脊椎切除重建中不同截面积钛网内植骨生长情况的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立一种腰椎切除脊柱融合动物模型,并观察椎体切除植入不同直径钛网后骨融合情况,对影响脊柱支撑体内骨生长情况有关因素进行分析,探寻在不影响骨愈合及生物力学情况下的最小的钛网与椎体截面积比,以指导临床在行腰椎切除融合术时选择合适直径钛网植入。自从Hibbs于1911年首次报道了脊柱融合的手术技术后,随着内固定技术及内固定材料的发展,脊柱融合技术已广泛应用于脊柱疾患的治疗。目前随着社会人口老龄化、结核发病率以及交通意外事故的增加,脊柱肿瘤、脊柱结核、脊柱爆裂性骨折等也随之增加,因此椎体切除内固定术也随之发展。一种新的骨替代材料,内固定材料及新技术等应用于人体之前,首先都需建立相应的动物脊柱融合模型进行各项指标的测试及研究,确定安全后才能进一步行临床试验。目前脊柱动物融合模型种类繁多,方式不一,其中小动物模型应用较多,大型动物相对较少,且融合效果及手术并发症不一。有报道应用新西兰白兔做动物脊柱融合模型死亡率和并发症达到20%以上,应用大型动物做脊柱融合模型会更为复杂。大型动物融合模型建立相对难度较大,应用山羊行脊柱融合模型目前较常见,但多限于颈椎,腰椎融合模型建立少见报道,难点在于手术复杂、时间较长,麻醉时间长,出血量较多,术后并发症多。动物椎体融合模型手术方式有三种,分别为前路、后路360°、后外侧入路融合。前路及后路360°造模对动物创伤较大,后外侧入路经腹膜外到达椎体,对动物创伤相对较小,并可在直视下切除椎体。为此我们探索一种有效的、重复性好的大型动物腰椎切除钛网植入融合模型。
     一直以来,钛网常被用于治疗骨缺损,对钛网进行合理的剪裁与塑形后将其填充骨块,并移植于目标区域提供支撑作用,该技术明显提高了脊柱植骨融合率。但临床对椎体切除后植入钛网直径没有统一规范,造成许多问题,如植入后愈合率不高,强度不够,内固定取出后再骨折,或对愈合情况判断失误,未愈合即取出内固定等。一味选择粗钛网使钛网内填充的自体骨或异体骨骨量增多,导致供骨区并发症增多及给病人造成经济浪费。反之一味选择细钛网又可能导致骨愈合率不高或愈合强度不够、钛网易沉陷等,从而达不到坚强内固定的目的,造成手术失败。本实验通过观察腰椎切除脊柱融合动物模型椎间融合器的植骨融合情况,对影响脊柱支撑体内骨生长情况有关因素进行分析,探寻在不影响骨愈合及生物力学情况下钛网与椎体最小的截面积比,并分析有效评价钛网内骨融合情况的手段。
     方法:我们以经后外侧腹膜外入路椎体切除钛网植入钢板内固定的方式建立腰椎切除脊柱融合动物模型。选取成熟山羊9只,雌雄不限,年龄1.5-3岁,体重35±2.5kg,山羊个体相近,以保证山羊腰椎体大小基本相同,随机分为三组,每组三只。三组均行单椎体切除,分别植入直径为10mm、12mm、16mm的钛网,10mm组为A组,12mm组为B组,16mm组为C组。术后饲养4个月。术后每月行X线检查,观察钛网位置及融合情况。羊处死后取脊柱标本行X线及三维CT检查,测量钛网-椎体接触面及钛网内不同部位CT值,观察骨愈合情况,并且根据三维CT结果计算钛网和椎体接触面截面积比值,以此来确定本实验探寻的钛网和椎体最小的截面积比。脊柱标本行前屈、后伸、侧弯、扭转等工况下生物力学检测,以评价骨愈合强度,并建立有限元模型进一步验证离体实验生物力学结果,及分析不同直径钛网植入后钛网、终板应力分布情况对融合情况的影响。标本行组织学切片观察接触面及钛网内植骨融合情况。分别于术前、术后第3天、5天、7天、2周、1个月抽静脉血,分离血清,然后用酶联免疫分析试剂盒测定骨形成调节细胞因子及代谢标志物(BMP-2、TGF-β、VEGF、BGP、BALP)血清值,观察这些指标在椎体切除并植入不同直径钛网后分泌、代谢情况,其出现高峰值时间及峰值大小与骨愈合情况是否有关,并观察这些指标之间有何关系。对各项检测结果进行统计学分析。
     结果:成功构建了山羊腰椎体切除脊柱融合动物模型,实验组山羊均成活,一例切口感染,予以切口换药处理后痊愈,一例术后双后肢不全性瘫痪,3日后完全恢复。术后三维CT检查,测量钛网和椎体接触面截面积比及钛网和椎体接触面CT值,结果示10mm组钛网与椎体接触面截面积比是1/3,12mm组钛网与椎体接触面截面积比是1/2,16mm组钛网与椎体接触面面积比是2/3。钛网和椎体接触面CT值与相邻正常椎体CT值的比值结果示B组及C组无明显统计学差异,A组与B组及A组与C组统计学均有差异。B组及C组生物力学检测无明显统计学差异,A组与B组及A组与C组生物力学检测统计学有差异。组织学切片观察示B组及C组接触面处及钛网内骨小梁较A组致密、粗大,其中以C组生长最好,三组均显示距离接触面越远钛网内骨小梁越稀疏,且有无骨质区。三组血清学骨形成调节及代谢指标(BMP-2、TGF-β、VEGF、BGP、BALP)均于术后3天开始升高,且于5天—2周内达到峰值,随后开始下降,高峰值出现时间无统计学差异,但A组峰值较B组及C组均低,且A组的TGF-β、BGP和BALP高峰值出现时间较B组及C组早。
     结论:本实验成功构建了山羊腰椎切除脊柱融合动物模型,且操作简单,重复性好,是一种较好的脊柱融合动物模型建立方法。腰椎椎体切除钛网植入时,钛网与椎体接触面比值应达到1/2,才对骨愈合时间及强度无明显影响。骨形成调节及代谢标志物高峰值出现时间及峰值大小与骨愈合强度有一定的相关性。三维CT检查可作为评价骨融合情况的首选手段。
Objective:To set up a kind of animal model of lumbar corpectomy spinal fusion, observe bone fusion conditions upon implantation of titanium cages of different diameter on vertebra resection, analyze relevant factors that impact graft of bones in spinal supporting, probe into the minimum area ratio of titanium cage section to vertebral section without impact to bone healing and biomechanical property, to guide selection of appropriate diameter titanium cage to be implanted in clinical lumbar corpectomy fusion operation.
