境科学学报,2002,22(5):634-636.
    [59] CHIANG C Y. Aerobic biodegradation of benzene toluene and xylene in a sandy aquiferdata analysis and computer modeling[J].Ground Water,1989,27(6):823-834.
    [60] Zeyer J,Kuhn E P, Schwarzenbach R P. Rapid microbial mineralization of toluene and1,3-dimethy-benzene in the absence of molecular oxygen[J].. Applied and Microbiology,1986,52(4):944-947.
    [61] DANIELH, DOMINIK J, KATHARINAH,et al. Petroleum hydrocarbon mineralization inanaerobic laboratory aquifer columns[J]. Journal of Contaminant Hydrology,1998,32(1-2):41-61.
    [62]杜连柱,张兰英,王立东,等.PRB技术对地下水中重金属离子的处理研究[J].环境污染与防治,2007,29(8):578-582.
    [63]杨维,王立东,徐丽,等.铬污染地下水的PRB反应介质筛选及修复试验[J].吉林大学学报(地球科学版),2008,38(5):854-858.
    [64]许光泉,史红伟,何晓文. PRB技术处理污染地下水的试验研究[J].合肥工业大学学报(自然科学版),2010,33(6):901-905.
    [65]董军,赵勇胜,黄奇文,等.用双层PRB技术处理垃圾填埋场地下水污染的可行性研究[J].环境科学学报,2004,24(6):1021-1026.
    [66]张虎元,王宝,董兴玲,等.污泥用作渗透性反应壁填料的可行性研究[J].环境科学,2010,31(5):1280-1286.
    [67]熊玲,张瑞雪,吴攀,等.碳酸盐岩处理煤矿酸性废水的试验研究[J].水处理技术,2010,36(8):45-48.
    [68]孟庆玲,任群,王显胜,等.组合材料渗透反应墙对硝基苯污染地下水的修复研究[J].北京大学学报(自然科学版),2010,46(3):413-416.
    [69]唐次来,张增强,王珍.基于Fe0的PRB去除地下水中硝酸盐的模拟研究[J].环境工程学报,2010,4(11):2429-2436.
    [70]孙立波.化学与生物组合型反应墙原位修复硝基苯和苯胺污染地下水的研究[D].长春:吉林大学环境与资源学院,2007.
    [71]毕海涛.地下水污染原位修复的生物可渗透反应墙新型装填介质初探[M].长春:吉林大学环境与资源学院,2007.
    [72]杨维,施爽,金丰尧,等.去除地下水硝酸盐PRB生物介质可行性试验研究[J].环境科学与技术,2010,33(6):111-114.
    [73]范彬,武杰伟,朱仕坤,等.产电生物可渗透活性反应栅法(ePRB)地下水有机污染物修复研究[J].地下水,2009,31(2):8-10.
    [74] R. Thiruvenkatachari, S. Vigneswaran, R. Naidu. Permeable reactive barrier forgroundwater remediation[J]. Journal of Industrial and Engineering Chemistry,2008(14)145–156.
    [75] C. M. Kao, S. C. Chen, J. K. Liu.Development of a biobarrier for the remediation of PCE-contaminated aquifer [J].Chemosphere.2001,43(8):1071–1078.
    [76] Tsai T. T., C. M. Kao, A. Hong, et al. Remediation of TCE-contaminated aquifer by an insitu three-stage treatment train system[J]. Colloids and Surfaces a-Physicochemical andEngineering Aspects,2008,322(1-3):130-137.
    [77] J.L. Vogan, R.M. Focht, D.K. Clark, et al. Performance evaluation of a permeable reactivebarrier for remediation of dissolved chlorinated solvents in groundwater[J]. Journal ofHazardous Materials,1999(68):97–108.
    [78] Jai-Young Lee, Kui-Jae Lee, Sun-Young Youm, et al. Stability of multi-permeable reactivebarriers for long term removal of mixed contaminants[J]. Bull Environ Contam Toxicol,2010(84):250–254.
    [79] F. Di Natale, M. Di Natale, R. Greco, et al. Groundwater protection from cadmiumcontamination by permeable reactive barriers[J]. Hazard. Mater,2008(160):428–434.
