小麦淀粉性状的遗传及其与面包烘烤品质关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用245份国内外小麦种质资源,分析了其直链淀粉含量、膨胀势、降落值及与沉淀值和农艺性状的相关关系;选用6个小麦亲本材料,按照Griffing方法Ⅱ组配了一套双列杂交组合,研究了直链淀粉含量、膨胀势的配合力、杂种优势和遗传力;选用6个小麦品种分别在4个地点种植,研究了直链淀粉含量和膨胀势与环境的关系。结果表明:
     1、直链淀粉含量与沉淀值呈显著负相关,膨胀势与沉淀值呈极显著正相关,表明面包烘烤品质与淀粉性状有关。降落值与沉淀值相关不显著,说明α-淀粉酶在液化淀粉时对直链和支链淀粉的作用速度无明显差别,不反映材料间淀粉性状的差异,分析降落值应与面包评分直接联系。
     2、我国小麦种质资源的直链淀粉含量主要集中于22%~30%,膨胀势主要集中于7~9。供试国外种质资源的直链淀粉含量主要集中于180%~24%,膨胀势主要集中于7~11。就淀粉品质性状而言,国外材料明显均优于国内种质资源。
     3、直链淀粉含量、膨胀势与株高、穗长、小穗数和千粒重等农艺性状均相关不显著,通过合理组配亲本和正确选择,可望获得淀粉品质性状优良并且具有良好农艺性状的品种,实现高产和优质的结合改良。
     4、杂交组合间的直链淀粉含量和膨胀势的一般配合力和特殊配合力方差均达极显著水平,它们的一般配合力方差均大于特殊配合力方差,一般配合力效应值与亲本效应值的秩次基本一致。直链淀粉含量和膨胀势的狭义遗传力较低,应在杂交育种高代进行选择。杂交组合的直链淀粉含量表现出较明显的正向平均优势,倾高亲遗传。膨胀势在杂交组合中主要表现为负向平均优势,倾低亲遗传。
     5、环境对直链淀粉含量和膨胀势均有较大影响,其中直链淀粉含量的环境变异与基因型变异比较接近,膨胀势的基因型变异大于环境变异,在总
    
    变异中起主要作用。改良淀粉品质性状应把新品种的选育和科学的栽培措施
    结合起来。
     6、膨胀势与沉淀值的相关大于直链淀粉与沉淀值的相关,受环境影因
    素响更小,研究烘烤品质时,以膨胀势作为反映淀粉品质的指标优于直链淀
    粉含量。
245 wheat germplasm materials were used to study the correlation between
    amylose content, swelling power, falling number and Zeleny sedimentation value, agronomic traits. A set of diallel crosses involving 6 wheat parents, according to the model of Griffing Methods II ,was made to investigate the combining ability , heterossis, heritabiliry of amylose content and swelling power. 6 wheat cultivars growing in 4 locations were used to study the relation between amylose content, swelling power and environment.
    The results indicated that (1) the negative correlation between amylose content and Zeleny sedimentation value was significant; the positive correlation between swelling power and Zeleny sedimentation value extremely significant. The correlation above suggested starch properties affected baking quality. Because no significant correlation between falling number and Zeleny sedimentation could be observed, the falling number , which could not distinguish amylose from amylopectin in hydrolysis, should be investigated together with the bread score.
    (2) The amylose content and swelling power of domestic germplasm samples mainly distributed between 22% ~ 30% and 7~9 respectively, while the two indexes of the foreign germplasm mainly between 18% ~ 24% and 7~11 respectively. In terms of starch quality for baking bread, the foreign germplasm samples were better than their domestic counterparts.
    (3) Both amylose content and swelling power did not significantly correlate to such agronomic traits as plant height, spike length, spikelets number of single ear and
    