     Since spinal fusion operation technology was firstly reported by Hibbs in 1911, along with development of both internal fixation technology and internal fixation materials, spinal fusion has been widely applied in treatment of spinal diseases. In the wake of social population aging and increase of incidence of tuberculosis and traffic accident, spinal tumor, spinal tuberculosis and spinal bursting fracture follow the trend; therefore vertebra resection internal fixation keeps abreast. Prior to any new bone-replacement material, internal fixation and new technology etc. are introduced to human being, at first a corresponding animal spinal fusion model need to be set up to test and study all kinds of indices, and further clinical experiment is allowed after safety of the indices are confirmed.
     At present there are a great variety of animal spinal fusion models with different patterns, among which small animal models are more applies than that of large animal models, and fusion effect and operation complication are different. It is reported that death rate and complication rate of New Zealand white rabbit as spinal fusion model is as much as 20%, while using large animal as spinal fusion model is more complicated. It is rather difficult to set up large animal fusion models, at present, goat is often used as spinal fusion model but is limited on cervical fusion while lumbar fusion is seldom reported as the difficult points are complicated and long time of operation, long anesthetic time, massive bleeding and more after-treatment complications. There are three patterns of animal spinal vertebra fusion model operation, namely anterior, posterior 360°and posterolateral approach. Anterior and posterior 360°model wound animals more largely, while posterolateral approach reaches vertebra via exterior of peritoneum that wounds animals relatively smaller as well as vertebra resection can be conducted by direct viewing. Therefore we probe into an effective large animal lumbar corpectomy titanium cage implantation fusion model with sound repetitiveness. For a long time, titanium cage is often used for treatment of bone defect; reasonable tailor and formation is made to titanium cage then bone block is filled, and it is implanted to targeted area to provide supporting. The technology apparently improves fusion rate of spinal implantation.
     However there is not a uniform specification on diameter of titanium cage implanted in clinical vertebral resection, which caused a number of problems, for instance, low healing rate after implantation, insufficient strength, bone re-fracture after removing of interior fixation, or misjudgment on healing condition and removing interior fixation before completely healed. Blindly choosing thick titanium cages makes filled bone mass increase for either autogenous or allograft bone, which causes increase of complications in bone supply area as well as economic waste to patients. Vise versa blindly choosing thin cages may lead to low bone healing rate or insufficient strength, and the cages are easily sank, which fails to strength the interior fixation and causes operation failure. By virtue of observation of implanted bone fusion condition of animal model cage of lumbar corpectomy spinal fusion, this experiment analyzes relevant factors that impact growth of bones in spinal supporting, probes into the minimum area ratio of titanium cage section to vertebral section without impact bone healing and biomechanical property and analyzes measures that can evaluate bone fusion conditions in titanium cages effectively.
     Methods:We set up a lumbar corpectomy spinal fusion animal model by means of titanium cage implantation plate interior fixation of posterolateral approach vertebral resection via posterolateral peritoneum. Choose nine mature goats no matter male or female at 1.5-3 years of age and 35±2.5 kg of weight; Individuality of each goat is similar to guarantee size of lumbar of goats are basically equal; the goats are divided into three groups at random with three goats in each group. All goats in three groups are single vertebral cut off and implanted diameter 10mm,12mm and 16mm titanium cages respectively; 10mm is group A,12mm is group B and 16mm is group C. The goats are feed four months after the operation and examined by X-ray on a monthly basis to observe location of the titanium cage and fusion condition. After the goats are slaughtered, their spinal samples are taken to examine by X-ray and three-dimension CT, measure CT values of contact area of titanium cage and the spine as well as CT values in different locations of the titanium cage, observe bone healing status and calculate area ratio of titanium cage section to vertebral section based on result of three-dimension CT to determine the minimum area ratio of titanium cage section to vertebral section, which is looked for in this experiment. The spine samples are taken biomechanical examination under conditions of flexion, extension, lateral and torsion to evaluate bone healing strength. In the meantime, finite element model is set up to further verify in vitro biomechanical result and analyze impact of titanium cage and lamina terminalis stress distribution to fusion of different diameter cages implantation. Samples are taken histological slice to observe contact area and implanted bone fusion status in titanium cage. Draw venous blood of the goats respectively before the operation and at the third, fifth, seventh day, two weeks and one month after the operation to separate serum, then use enzyme linked immuno assay kit to determine bone formation adjustment cytokine and metabolism markers (BMP-2、TGF-β、VEGF、BGP、BALP) serum value, observe secretion and metabolism conditions of the indices upon vertebral resection and implantation of titanium cages with different diameter, whether occurrence of peak value time and quantity of peak value are related with bone healing, as well as to observe relationship of the indices. Statistic analyses are made to all examination results.
     Results:Successfully set up goat lumbar corpectomy spinal fusion animal model, all goats in experiment groups survive the operation, one goat is incision infected and heals after dressing on incision; one goat's both posterior limbs paralyze incompletely but thoroughly resume after three days. Examined by postoperative three-dimension CT and measured area ratio of titanium cage section to vertebral section and CT value of contact area of titanium cage and vertebra, the result shows that area ratio of titanium cage section to vertebral section of 10mm group is 1/3, area ratio of titanium cage section to vertebral section of 12mm group is 1/2 and area ratio of titanium cage section to vertebral section of 16mm group is 2/3. Result of ratio between CT value of contact area of titanium cage and vertebra and CT value of adjacent normal vertebra shows that there are no apparent statistic differences between group B and C, but there are statistic differences between group A and B, and group A and C. There are no apparent statistic differences on biomechanical examination between group B and C, but there are statistic differences on biomechanical examination between group A and B, and group A and C. Histological slice observation shows contact area and bone trabeculae of group B and group C are compact and thick than that of group A, among which graft of group B is the best; all three groups show that the further to the contact area, the bone trabeculae is thinner and without sclerotin area. Serology bone formation adjustment and metabolism indices (BMP-2、TGF-β、VEGF、BGP、BALP) of three groups all start to increase three days after the operation and reach peak value within five days to two weeks then decrease. There are no statistics differences on peak value occurrence time, but peak value of group A is lower than that of group B and group C, and occurrence time of peak value of TGF-β、BG and BALP of group A is earlier than that of group B and C.