    [80] Jun-Boum Park, Seung-Hak Lee, Jae-Won Lee, et al. Lab scale experiments for permeablereactive barriers against contaminated groundwater with ammonium and heavy metalsusing clinoptilolite[J]. Journal of Hazardous Materials,2002(B95):65–79.
    [81] O. Gibert, J. de Pablo, J.L. Cortina, et al. Treatment of acid mine drainage bysulphate-reducing bacteria using permeable reactive barriers: A review from laboratory tofull-scale experiments[J]. Re/Views in Environmental Science&Bio/Technology,2002(1):327–333.
    [82] Philip W. Amos, Paul L. Younger. Substrate characterisation for a subsurface reactive barrierto treat colliery spoil leachate[J]. Water Research,2003(37):108–120.
    [83] O. Gibert, S. Pomierny, I. Rowe, et al. Selection of organic substrates as potential reactivematerials for use in a denitrification permeable reactive barrier (PRB)[J]. Bioresour.Technol,2008(99):7587–7596.
    [84] L. Yerushalmi, M. F. Manuel, S. R. Guiot. Biodegradation of gasoline and BTEX in amicroaerophilic biobarrier[J]. Biodegradation,1999,10(5):341–352.
    [85] Chi-Hui Yeh, Chi-Wen Lin, Chih-Hung Wu. A permeable reactive barrier for thebioremediation of BTEX-contaminated groundwater: Microbial community distributionand removal efficiencies[J]. Journal of Hazardous Materials,2010,11183,1-7.
    [86] Tiehm A., A. Muller, S. Alt, et al. Weingran. Development of a groundwater biobarrier forthe removal of polycyclic aromatic hydrocarbons. BTEX, and heterocyclic hydrocarbons[J]. Water Science and Technology,2008,58(7):1349-1355.
    [87]刘秀丽.地下水中BTEX的迁移规律及其原位生物修复技术研究[D].天津:天津大学环境科学与工程学院,2010.
    [88]马会强.石油烃污染地下水的原位生物修复研究[D].长春:吉林大学环境与资源学院,2009.
    [89] Chi-Wen Lin, Li-Hsuan Chen, Yet-Pole I, et al. Microbial communities and biodegradationin lab-scale BTEX-contaminated groundwater remediation using an oxygen-releasingreactive barrier[J]. Bioprocess and Biosystems Engineering,2010,33(3):383-391.
    [90] S. Saponaro, M. Negri, E. Sezenna, et al. Groundwater remediation by an in situ biobarrier:a bench scale feasibility test for methyl tert-butyl ether and other gasoline compounds[J].Hazard. Mater.2009,167(1-3):545–552.
    [91] Karen D, Miller Paul C, Johnson Cristin L. Bruce. Full-scale in-situ biobarrierdemonstration for containment and treatment of MTBE[J].Remediation Journal,2001,12(1):25-36.
    [92] S. J. Liu, B. Jiang, G. Q. Huang, X. G. Li. Laboratory column study for remediation ofMTBE-contaminated groundwater using a biological two-layer permeable barrier[J]. WaterRes,2006(40):3401–3408.
    [93] Vesela L., J. Nemecek, M. Siglova, et al.The biofiltration permeable reactive barrier:Practical experience from Synthesia[J]. International Biodeterioration&Biodegradation,2006,58(3-4):224-230.
    [94] Guiot S. R., R. Cimpoia, C. Rhofir, et al. Biobarrier stability lab-scale studies for treatmentof hydrocarbon-contaminated groundwater [J]. European Symposium on EnvironmentalBiotechnology,2004:255-259.
    [95] ERRY McGOVERN, TURLOUGH F. GUERIN, STUART HORNER, et al. Design,construction and operation of a funnel and gate in-situ permeable reactive barrier forremediation of petroleum hydrocarbons in groundwater [J]. Water, Air, and Soil Pollution,2002(136):11–31.
    [96] Turlough F. Guerin, Stuart Horner, Terry McGovern, et al. An application of permeablereactive barrier technology to petroleum hydrocarbon contaminated groundwater[J]. WaterResearch,2002(36):15–24.
    [97] Lin Li, Craig H. Benson, Elizabeth M. Lawson. Modeling porosity reductions caused bymineral fouling in continuous-wall permeable reactive barriers[J]. Journal of ContaminantHydrology,2006(83):89-121.