    
    thousand-kernel weight. It was possible to gain lines with low amylose content, high swelling power, high baking quality, desirable agronomic characters and high yield potential, so high yield and high quality could be harmoniously associated by crossing parents and selecting progeny correctly.
    (4) For amylose content and swelling power, the effect variance of the general combining ability and the special combining ability were both extremely significant., and the former was larger than the later, moreover, the order of the general combining effect value was in a same trend with the order of parents value. The heretability in the narrow sense of the two indexes were comparably low, so the selection should be conducted at high generation. It is evident that the average heterosis of amylose content was positive in effect, and the heredity of amylose content trended toward high value parent. Most of the average heterosis of swelling power was negative in effect, and the heredity of swelling power trended toward low value parent.
    (5) Both amylose content and swelling power were obviously affected by environment factors. The environmental variation of amylose content was close to the genetic variation, while the genetic variation, playing a main role in total variation of swelling power, was larger than the environmental variation. Accordingly the starch quality traits could be improved by breeding new varieties and providing desirable cultivation measures.
    (6) As the index of starch quality, swelling power was superior to amylose content by reason of its higher correlation to Zeleny sedimentation value and
    lower affection by environment.
引文
[1]刘广田,李保云.小麦品质性状的遗传及其遗传改良[J].农业生物技术学报, 2000,8(4):307~314.
    [2]李继刚.小麦淀粉性状的遗传和变异及基与品质改良关系的研究[D].北京:中国农业大学,2000.
    [3]李鸿恩.中国小麦种质资源主要品质鉴定[M].西安:陕西科学技术出版社,1992.
    [4]Preston K R, Lukow O M, Morgan B. Analysis of relationships between flour quality properties and protein fractions in a world wheat collection[J]. Cereal Chem.,1992, 69(5): 560~567.
    [5]MacRitchie F. Baking quality of wheat flour[J]. Adv. Food Res., 1984, 29: 201~277.
    [6]魏益民,李志西,王立宏.小麦品种籽粒蛋白质品质研究[J].西北农业大学学报,1992,20(4):18~23.
    [7]Osborne T B. The proteins of the wheat kernel[M]. Washington D C: Carnegie of institute Washington publication. 1907.1~119.
    [8]马传喜,吴兆苏.小麦胚乳蛋白组分及高分子量麦谷蛋白亚基与烘烤品质的关系[J].作物学报,1993,19(6):562~566.
    [9]李志西,魏益民,张建国,等.小麦蛋白质组分与面团特性和烘焙品质关系的研究[J].中国粮油学报,1998,13(3):1~5.
    [10]赵乃新,顾小红,兰静,等.小麦品质性状与蛋白质组分含量关系的研究[J].麦类作物,1998,18(4):44~47.
    [11]姜晓红,马兆祉,师素云.南方小麦品种的谷蛋白及醇溶蛋白与加工品质的关系[J].江苏农业学报,1991,7(2):32~38.
    
    
    [12] Sontag-Strhm T, Juuti T. Association between gliadin subunit alleles and baking quality in spring wheat cultivars and breeding lines grown in Finland[J]. Acta Agriculture Scandinavica. Section B, Sonil and plant science, 1997,47 (2) : 106~ 111.
    [13] Orth R A, Bushuk W. A comparative study of the protein of wheat of diverse baking qualities[J]. Cereal Chem.,1972, 49:268-275.
    [14] Bietz J A. Analysis of wheat gluten proteins by high-performance liquid chromatography[J]. Baker's Dig., 1984,58: 15-17,20-21,32.
    [15] Payne P I, Law C H, MUCLD E E, Contol by homologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm[J]. Theor. Appl. Genet., 1980, 58: 113-120.
    [16] Carrilo J M, Rousset M, Qualset C O,et al.Use of recombinant inbred lines of wheat for study of association of high-molecular-weight glutenin subunit alleles to quantitative traits: I. Grain and quality prediction tests[J].Theor. Appl. Genet.,1990,79: 321-330.
    [17] Burnouf T, Bouriquet R. Glutenin subunits of genetically related European hexaploid wheat cultivars: their relation to bread-making quality[J]. Theor. Appl. Genet., 1980, 58: 107-111.
    [18] Payne P I, Corfield K G, Holt L M. Correlations between the inheritance of certain high-molecular-weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat[J]. J. Sci. Food Agri.,1981,32: 51-60.
    [19] Payne P I, Corfield K G, Blackman J A. Identification of a high molecular weight subunit of glutein whose presence correlations with berad-making quality in wheats of related pedigree[J]. Theor. Appl. Genet,1979, 55:153-159.
    [20] Payne P I. Nightingale M A, Krattiger A F,et al.The relationship between HMW glutein subunit composition and the bread-making quality of British-grown wheat varieties[J]. J. Sci. Food Agric., 1987,40 (1) : 51-65.
    