     Conclusion:The experiment successfully set up animal model of goat lumbar corpectomy spinal fusion with easy operation and sound repetitiveness, which is a relatively better way to set up spinal fusion animal model. At the time of lumbar corpectomy and titanium cage implantation, area ratio of titanium cage to vertebral section should reach 1/2 that are without apparent impact to bone healing time and strength. Occurrence time and scale of peak value of bone formation adjustment and metabolism markers have certain correlation with bone healing strength. Three-dimensional CT examination can be the first choice to evaluate bone fusion condition.
引文
[1]Slosar PJ. Indications and outcomes of reconstructive surgery in chronic pain of spinal origin[J]. Spine,2002,27(22):2555-2562.
    [2]Park P, Garton HJ, Gala VC et al. Adjacent segment disease after lumbar or lumbosacral fusion:Review of the literature[J]. Spine,2004,29(17): 1938-1944.
    [3]郑诚功.骨科生物力学的进展[J].中华创伤骨科杂志,2005,7(10):901-902.
    [4]Adamas MA HW. The effect of posture on the apophyseal joint in resisting intervertebral compressive forces[J]. J Bone Joint Surg (Br), 1980,62(3):358.
    [5]钟世镇主编.临床应用解剖学[J].人民军医出版社,1998:274-276.
    [6]Whyne CM, Hu SS, Klisch S et al. Effect of the pedicle and posterior arch on vertebral body strength predictions in finite element modeling[J], Spine, 1998,23(8):899-907.
    [7]Batail R, Bruyere K, Rumelhart C. Mechanical behaviour of human cancellous bone. Micro-bending of single trabeculae[J]. Archives of Physiology and Biochemistry,2000,108(1-2):180-180.
    [8]Gibson LJ. THE MECHANICAL-BEHAVIOR OF CANCELLOUS BONE[J]. Journal of Biomechanics,1985,18(5):317-&.
    [9]欧阳钧,杨桂通,张宏民,朱青安,徐晋斌,钟世镇.影响人腰椎松质骨不同水平段力学性质的几个因素[J].医用生物力学,1994,9(04):240-242.
    [10]欧阳钧,杨桂通,吴文周等.人体腰椎松质骨的生物力学性质[J].中国生物医学工程学报,1997,16(04):189-293+309.
    [11]Saino H, Matsuyama T, Takada J et al. Long-term treatment of indomethacin reduces vertebral bone mass and strength in ovariectomized rats[J]. Journal of Bone and Mineral Research,1997,12(11):1844-1850.
    [12]Panjabi MM, White AA,3rd. Basic biomechanics of the spine[J]. Neurosurgery,1980,7(1):76-93.
    [13]Panjabi MM, Goel VK, Takata K. PHYSIOLOGIC STRAINS IN THE LUMBAR SPINAL LIGAMENTS-AN INVITRO BIOMECHANICAL STUDY[J]. Spine,1982,7(3):192-203.
    [14]Behrsin JF, Briggs CA. LIGAMENTS OF THE LUMBAR SPINE-A REVIEW[J]. Surgical and Radiologic Anatomy,1988,10(3):211-219.
    [15]Asano S, Kaneda K, Umehara S et al. THE MECHANICAL PROPERTIES OF THE HUMAN L4-5 FUNCTIONAL SPINAL UNIT DURING CYCLIC LOADING-THE STRUCTURAL EFFECTS OF THE POSTERIOR ELEMENTS[J]. Spine,1992,17(11):1343-1352.
    [16]Zander T RA, Bergmann G. Analysis of simulated single ligament transection on the mechanical behaviour of a lumbar functional spinal unit[J]. Biomed Tech (Berl),2004,49(2):27-32.
    [17]Holzapfel GA S. Role of facet curvature for accurate vertebral facet load analysis[J]. Eur Spine J,2006,15(6):849-856.
    [18]Whyne CM HS, Klisch S, et al.. Effect of the pedicle and posterior arch on vertebral body strength p redictions in finite element modeling[J]. Sp ine,198,23(8):899-907.
    [19]Zander T RA, Burra NK, et al. Estimation of muscle forces in the lumbar sp ine during upper-body inclination[J]. Clin
    Biomech (Bristol, Avon),2001,16(Supp 11):S73-S80.
    [20]励建安.脊柱运动的解剖和生物力学基础[J].中华物理医学与康复杂志,2004,26(5):308-310.
    [21]Haughton VM, Schmidt TA, Keele K et al. Flexibility of lumbar spinal motion segments correlated to type of tears in the annulus fibrosus[J]. Journal of Neurosurgery,2000,92(1):81-86.
    [22]Iatridis JC, MacLean JJ, Ryan DA. Mechanical damage to the initervertebral disc annulus fibrosus subjected to tensile loading[J]. Journal of Biomechanics,2005,38(3):557-565.
    [23]Perie DS, MacLean JJ, Owen JP et al. Correlating material properties with tissue composition in enzymatically digested bovine annulus fibrosus and nucleus pulposus tissue[J]. Annals of Biomedical Engineering,2006,34(5): 769-777.
    [24]Roberts S, Evans H, Trivedi J et al. Histology and pathology of the human intervertebral disc[J]. J Bone Joint Surg Am,2006,88 Suppl 2:10-14.
    [25]Urban JP, McMullin JF. Swelling pressure of the inervertebral disc: influence of proteoglycan and collagen contents[J]. Biorheology,1985,22(2): 145-157.
    [26]Gruber HE, Hanley EN, Jr. Analysis of aging and degeneration of the human intervertebral disc. Comparison of surgical specimens with normal controls[J]. Spine (Phila Pa 1976),1998,23(7):751-757.
    [27]谭炳毅,张佐伦,袁泽农等.颈椎间盘纤维环及髓核的超微结构观察[J].中国矫形外科杂志,2001,8(10):993-994.
    [28]Guo LX TE, Lee KK, et al.[J]. Vibration characteristics of the human spine under axial cyclic loads:effect of frequency and damping [J]. Spine, 2005,30(6):631-637.