    [98] P. Mackenzie, D. Horney, T. Sivavec. Mineral precipitation and porosity losses in granulariron columns[J]. Hazard. Mater,1999(68):1–17.
    [99] Jin suk O, Sung-Wook Jeen, Robert W. Gillham, et al. Effects of initial iron corrosion rateon long-term performance of iron permeable reactive barriers: Column experiments andnumerical simulation[J].Journal of Contaminant Hydrology,2009(103):145–156.
    [100] V. Zolla, R. Sethi, A. D. Molfetta. Performance assessment and monitoring of a permeablereactive barrier for the remediation of a contaminated site[J]. American Journal ofEnrionmental Sciences,2007,3(3):158–165.
    [101] J. Wantanaphong, S. J. Mooney, E. H. Bailey. Quantification of pore cloggingcharacteristics in potential permeable reactive barrier (PRB) substrates using imageanalysis[J]. Journal of Contaminant Hydrology,2006(86):299-320.
    [102] Lin Li, Craig H. Benson. Evaluation of five strategies to limit the impact of fouling inpermeable reactive barriers[J]. Journal of Hazardous Materials,2010(181):170–180.
    [103] T. Okubo, J. Matsumoto. Biological clogging of sand and changes of organic constituentsduring artificial recharge[J]. Water Resource,1983,17(7):813-821.
    [104] Boon N, Top E M, Verstraete W, et al. Bioaugmentation as a tool to protect the structureand function of an activated-sludge microbial community against a3-chloroaniline shockload [J]. Appl. Environ. Microbiol,2003(3):1511-1520.
    [105]Capelli Mana S. Hydrocarbon bioremediation of a mineral-base contaminated waste fromcrude oilextraction by indigenous bacteria[J]. International Biodeterioration andBiodegradation,2001(47):233-238.
    [106]申泰铭,解庆林,李艳红,等.物理诱变育种技术在环境工程中的发展及运用[J].环境科学与管理,2008,33(6):53-55.
    [107]马超杰,黄学敏,凌海志,等.紫外诱变筛选高效氧化亚铁硫杆菌[J].环境科学与管理,2009,34(11):86-89.
    [108]李伟民,江映翔.微生物选育技术在废水生物处理中的应用进展[J].环境污染治理技术与设备,2001,2(4):49-52.
    [109]江映翔,孙佩石,刘安文,等.紫外线辐射对活性污泥除磷性能的增强作用[J].中国环境科学,2003,23(2):184-188.
    [110]林哲,赵庆祥,高俊枝.紫外光诱变技术在废水生化处理中应用研究[J].中国环境科学,1993,13(3):229-233.
    [111]杜馨,张方可.碳源对SBR工艺同步硝化反硝化的影响[J].中国给水排水,2007,23(11):47-51.
    [112]莫惠栋.最大似然法及其应用[J].遗传,1984,6(5):42-48.
    [113] Vester F, K Ingvorsen. Improved most-probable-number method to detect sulfate-reducingbacteria with natural media and a radiotracer[J]. Applied and Environmental Microbiology,1998,64(5):1700-1707.
    [114]赵斌.微生物学实验[M].北京:科学出版社.2002.
    [115]东秀珠,蔡妙应.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [116]布南坎R E,吉布斯N E.伯杰氏细菌学鉴定手册[M]:9版.北京:科学出版社,1995.
    [117]赵晓祥,詹小菁.微生物絮凝剂的发酵培养和诱变研究[J].环境污染与防治,2007,29(12):900-904.
    [118]马强,林爱军,马薇,等.土壤中总石油烃污染(TPH)的微生物降解与修复研究进展[J].生态毒理学报,2008,3(1):1-8.
    [119] SINGER M E, FINNERTY W R. Microbial metabolism of straight-chain and branchedalkanes[M].Macmillan Publishing Company,1984.
    [120] AUDREW R, AUTRY. Bioremediation: An effective semi-dial alternative for petroleumhydrocarbon-contamination soil [J]. Environment Progress,1992:318-322.
    [121]李艳红,解庆林,申泰铭,等.紫外诱变选育除油细菌处理采油废水的试验[J].环境科学与技术,2009,32(2):164-167.
    [122]马文超,赵光宇,阎鸿.五种PRB反应材料处理地下水污染效果对比[J].中国环境管理论文专辑,第2辑,2006,6:29-30.