    
    [21]赵和.小麦高分子量麦谷蛋白亚基的遗传及其与品质和其它农艺性状关系的研究[D].保定:河北农业大学,1991.
    [22]毛沛.小麦高分子量麦谷蛋白亚基组成及其与面包烘烤品质的研究[D].保定:河北农业大学,1992.
    [23]Adeyemi I A, Muller H G. Effect of disulphide-cleaving reagents in the Zeleny Sdimentation test[J]. J. Cereal Sci., 1983, 1:215~220.
    [24]Danno G, Kanazawa K, Natake M. Extraction of wheat flour proteins with sodium dodecyl sulfate and their molecular weight distribution[J]. Agric. Biol. Chem., 1974, 38: 1947~1953.
    [25]Singh N K, Donovan G R, Betey I L,et al. Use of sonication and size-exclusion high-performance liquid chromatography in the study of wheat flour prteins. I. dissolution of total proteins in the absence of reducing agents[J].Gereal Chem., 1999, 67 (2):150~161.
    [26]孙辉,姚大年,李宝云,等.普通小麦谷蛋白大聚合体的含量与烘烤品质相关关系[J].中国粮油学报,1998,13(6):13~16.
    [27]Bean S R, Lyne R K, Tilly K A, et al. A rapid method for quantitation of insoluble polymeric proteins in flour[J].Cereal Chem., 1988, 75(3):374~379.
    [28]Dachkevitch T. Autran J C. Prediction of baking quality of bread wheats in breeding peograms by size-exclusion high-performance liquid chromatography[J].Cereal Chem., 1989, 66:448~456.
    [29]Moonen J H E, Scheepstea A, Gravland A. Use of the SDS-sedimentaion test and SDS-polyacrylamide gel electrophoresis of screening breeder's samples of wheat for bread-making quality[J]. Euphytica, 1982, 31:677~690.
    [30]孙辉,李保云,王岳光,等.利用面粉理化指标预测面包体积[J].中国粮油学报,1999,14(3):36~39.
    [31]Weegels P L, Van de Pijpekamp A M, Graveland A, et al. Depolymerisation and repolymerisation of wheat gluenin during dough processing. I: relationships between glutenin macropolymer content and quality parameters[J]. J Cereal Sci.,1996, 23: 103~111.
    
    
    [32]高汝勇.小麦GMP含量的遗传及其与品质和农艺性状关系的研究[D].保定:河北农业大学,2001,6.
    [33]孙辉,姚大年,李保云,等.小麦谷蛋白达聚合体含量的影响因素[J].麦类作物学报,2000,20(2):23~27.
    [34]许自成,许嘉旸.小麦剩余蛋白含量与面包烘烤品质[J].粮食储藏,1991,2:16~23.
    [35]赵友梅.用剩余蛋白含量预测小麦的面包烘烤品质[J].郑州粮食学院学报,1989,3:38~43.
    [36]Matsuo R R, J E Dexter, A Boudreal, et al. The role of lipids in determining spaghetti cooking[J]. Cereal Chem., 1986, 63(6):484~489.
    [37]Oda M, Y Yasuda, S Okazki, et al. A Method of rlour quality ssessment for Japanese noodles[J]. Cereal Chem., 1980, 57(4):253~255.
    [38]Kruger J E, M H Anderson,J E Dexter. Effect of flour refinement on raw Cantonese noodle color and texture[J]. Cereal Chem., 1994, 71(2):177~182.
    [39]Konik Christine M, Diane M Miskelly, Peter W Gras. Contribution of sarch and non -starch parametecs to the eating quality of Japanese white salted noodles.[J] J. Sci. Food Agric, 1992, 58:403~406.
    [40]Ryu G H, C E Walker. The effects of extrusion conditions on the physical properties of wheat flour estrudates. Starch/Skaerke, 1995, 47(1): 33~36.
    [41]徐兆飞,张惠叶,张定一.小麦品质及其改良(第一版) [M].北京:气象出版社,2001.101.
    [42]钟立人.食品科学与工艺原理[M].北京:中国轻工业出版社,1999.62~73.249~250.
    