    [29]Solomonow M, Zhou BH, Harris M et al. The ligamento-muscular stabilizing system of the spine[J]. Spine (Phila Pa 1976),1998,23(23): 2552-2562.
    [30]Bergmark A. Stability of the lumbar spine. A study in mechanical engineering[J]. Acta Orthop Scand Suppl,1989,230:1-54.
    [31]支伟民.慢性腰痛的病因探析[J].山西中医,2003,19(S1):18-19.
    [32]Arjmand N, Shirazi-Adl A. Biomechanics of changes in lumbar posture in static lifting[J]. Spine (Phila Pa 1976),2005,30(23):2637-2648.
    [33]Miles M, Sullivan WE. Lateral bending at the lumbar and lumbosacral joints.[J]. Anat Rec,1961,(139+387).
    [34]Gillespie KA, Dickey JP. Biomechanical role of lumbar spine ligaments in flexion and extension:Determination using a parallel linkage robot and a porcine model[J]. Spine,2004,29(11):1208-1216.
    [35]Sharma M, Langrana NA, Rodriguez J. ROLE OF LIGAMENTS AND FACETS IN LUMBAR SPINAL STABILITY[J]. Spine,1995,20(8): 887-900.
    [36]Elbohy AA, Yang KH, King AI. EXPERIMENTAL-VERIFICATION OF FACET LOAD TRANSMISSION BY DIRECT MEASUREMENT OF FACET LAMINA CONTACT PRESSURE[J]. Journal of Biomechanics, 1989,22(8-9):931-&.
    [37]Little JS, Khalsa PS. Human lumbar spine creep during cyclic and static flexion: Creep rate, biomechanics, and facet joint capsule strain[J]. Annals of Biomedical Engineering,2005,33(3):391-401.
    [38]Zhao GR, Ren L, Ren LQ et al. Segmental Kinematic Coupling of the Human Spinal Column during Locomotion[J]. Journal of Bionic Engineering, 2008,5(4):328-334.
    [39]Takayanagi K, Takahashi K, Yamagata M et al. Using cineradiography for continuous dynamic-motion analysis of the lumbar spine[J]. Spine, 2001,26(17):1858-1865.
    [40]Glossop N, Hu R. Assessment of vertebral body motion during spine surgery[J]. Spine (Phila Pa 1976),1997,22(8):903-909.
    [41]Lee RYW, Laprade J, Fung EHK. A real-time gyroscopic system for three-dimensional measurement of lumbar spine motion[J]. Medical Engineering & Physics,2003,25(10):817-824.
    [42]Dvir Z, Prushansky T. Reproducibility and instrument validity of a new ultrasonography-based system for measuring cervical spine kinematics [J]. Clinical Biomechanics,2000,15(9):658-664.
    [43]Dopf CA, Mandel SS, Geiger DF et al. Analysis of spine motion variability using a computerized goniometer compared to physical examination. A prospective clinical study[J]. Spine (Phila Pa 1976),1994,19(5):586-595.
    [44]Gunnarsson G, Axelsson P, Johnsson R et al. A method to evaluate the in vivo behaviour of lumbar spine implants[J]. European Spine Journal, 2000,9(3):230-234.
    [45]Pape D, Adam F, Fritsch E et al. Primary lumbosacral stability after open posterior and endoscopic anterior fusion with interbody implants-A roentgen stereophotogrammetric analysis[J]. Spine,2000,25(19):2514-2518.
    [46]Pape D, Fritsch E, Kelm J et al. Lumbosacral stability of consolidated anteroposterior fusion after instrumentation removal determined by roentgen stereophotogrammetric analysis and direct surgical exploration[J]. Spine,2002, 27(3):269-274.
    [47]Kanayama M, Hashimoto T, Shigenobu K et al. Intraoperative biomechanical assessment of lumbar spinal instability: Validation of radio-graphic parameters indicating anterior column support in lumbar spinal fusion[J]. Spine,2003,28(20):2368-2372.
    [48]Lindblom K. Intervertebral-disc degeneration considered as a pressure atrophy[J]. J Bone Joint Surg Am,1957,39-A(4):933-945.
    [49]Walsh AJL, Lotz JC. Biological response of the intervertebral disc to dynamic loading[J]. Journal of Biomechanics,2004,37(3):329-337.
    [50]Norcross JP, Lester GE, Weinhold P et al. An in vivo model of degenerative disc disease[J]. Journal of Orthopaedic Research,2003,21(1): 183-188.
    [51]Stokes IAF, Iatridis JC. Mechanical conditions that accelerate intervertebral disc degeneration: Overload versus immobilization[J]. Spine, 2004,29(23):2724-2732.
    [52]Demers CN, Antoniou J, Mwale F. Value and limitations of using the bovine tail as a model for the human lumbar spine[J]. Spine,2004,29(24): 2793-2799.
    [53]孙寒松,门德华,唐天驷等.椎弓根内固定置钉方法改进的生物力学特征[J].中国临床康复,2005,9(02):60-62.
    [54]Gerber M, Crawford NR, Chamberlain RH et al. Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate:Comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model [J]. Spine,2006,31(7):762-768.
    [55]Knop C, Lange U, Bastian L et al. Biomechanical compression tests with a new implant for thoracolumbar vertebral body replacement[J]. European Spine Journal,2001,10(1):30-37.
    [56]Esses SI, Doherty BJ, Crawford MJ et al. Kinematic evaluation of lumbar fusion techniques[J]. Spine (Phila Pa 1976),1996,21(6):676-684.
    [57]Busscher I vDJ, Kingma I., van der Veen AJ, Verkerke GJ et al. Biomechanical Characteristics of Different Regions of the Human Spine An In Vitro Study on Multilevel Spinal Segments[J]. Spine,2009,34(26):2858-2864.
    [58]Cunningham BW HN, Beatson HJ,et al, Serhan H, Sefter JC et al. Revision strategies for single-and two-level total disc arthroplasty procedures: a biomechanical perspective [J]. Spine Journal,2009,9(9):735-743.
    [59]Cunningham BW, Gordon JD, Dmitriev AE et al. Biomechanical evaluation of total disc replacement arthroplasty:An in vitro human cadaveric model[J]. Spine,2003,28(20):S110-S117.
    [60]Belkoff SM, Mathis JM, Jasper LE et al. The biomechanics of vertebroplasty-The effect of cement volume on mechanical behavior[J]. Spine, 2001,26(14):1537-1541.