    [123] RENATO, MARIA, LAURA. Characterization and performance of granular iron asreactive media for TCE degradation by permeable reactive barriers[J].Water, Air, and SoilPollution,2003(149):211–226.
    [124] A.Z. Woinarski, G.W. Stevens, I.Snape. A natural zeolite permeable reactive barrier to treatheavy-metal contaminated waters in Antarctica.Kinetic and Fixed-bed Studies[J]. ProcessSafety and Environmental Protection,2006,84(2):109–116.
    [125] R. Doherty, D.H. Phillips, K.L. McGeough. Development of modified flyash as apermeable reactive barrier medium for a former manufactured gas plant site, NorthernIreland[J]. Environ Geol,2006(50):37–46.
    [126] She-Jiang Liu, Bin Jiang, Guo-Qiang Huang, et al. Laboratory column study forremediation of MTBE-contaminated groundwater using a biological two-layer permeablebarrier[J]. Water Research,2006(40):3401-3408.
    [127] Francesca Pagnanelli, Carolina Cruz Viggi, Sara Mainelli, et al. Assessment of solidreactive mixtures for the development of biological permeable reactive barriers[J].Journalof Hazardous Materials,2009(170):998–1005.
    [128] Seo Y, W. H. Lee, G. Sorial, et al.The application of a mulch biofilm barrier for surfactantenhanced polycyclic aromatic hydrocarbon bioremediation[J].Environmental Pollution,2009,157(1):95-101.
    [129] Tsai T. T., C. M. Kao, A. Hong, et al. Remediation of TCE-contaminated aquifer by an insitu three-stage treatment train system[J].Colloids and Surfaces a-Physicochemical andEngineering Aspects,2008,322(1-3):130-137.
    [130] Vesela L., J. Nemecek, M. Siglova, et al. The biofiltration permeable reactive barrier:Practical experience from Synthesia[J].International Biodeterioration and Biodegradation,2006,58(3-4):224-230.
    [131] Kubo T. Interface activity of water given rise by tourmaline[J]. Solid State Physics,1989,24(12):121-123.
    [132]孟庆杰,张兴祥,王学晨,等.不同结构电气石微粉对酸溶液和碱溶液性质的影响[J].硅酸盐学报,2006,34(4):471-475.
    [133]夏枚生,许梓荣,张红梅,等.电气石对液态水团簇和沼泽红假单胞菌脱氢酶活性的影响[J].硅酸盐学报,2005(33):1006-1011.
    [134] Roppola K., T Kuokkanen, K. Kujala, et al. Utilization potential of peats-a study on peatbiodegradability determined by respirometric method[J]. Water Air and Soil Pollution,2008,192(1-4):59-66.
    [135]展杰,王泽岩,王朋,等.天然矿物电气石对水分子团簇的影响[J].功能材料,2010,1(41):159-161.
    [136]潘艳芬.电气石矿物材料的活化水作用及其生物学效应研究[D].天津:河北工业大学材料物理与化学,2006.
    [137]冀之江,金宗哲,梁金生,等.电气石对水体pH值的影响[J].中国环境科学,2002,22(6):515-519.
    [138]张建平,赵林,谭欣,等,改变水分子簇的结构及诱发的生物效应研究[J].天津理工学院学报,2003,19(4):8-11.
    [139] Philip W. Amos, Paul L. Younger. Substrate characterisation for a subsurface reactivebarrier to treat colliery spoil leachate[J]. Water Research,2003(37):108–120.
    [140] Arun R. Gavaskar. Design and construction techniques for permeable reactive barriers[J].Journal of Hazardous Materials,1999(68):41–71.
    [141]崔海炜,孙继朝,向小平,等. PRB技术在地下水污染修复中的研究进展[J].地下水,2010,32(3):81-83.
    [142] D.H. Phillips. Permeable reactive barriers: A sustainable technology for cleaningcontaminated groundwater in developing countries[J]. Desalination,2009(248):352–359.
    [143] Arun R. Gavaskar. Design and construction techniques for permeable reactive barriers[J].Journal of Hazardous Materials,1999(68):41–71.
    [144]李莉,王业耀,孟凡生.介质配比对PRB修复效率的影响[J].环境工程,2008,26(2):91-93.