    
    [43]谢令琴,赵占军,刘占国,等.作物品质遗传育种[M].北京:中国农业出版社,1996.151~152.
    [44]姚大年,刘广田.淀粉理化特性、遗传性规律及小麦淀粉与品质的关系[J],粮食与饲料工业,1997,2,36~38
    [45]黄琴,王志敏,等.禾谷类作物胚乳淀粉的生物合成[J].中国农业大学学报,1999,4(增刊):8~15
    [46]刘放.淀粉基础知识讲座[J].中国粮油食品,1985(2):36~37.
    [47]惠斯特勒 R L,贝密勒 J N,帕斯卡尔 E F.淀粉的化学与工艺学[M].北京:中国食品出版社,1987.219~244.
    [48]何中虎.糯小麦的研究概况[J].作物杂志,1999,(2):7~9.
    [49]赵国荣,姚大年,董召荣,等.淀粉性状研究在谷物品质育咱中作用(综述)[J].安徽农业大学学报,1997,24(3):317~319
    [50]Leach H W. Gelatinization of starch. In Starch: Chemistry and Technology[J]. Vol. 1., New york: Academic press, 1965:289~307.
    [51]McCormick K M, Panozzo J F. A swelling power test for selecting potential noodle quality wheats. Aust. J. Agric. Res. 1994, 42:317~323
    [52]姚大年,李保云,朱金宝,等.小麦品种主要淀粉性状及面条品质预测指标的研究[J].中国农业科学,1999,32(6):81~88
    [53]Toyokawa H, Rubenthaler G L, et al.Japaness noodle qualities Ⅰ. Flour components[J] Cereal Chem.,1989, 66:382~386.
    [54]Toyokawa H, Rubenthaler G L, et al.Japaness noodle qualities Ⅱ. Starch components[J].Cereal Chem.,1989, 66:387~391.
    [55]Crosbie G B, Lanbe W J, Tsutsui H, et al, R.F., Further evaluation of the flour swelling volume test for identifying wheat potential for Japanese noodles[J]. J. Cereal Sci. 1992.15;271~280
    [56]Morell M K, et al The biochemistery and molecular biology of starch synthsis in cereals[J].Aust J Plant Physiol., 1995, 22:647~660.
    
    
    [57]Okita T W. Is there an alternative pathway for starch synthesis? [J].Plant Physiol., 1992, 100:560~564.
    [58]彭佶松,郑志仁,刘涤,等.淀粉的生物合成及其关键酶[J].植物生理学通迅,1997,33(4):297~303.
    [59]MuForster C,et al. Physical associated of starch biosynthetic enzymes with starch granules of maize endosperm.Granule-associated forms of starch synthase Ⅰ and starch branching enzyme Ⅱ[J]. Plant Physiol. 1996, 111:821~829.
    [60]Keeling P L, Bacon P J, Holt D C. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993,191:342.
    [61]Jenner C F, Siwek K, Hawken J S. The synthesis of [~(14)C]starch from [~(14)C]sucrose in isolated wheat grains is dependent upon the activity of soluble starch synthase. Aust J Plant Physid, 1993, 20:329
    [62]Chao S. Sharp P J, Worland A J,et al. RFLP-based genetic maps of wheat homologous group 7 chromosomes[J]. Theor.Appl. Genet., 1989, 78:459~504
    [63]Nakamura T, Yamamori M, Hirano H, et al. Decrease of waxy protein in two common wheat cultivars with low amylose content[J].Plant Breeding, 1993, 111:99~105.
    [64]Nakamura T, Yamamori M, Hirano H, et al. Identification of three Wx protein in wheat (Triticum aestivum L.)[J]. Biochemical Genetics, 1993, 31:75~86.
    [65]王子宁,郭北海,李洪杰,等.小麦(T.aestivum)Waxy-D1基因缺失材料的发现及分析[J].作物学报,2000,26(3):257~260.
    [66]Miura H, Tarui s,Araki E, et al. Production of Wx-protein deficient lines in wheat cv. Chinese Spring [A]. Slinkard A E. Proceeding of the 9th Internatonal Wheat Genetics Symposium[C]. 1998, 4:208~210.
    
    
    [67]姚大年,孙辉,李保云,等.小麦品种Waxy蛋白亚基缺失类型若干淀粉性状研究[J].中国粮油学报,1999,14(1):6~9.
    [68]陈新民.糯小麦(Waxy Wheat)研究进展[J].麦类作物学报,2000, 20(3):82~85.
    [69]Nakamura T, Yamamori M, Hirano H, et al. Production of waxy (amylose-free) wheat][J]. Mol Gen Genet, 1995, 248:252~259.
    [70]Hoshion T, Ito S, Hatta K, et al. Development of waxy common wheat by haploid breeding[J]. Breeding Science, 1996, 46:185~188.
    [71]Kiribuchi-otobe C, Nagamine T, Yanagisawa T, et al. Production of hexaploid wheats with waxy endosperm character[J]. Cereal Chemistry, 1997, 74: 72~74.
    [72]Zhao X C and Sharp P J. Production of all eight genotypes of null alleles at "waxy" loci in breed wheat[J]. Plant Breeding, 1998, 117:488~490.
    [73]Yasui t,Sasaki t,Matsuki J. Induced waxy endosperm mutants of breed wheat, K107Wx2,and their milling and flour pasting properties[A]. Slinkard A E. Proceeding of the 9th Internatonal Wheat Genetics Symposium[C]. 1998, 4:306~308.
    [74]徐军望,李旭刚,朱桢.基因工程改良淀粉品质[J].生物技术通报,2000,1:11~19.
    [75]Guan H P, Preiss J. differentition of the properties of the branching isoenzyrny(Zea mays)[J]. Plant Physiol. 1993, 102:1269~1273.
    [76]Burton R A, et al. Starch enzymes belonging to distinct enzyme families are differentially expressed during pea embryo devlopement[J].The Plant J, 1995, 7(1):3~15.
    [77]Flipse F, et al. Introduction of sense and antisense cDNA for branching enzyme in the amlose-free potato mutant leads to physico-chemical changes in the starch[J]. Planta, 1996, 198:340~347.
    [78]MacGregor A.W, Bazin S L, Macri L J, et al. Modelling the contribution of alpha-amylase, beta-amylase and limit dextrinase for starch degradation during mashing[J].Journal of Cereal Science, 1999,(29): 161~169.
    