    [61]Molloy S, Mathis JM, Belkoff SM. The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty[J]. Spine,2003,28(14):1549-1554.
    [62]Umehara S, Zindrick MR, Patwardhan AG et al. The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrum-ented and adjacent spinal segments[J]. Spine,2000,25(13):1617-1624.
    [63]Vahldiek MJ, Panjabi MM. Stability potential of spinal instru-mentations in tumor vertebral body replacement surgery[J]. Spine (Phila Pa 1976),1998,23(5):543-550.
    [64]Lowe TG, Hashim S, Wilson LA et al. A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support[J]. Spine,2004,29(21):2389-2394.
    [65]Smit TH. The use of a quadruped as an in vivo model for the study of the spine-biomechanical considerations[J]. European Spine Journal,2002,11 (2):137-144.
    [66]Wilke HJ, Kettler A, Wenger KH et al. Anatomy of the sheep spine and its comparison to the human spine[J]. Anatomical Record,1997,247(4): 542-555.
    [67]Wilke HJ, Russo G, Schmitt H et al. A mechanical model of human spinal motion segments[J]. Biomed Tech (Berl),1997,42(11):327-331.
    [68]Wilke HJ, Rohlmann A, Neller S et al. Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load components in an internal fixator[J]. Spine,2001,26(6): 636-642.
    [69]高明暄,甄平,薛云等.磷酸钙强化椎弓根螺钉的动态生物力学研究[J].医用生物力学,2009,24(05):384-389.
    [70]Lysack JT, Dickey JP, Dumas GA et al. A continuous pure moment loading apparatus for biomechanical testing of multi-segment spine specimens [J]. Journal of Biomechanics,2000,33(6):765-770.
    [71]Stokes IA, Gardner-Morse M, Churchill D et al. Measurement of a spinal motion segment stiffness matrix[J]. Journal of Biomechanics,2002,35(4): 517-521.
    [72]Oda I, Abumi K, Yu BS et al. Types of spinal instability that require interbody support in posterior lumbar reconstruction-An in vitro biomechanical investigation[J]. Spine,2003,28(14):1573-1580.
    [73]Miyamoto K, Masuda K, Kim JG et al. Intradiscal injections of osteogenic protein-1 restore the viscoelastic properties of degenerated intervertebral discs[J]. Spine J,2006,6(6):692-703.
    [74]Zdeblick TA, Warden KE, Zou D et al. ANTERIOR SPINAL FIXATORS-A BIOMECHANICAL INVITRO STUDY[J]. Spine,1993,18(4): 513-517.
    [75]Spiegel DA, Cunningham BW, Oda I et al. Anterior vertebral screw strain with and without solid interspace support[J]. Spine,2000,25(21): 2755-2761.
    [76]Lill CA SU, Wahl D,, Schneider E. Comparison of the in vitro holding strengths of conical and cylindrical pedicle screws in a fully inserted setting and backed out 180 degrees[J]. Journal of Spinal Disorders,2000,13(3): 259-266.
    [77]Bron JL, van der Veen AJ, Helder MN et al. Biomechanical and in vivo evaluation of experimental closure devices of the annulus fibrosus designed for a goat nucleus replacement model [J]. European Spine Journal, 2010,19(8):1347-1355.
    [78]Haher TR, Ottaviano D, DeFrancis JG et al. Ultra high molecular weight polyethylene (UHMWPE) model can provide results comparable to cadaveric models[J]. Bio-Medical Materials and Engineering,2004,14(1): 79-85.
    [79]Kotani Y, Cunningham BW, Parker LM et al. Static and fatigue biomechanical properties of anterior thoracolumbar instrumentation systems-A synthetic testing model[J]. Spine,1999,24(14):1406-1413.
    [80]Mikles MR, Asghar FA, Frankenburg EP et al. Biomechanical study of lumbar pedicle screws in a corpectomy model assessing significance of screw height[J]. Journal of Spinal Disorders & Techniques,2004,17(4): 272-276.
    [81]Gatton ML, Pearcy MJ, Pettet GJ et al. A three-dimensional mathematical model of the thoracolumbar fascia and an estimate of its biomechanical effect[J]. Journal of Biomechanics,2010,43(14):2792-2797.
    [82]Totoribe K, Chosa E, Tajima N. A biomechanical study of lumbar fusion based on a three-dimensional nonlinear finite element method[J]. Journal of Spinal Disorders & Techniques,2004,17(2):147-153.
    [83]Tropiano P, Thollon L, Arnoux PJ et al. Using a finite element model to evaluate human injuries application to the HUMOS model in whiplash situation[J]. Spine,2004,29(16):1709-1716.
    [84]Yoganandan N, Kumaresan S, Voo L et al. Finite element applications in human cervical spine modeling[J]. Spine (Phila Pa 1976),1996,21(15): 1824-1834.
    [85]Totoribe K, Tajima N, Chosa E. A biomechanical study of posterolateral lumbar fusion using a three-dimensional nonlinear finite element method[J]. J Orthop Sci,1999,4(2):115-126.
    [86]Sharma M, Langrana NA, Rodriguez J. Role of ligaments and facets in lumbar spinal stability[J]. Spine (Phila Pa 1976),1995,20(8):887-900.
    [87]Akamaru T, Kawahara N, Sakamoto J et al. The transmission of stress to grafted bone inside a titanium mesh cage used in anterior column reconstruction after total spondylectomy: A finite-element analysis[J]. Spine, 2005,30(24):2783-2787.
    [88]Schroeder Y, Wilson W, Huyghe JM et al. Osmoviscoelastic finite element model of the intervertebral disc[J]. European Spine Journal,2006,15: S361-S371.
    [89]Natarajan RN, Williams JR, Andersson GBJ. Modeling changes in intervertebral disc mechanics with degeneration[J]. Journal of Bone and Joint Surgery-American Volume,2006,88A:36-40.
    [90]Kumar N, Judith MR, Kumar A et al. Analysis of stress distribution in lumbar interbody fusion[J]. Spine,2005,30(15):1731-1735.
    [91]Liebschner MAK, Kopperdahl DL, Rosenberg WS et al. Finite element modeling of the human thoracolumbar spine[J]. Spine,2003,28(6): 559-565.
    [92]Panjabi MM. Biomechanical evaluation of spinal fixation devices:I. A conceptual framework[J]. Spine (Phila Pa 1976),1988,13(10):1129-1134.