    [145]宗芳,赵勇胜,董军,等.混合PRB介质处理渗滤液污染地下水的可行性研究[J].2006,25(2):183-186.
    [146] BAOHUA GU, DAVID B. WATSON, LIYOU WU, et al. Microbiological characteristicsin a zero-valent iron reactive barrier[J]. Environmental Monitoring and Assessment,2002(77):293–309.
    [147]郝春博,王广才,董健楠,等.石油污染地下水中细菌多样性研究[J].环境科学,2009,30(8):2464-2471.
    [148] Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplifiedgenes coding for16S r RNA[J]. Appl Environ Microbiol,1993(59):695-700.
    [149] Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems[J]. CurrOpin Microbiol,1999(2):317-322.
    [150] Muyzer G, Smalla K. Application of deturing gradient gel electrophoresis (DGGE) andtemperature gradient gel electrophoresis (TGGE) in microbial ecology[J]. Antonie VanLeeuwenhoek,1998(73):127-141.
    [151] Smalla K, Oros-Sichler M, Milling A, et al. Bacterial diversity of soils assessed by DGGE,T-RFLP and SSCP fingerprints of PCR-amplified16S rRNA gene fragments: Do thedifferent methods provide similar results?[J]. Journal of Microbiological Methods,2007(69):470-479.
    [152] Hendrickx B, Winnie D, Faber F, et al. PCR-DGGE method to assess the diversity ofBTEX mono-oxygenase genes at contaminated sites[J]. FEMS Microbiology Ecology,2006,55(2):262-273.
    [153] Pickup R W, Rhodes G, Alamillo M L,et al. Microbiological analysis of multi-levelborehole samples from a contaminated groundwater system[J]. Journal of ContaminantHydrology,2001,53:269-284.
    [154]姚德明,许华夏,张海荣,等.石油污染土壤生物修复过程中微生物生态研究[J].生态学杂志,2002,21(1):26-28.
    [155] Duineveld B M, Kowalchuk G A, Keijzer A, et al. Analysis of bacterial communities in therhizosphere of Chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified16S rRNA as well as DNA fragments coding for16S rRNA[J]. AppliedEnvironmental Microbiology,2001,67(1):172-178.
    [156] Sekiguchi H, Watanabe M, Nakahara T, et al. Succession of bacterial community structurealong the Changjiang River determined by denaturing gradient gel electrophoresis and clonelibrary analysis[J]. Applied Environmental Microbiology,2002,68(10):5142-5150.
    [157] Chu C P, Chang B V, Liao G S,et al. Observations on changes in ultrasonically treatedwaste-activated sludge [J]. Water Research,2001,35(4):1038-1046.
    [158] Pitt W G, Ross S A. Ultrasound increases the rate of bacterial cell growth [J].Biotechnology Progress,2003,19(3):1038-1044.
    [159]胡嘉东,王宏杰,董文艺,等.低强度超声提高污泥活性的运行条件优化[J].给水排水,2008,34(1):20-23.
    [160]张永发,祝济之,胡长华.超声波地层解堵机理研究初步[J].北京理工大学学报,2006,26(5):397-400.
    [161]许洪星,蒲春生,李燕红.大功率超声波处理近井带聚合物堵塞实验研究[J].油气地质与采收率,2011,18(5):93-96.
    [162]杜新强,冶雪艳,路莹,等.地下水人工回灌堵塞问题研究进展[J].地球科学进展,2009,24(9):973-980.
    [163]冷凯良,楚晓珉,张辉珍,等.微生物对石油烃降解代谢产物的分析方法研究[J].海洋水产研究,2001,22(2):57-61.
    [164] Lin Li, Craig H. Benson, Elizabeth M. Lawson. Modeling porosity reductions caused bymineral fouling in continuous-wall permeable reactive barriers[J]. Journal of ContaminantHydrology,2006(83):89-121.
    [165]杨婷,高乃云,严汉林.超声强化技术在水处理中的应用研究进展[J].四川环境,2011,30(6):133-138.
    [166]陈建启,胡军,谢广元,等.超声波处理对高硫煤浮选脱硫的影响[J].煤炭科学技术,1998,26(5):20-22.
    [167]王兴国,王悦蕾,赵水标.养殖水体增氧技术及方法探讨[J].浙江海洋学院学报(自然科学版),2004,23(2):114-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700