    
    [79]Crosbie G B. Wheat quality trends in western Australia.[C] Proc.39th Cereal Chemistry Conference,Perth. 1989, 59-65.
    [80]Crosbie G B. The relationshop between starch swelling properties, paste viscosity and boiled noodle quality in wheat flours [J]. Gereal Sci, 1991, 13(1):145~150.
    [81]Endo S, Okada K, Nagao S. Starch properties of Australian standard white (western Australia) wheat related to its suitability for Japanese noodle. [C]Proc.39th Cereal Chemistry Conference, Perth.. 1989,54-58
    [82]Kinribuchi-Otobe. Production of hexploid wheat with waxy endosperm character. [J]Cereal Chemistry, 1997, 74(1):72-74
    [83]王宪泽,张玲,李菡.小麦品质性状与面条煮熟品质的关系[J].麦类作物,1997,17(4):17~19.
    [84]Miura H, Tanii S Nakamuru T, et al. Genetic control of amylose content in wheat endosperm starch and differential effects one three Wx genes.[J] Theor Appl Genet, 1994, 89(2):276~280
    [85]Miura H, Tanii S. Endosperm starch properties in several wheat cuitivars preferred for Japanese noodles. [J]Euphytica, 1994, 72(3):171~175
    [86]Morris C F, Shackley B J, King G E,et al. Genotype and environment variation for flour swelling volume in wheat.[J] Cereal Chemistry, 1997, 74(1):16~21.
    [87]方克旋,王澄.小麦直链淀粉的测定及基含量对食用品质的影响[J].中国粮油食品,1985,(3):27~28.
    [88]L.Hou等,黄瑞恒节泽,小麦基因型和环境对馒头品质的影响[J].麦类作物,1992,(4):21~22.
    [89]张春庆,李晴祺.影响普通小麦加工馒头质量的主要品质性状的研究[J].中国农业科学,1993,26(2):39~46.
    
    
    [90]姚大年,刘广田.小麦品种面粉粘度性状与面条品质的相关性研究.[J]中国农业大学学报.1997,(3):52~68.
    [91]Endo S, Karibe S,Okada K, et al. Factors affecting gelatinization properties of wheat starch. Nippon Shokuhin Kogyo Gakkaishi. 1988,35:7~14.
    [92]Lee C H, Gore P J, Lee H O, et al. Utilization of Australian wheat for Korean style dried noodle making. [J] Cereal Sci. 1987,5:283~297.
    [93]王立秋.小麦面食蒸煮品质研究动态[J].国外农学—麦类作物,1994,6:45~47
    [94]姚大年,李保云,刘广田.基因型和环境对小麦品质淀粉性状及面条品质的影响[J].中国农业大学学报,2000,5(1):69~74.
    [95]姚大年,刘广田,朱金宝,等.基因型和环境对小麦品种淀粉性状和面粉粘度参数的影响[J].粮食与饲料工业,1999,6:1~4.
    [96]金正勋,崔成焕,秋太权.水稻杂种后代稻米直链淀粉含量的配合力分析[J].东北农业大学学报,1999,30(2):122~127.
    [97]孔令旗,张文毅,等.高粱籽粒淀粉含量的配合力与杂种优势[J].辽宁农业科学,1992,(1):18~20.
    [98]阎俊,何中虎.基因型、环境及其互作对黄淮麦区小麦淀粉品质的影响[J].麦类作物学报,2001,21(2):14~19.
    [99]GB/7648—87,水稻、玉米、谷子直链淀粉测定法.
    [100]GB/10361—89,谷物降落数值测定法。
    [101]高之仁.数量遗传学[M].成都:四川大学出版社,1986.316~350.
    [102]刘来福,毛盛贤,黄远樟.作物数量遗传[M].北京:农业出版社,1984.211~250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700