    [93]Coe JD, Warden KE, Herzig MA et al. Influence of bone mineral density on the fixation of thoracolumbar implants. A comparative study of transpedicular screws, laminar hooks, and spinous process wires [J]. Spine (Phila Pa 1976),1990,15(9):902-907.
    [94]Wilke HJ, Wenger K, Claes L. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants[J]. Eur Spine J,1998,7(2):148-154.
    [95]Ashman RB, Galpin RD, Corin JD et al. Biomechanical analysis of pedicle screw instrumentation systems in a corpectomy model [J]. Spine (Phila Pa 1976),1989,14(12):1398-1405.
    [96]Dick JC, Brodke DS, Zdeblick TA et al. Anterior instrumentation of the thoracolumbar spine. A biomechanical comparison[J]. Spine (Phila Pa 1976),1997,22(7):744-750.
    [97]Cunningham BW, Sefter JC, Shono Y et al. Static and cyclical biomechanical analysis of pedicle screw spinal constructs[J]. Spine (Phila Pa 1976),1993,18(12):1677-1688.
    [98]Shimamoto N, Kotani Y, Shono Y et al. Biomechanical evaluation of anterior spinal instrumentation systems for scoliosis-In vitro fatigue simulation[J]. Spine,2001,26(24):2701-2708.
    [99]Panjabi MM. BIOMECHANICAL EVALUATION OF SPINAL FIXATION DEVICES.1. A CONCEPTUAL-FRAMEWORK[J]. Spine, 1988,13(10):1129-1134.
    [100]Wilke HJ, Jungkunz B, Wenger K et al. Spinal segment range of motion as a function of in vitro test conditions:Effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition[J]. Anatomical Record,1998,251(1):15-19.
    [101]董荣华,王文宝,赵合元.实用脊柱外科内固定[J].2005:9.
    [102]高焕民 郭.神经生物学技术[J].中国海洋大学出版社,2005,1.
    [103]Sandhu HS, Toth JM, Diwan AD et al. Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion[J]. Spine,2002,27(6):567-575.
    [104]Cheng JCY, Guo X, Law LP et al. How does recombinant human bone morphogenetic protein-4 enhance posterior spinal fusion?[J]. Spine, 2002,27(5):467-474.
    [105]Rocca M, Fini M, Greggi T et al. Biomaterials in spinal fixation. An experimental animal study to improve the performance [J]. International Journal of Artificial Organs,2000,23(12):824-830.
    [106]Foster MR, Allen MJ, Schoonmaker JE et al. Characterization of a developing lumbar arthrodesis in a sheep model with quantitative instability [J]. Spine J,2002,2(4):244-250.
    [107]Olinger A, Vollmar B, Hildebrandt U et al. Experimental development and validation of a technique for lumboendoscopic anterior fusion of lumbar spine fractures-Comparison of endoscopic and open surgery in a live porcine model [J]. Surgical Endoscopy-Ultrasound and Interventional Techniques,2000,14(9):844-848.
    [108]Ledet EH, Sachs BL, Brunski JB et al. Real-time in vivo loading in the lumbar spine-Part 1. Interbody implant:Load cell design and preliminary results[J]. Spine,2000,25(20):2595-2600.
    [109]Boden SD, Martin GJ, Horton WC et al. Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage[J]. Journal of Spinal Disorders,1998,11(2):95-101.
    [110]Champain S, Pointillart V, Koleck M et al. Relationships between clinical, biomechanical and psychosocial parameters in outcome assessment,7 years after posterolateral lumbar fusion[J]. European Journal of Orthopaedic Surgery and Traumatology,2007,17(6):543-552.
    [111]Sandhu HS, Boden SD. Biologic enhancement of spinal fusion[J]. Orthopedic Clinics of North America,1998,29(4):621-+.
    [112]Sandhu HS, Khan SN. Animal models for preclinical assessment of bone morphogenetic proteins in the spine[J]. Spine,2002,27(16):S32-S38.
    [113]Grauer JN, Patel TC, Erulkar JS et al. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion[J]. Spine,2001,26(2): 127-133.
    [114]林飞跃,尹晓明,徐杨等.改良新西兰白兔腰椎后路融合模型的建立及效果观察[J].福建医药杂志,2007,29(06):86-88.
    [115]Wilke HJ, Kettler A, Wenger KH et al. Anatomy of the sheep spine and its comparison to the human spine[J]. Anat Rec,1997,247(4):542-555.
    [116]Hasegawa K, Abe M, Washio T et al. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density[J]. Spine,2001,26(8):957-963.
    [117]Chen DY, Fay LA, Lok J et al. INCREASING NEUROFORAMINAL VOLUME BY ANTERIOR INTERBODY DISTRA-CTION IN DEGENERATIVE LUMBAR SPINE[J]. Spine,1995,20 (1):74-79.
    [118]Goldstein JA, Macenski MJ, Griffith SL et al. Lumbar sagittal alignment after fusion with a threaded interbody cage[J]. Spine,2001,26(10): 1137-1142.
    [119]Ray CD. Threaded fusion cages for lumbar interbody fusions-An economic comparison with 360 degrees fusions[J]. Spine,1997,22(6):681-685.
    [120]朱庆三,刘景臣,武云涛等.经后路360°全椎病灶切除脊柱序列重建治疗胸椎结核初探:proceedings of,第三届中西医结合脊柱及相关疾病学术年会论文集,2009[C].
    [121]Potter BK, Freedman BA, Verwiebe EG et al. Transforaminal lumbar interbody fusion-Clinical and radiographic results and complications in 100 consecutive patients[J]. Journal of Spinal Disorders & Techniques,2005,18(4): 337-346.
    [122]Okuyama K, Abe E, Chiba M et al. Outcome of anterior decompression and stabilization for thoracolumbar unstable burst fractures in the absence of neurologic deficits[J]. Spine,1996,21(5):620-625.
    [123]樊健,俞光荣,刘璠等.胸腰椎爆裂型骨折侧前方减压内固定治疗的技术改进[J].脊柱外科杂志,2008,6(06):343-345.
    [124]Hoque AM, Marczin N, Catravas JD et al. Anesthesia with sodium pentobarbital enhances lipopolysaccharide-induced cardiovascular dysfunction in rats[J]. Shock,1996,6(5):365-370.
    [125]Mohamed FHA, Cox JE. THE EFFECT OF PENTOBARBITAL SODIUM ANESTHESIA ON PLASMA-LH, CORTISOL AND TESTOSTE-RONE IN GO ATS [J]. British Veterinary Journal,1987,143(6):513-519.
    [126]Rossetti RB, Cortopassi SRG, Intelizano T et al. Comparison of ketamine and S(+)-ketamine, with romifidine and diazepam, for total intravenous anesthesia in horses[J]. Veterinary Anaesthesia and Analgesia, 2008,35(1):30-37.
    [127]Rastaldo R, Penna C, Pagliaro P. Comparison between the effects of pentobarbital or ketamine/nitrous oxide anesthesia on metabolic and endothelial components of coronary reactive hyperemia[J]. Life Sciences,2001,69(6): 729-738.
    [128]马诺山,姚咏明,于勇.速眠新与盐酸氯胺酮对猕猴麻醉效果的初步观察[J].中国实验动物学报,2003,11(03):191-192.
    [129]贾桂林,黄焯民,陈宁等.单纯速眠新麻醉在动物实验中的应用[J].武警医学院学报,2000,9(04):282.
    [130]吴志仓.眠乃宁对鹿科动物麻醉效果观察[J].中国兽医科技,2001,31(05):39-40.
    [131]晁宏梅.陆眠宁对藏犬麻醉效果的研究[J].安徽农业科学,2008,36(15):6319-6320.
    [132]王元占 杨,刘秋菊.,刘谋荣,刘华盛等.常用实验动物的麻醉[J].中国比较医学杂志,2004,14(04):57-59.
    [133]杨润生.动物麻醉法浅述[J].实验科学与技术,2009,7(04):41+94.
    [134]Joshi A, Kostakis GC. An investigation of post-operative morbidity following iliac crest graft harvesting[J]. British Dental Journal,2004,196(3): 167-171.
    [135]Gibson S, McLeod I, Wardlaw D et al. Allograft versus autograft in instrumented posterolateral lumbar spinal fusion-A randomized control trial[J]. Spine,2002,27(15):1599-1603.
    [136]Berrey BH, Lord CF, Gebhardt MC et al. FRACTURES OF ALLOGRAFTS-FREQUENCY, TREATMENT, AND END-RESULTS [J]. Journal of Bone and Joint Surgery-American Volume,1990,72A(6):825-833.
    [137]Ehrler DM, Vaccaro AR. The use of allograft bone in lumbar spine surgery[J]. Clinical Orthopaedics and Related Research,2000,(371):38-45.
    [138]Riew KD, Rhee JM. The use of titanium mesh cages in the cervical spine[J]. Clinical Orthopaedics and Related Research,2002,(394):47-54.
    [139]Zander T, Rohlmann A, Calisse J et al. Estimation of muscle forces in the lumbar spine during upper-body inclination[J]. Clinical Biomechanics, 2001,16:S73-S80.
    [140]McGill SM, Yingling VR, Peach JP. Three-dimensional kinematics and trunk muscle myoelectric activity in the elderly spine-a database compared to young people[J]. Clinical Biomechanics,1999,14(6):389-395.
    [141]Disch AC, Luzzati A, Melcher I et al. Three-dimensional stiffness in a thoracolumbar en-bloc spondylectomy model:A biomechanical in vitro study[J]. Clinical Biomechanics,2007,22:957-964.
    [142]Tencer AF, Hampton D, Eddy S. BIOMECHANICAL PROPERTIES OF THREADED INSERTS FOR LUMBAR INTERBODY SPINAL-FUSION[J]. Spine,1995,20(22):2408-2414.
    [143]Oxland TR, Hoffer Z, Nydegger T et al. A comparative biomechanical investigation of anterior lumbar interbody cages:Central and bilateral approaches [J]. Journal of Bone and Joint Surgery-American Volume, 2000,82A(3):383-393.
    [144]Bono CM, Lee CK. Critical analysis of trends in fusion for degenerative disc disease over the past 20 years-Influence of technique on fusion rate and clinical outcome[J]. Spine,2004,29(4):455-463.
    [145]Delawi D, Dhert WJA, Castelein RM et al. The incidence of donor site pain after bone graft harvesting from the posterior iliac crest may be overestimated-A study on spine fracture patients[J]. Spine,2007,32(17): 1865-1868.
    [146]Feiertag MA, Boden SD, Schimandle JH et al. A rabbit model for nonunion of lumbar intertransverse process spine arthrodesis[J]. Spine, 1996,21(1):27-30.
    [147]Hanley EN, David SM. Lumbar arthrodesis for the treatment of back pain[J]. Journal of Bone and Joint Surgery-American Volume,1999,81A(5): 716-730.
    [148]Boden SD. Overview of the biology of lumbar spine fusion and principles for selecting a bone graft substitute[J]. Spine,2002,27(16):S26-S31.
    [149]Boden SD, Schimandle JH, Hutton WC. The use of an osteoinductive growth factor for lumbar spinal fusion.2. Study of dose, carrier, and species[J]. Spine,1995,20(24):2633-2644.
    [150]Arnold PM, Klemp JA. Assessment of malunion in spinal fusion[J]. Neurosurgery Quarterly,2005,15(4):239-247.
    [151]Shah RR, Mohammed S, Saifuddin A et al. Comparison of plain radiographs with CT scan to evaluate interbody fusion following the use of titanium interbody cages and transpedicular instrumentation[J]. European Spine Journal,2003,12(4):378-385.
    [152]Blumenthal SL, Gill K. CAN LUMBAR SPINE RADIOGRAPHS ACCURATELY DETERMINE FUSION IN POSTOPERATIVE-PATIENTS-CORRELATION OF ROUTINE RADIOGRAPHS WITH A 2ND SURGICAL LOOK AT LUMBAR FUSIONS[J]. Spine,1993,18(9):1186-1189.
    [153]Miyata S, Kambara K. Bone union after lumbar postero-lateral fusion:comparative evaluation by x-ray and CT[J]. Nippon Seikeigeka Gakkai Zasshi,1994,68(12):1023-1032.
    [154]Kant AP, Daum WJ, Dean SM et al. Evaluation of lumbar spine fusion. Plain radiographs versus direct surgical exploration and observation[J]. Spine (Phila Pa 1976),1995,20(21):2313-2317.
    [155]Blumenthal SL, Gill K. Can lumbar spine radiographs accurately determine fusion in postoperative patients? Correlation of routine radiographs with a second surgical look at lumbar fusions[J]. Spine (Phila Pa 1976), 1993,18(9):1186-1189.
    [156]Burkus JK, Dorchak JD, Sanders DL. Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2[J]. Spine,2003,28(4):372-377.
    [157]Cook SD, Patron LP, Christakis PM et al. Comparison of methods for determining the presence and extent of anterior lumbar interbody fusion [J]. Spine,2004,29(10):1118-1123.
    [158]Lebwohl NH. Radiographic evaluation of the postoperative interbody fusion patient: Is CT the study of choice?[J]. American Journal of Neuroradiology,2005,26(8):1885-1886.
    [159]Fogel GR, Toohey JS, Neidre A et al. Fusion assessment of posterior lumbar interbody fusion using radiolucent cages:X-ray films and helical computed tomography scans compared with surgical exploration of fusion[J]. Spine Journal,2008,8(4):570-577.
    [160]Spruit M, Meijers H, Obradov M et al. Density measurement of bone graft within an intervertebral lumbar cage-Increase of hounsfield units as an indicator for increasing bone mineral content[J]. Journal of Spinal Disorders & Techniques,2004,17(3):232-235.
    [161]Freeman LM, Blaufox MD. Seminars in nuclear medicine[J]. Seminars in Nuclear Medicine,2001,31(4):255-255.
    [162]屈婉莹.充分发挥放射性核素骨显像的优势[J].中华核医学杂志,2004,24(04):197-198.
    [163]Varady P, Li JZ, Alden TD et al. CT and radionuclide study of BMP-2 gene therapy-induced bone formation[J]. Academic Radiology,2002, 9(6):632-637.
    [164]黄建国,高希武,袁海峰等.脊柱植骨融合核素显像的实验研究[J].宁夏医学杂志,2005,(09):595-597.
    [165]付索超,雷伟,汪静等.核素骨断层扫描对颈椎融合器内植骨成活的评价[J].中国脊柱脊髓杂志,2007,17(05):361-364.
    [166]Tatsuyama K, Maezawa Y, Baba H et al. Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone[J]. European Journal of Histochemistry,2000,44(3):269-278.
    [167]何威,杨力,蔡德鸿.骨形成与吸收过程中的代谢生化标记物[J].中国临床康复,2005,9(42):118-120.
    [168]Lian JB, Gundberg CM. OSTEOCALCIN-BIOCHEMICAL CONSIDERATIONS AND CLINICAL-APPLICATIONS[J]. Clinical Orthopaedics and Related Research,1988,(226):267-291.
    [169]Garrel DR, Delmas PD, Malaval L et al. SERUM BONE GLA PROTEIN-A MARKER OF BONE TURNOVER IN HYPERTHYR-OIDISM[J]. Journal of Clinical Endocrinology & Metabolism,1986,62(5): 1052-1055.
    [170]Weinreb M, Shinar D, Rodan GA. DIFFERENT PATTERN OF ALKALINE-PHOSPHATASE, OSTEOPONTIN, AND OSTEOCALCIN EXPRESSION IN DEVELOPING RAT BONE VISUALIZED BY INSITU HYBRIDIZATION[J]. Journal of Bone and Mineral Research,1990,5(8): 831-842.
    [171]Eghbali-Fatourechi GZ, Lamsam J, Fraser D et al. Circulating osteoblast-lineage cells in humans [J]. New England Journal of Medicine, 2005,352(19):1959-1966.
    [172]吴文苑.骨型碱性磷酸酶的检测方法和临床应用[J].国外医学(临床生物化学与检验学分册),1999,20(02):64-65.
    [173]ten Dijke P, Fu JY, Schaap P et al. Signal transduction of bone morphogenetic proteins in osteoblast differentiation[J]. Journal of Bone and Joint Surgery-American Volume,2003,85A:34-38.
    [174]Cheng HW, Jiang W, Phillips FM et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs)[J]. Journal of Bone and Joint Surgery-American Volume,2003,85A(8):1544-1552.
    [175]Yamaguchi A. [Application of BMP to bone repair][J]. Clin Calcium, 2007,17(2):263-269.
    [176]Peng HR, Wright V, Usas A et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4[J]. Journal of Clinical Investigation,2002,110(6):751-759.
    [177]Valdimarsdottir G, Goumans MJ, Rosendahl A et al. Stimulation of Idl expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells [J]. Circulation,2002,106(17):2263-2270.
    [178]Boden SD, Zdeblick TA, Sandhu HS et al. The use of rhBMP-2 in interbody fusion cages-Definitive evidence of osteoinduction in humans:A preliminary report[J]. Spine,2000,25(3):376-381.
    [179]Janssens K, ten Dijke P, Janssens S et al. Transforming growth factor-betal to the bone[J]. Endocr Rev,2005,26(6):743-774.
    [180]Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGF beta and BMP[J]. Bone,1996,19(1 Suppl):1S-12S.
    [181]Yamashima T, Yoshimura K, Morita O et al. Histological study of bone regeneration using vascular endothelial growth factor on rat mandibular bone defect[J]. Nihon Hotetsu Shika Gakkai Zasshi,2005,49(5):726-735.
    [182]Kleinheinz J, Wiesmann HP, Stratmann U et al. Evaluating angiogenesis and osteogenesis modified by vascular endothelial growth factor (VEGF)[J]. Mund Kiefer Gesichtschir,2002,6(3):175-182.
    [183]Kleinheinz J, Stratmann U, Joos U et al. VEGF-activated angiogenesis during bone regeneration[J]. Journal of Oral and Maxillofacial Surgery,2005,63(9):1310-1316.
    [184]Rho JY, Hobatho MC, Ashman RB. RELATIONS OF MECHANICAL-PROPERTIES TO DENSITY AND CT NUMBERS IN HUMAN BONE[J]. Medical Engineering & Physics,1995,17(5):347-355.
    [185]Zannoni C, Viceconti M, Pierotti L et al. Analysis of titanium induced CT artifacts in the development of biomechanical finite element models[J]. Med Eng Phys,1998,20(9):653-659.
    [186]Taylor WR, Roland E, Ploeg H et al. Determination of orthotropic bone elastic constants using FEA and modal analysis[J]. Journal of Biomechanics,2002,35(6):767-773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700