大跨悬索桥安全监测方法及体系研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国目前已经进入土木工程建设的大规模发展时期。地锚式悬索桥由于构造简单,受力明确,材料利用效率高,已经成为跨径超过千米桥型的最有利竞争者。我国大跨度悬索桥的建设规模及设计、施工水平均已达到世界先进水平。大跨悬索桥的健康与安全运营成为大家关注的重点问题。随着传感测试技术、数据分析处理技术、计算机网络技术、系统集成技术的发展,桥梁健康监测关于传感测试元件、海量数据处理等难题得到解决,桥梁监测的软、硬件条件都发生了大的改变,使得桥梁健康监测成为可能。
     我国的大跨悬索桥修建起步较晚。大部分大跨悬索桥投入运营不到二十年。欧美大部分悬索桥已经服役几十甚至上百年,运营期间出现了大量病害甚至危害结构安全。本文主要进行了以下几个方面的研究:
     (一)结构安全影响因素分析及安全监测系统监测内容研究
     1.针对大跨悬索桥结构体系特点,对大跨悬索桥各构件体系,包括:缆索体系、锚碇体系、主塔体系、加劲梁体系进行结构安全影响因素分析。
     2.根据结构安全影响因素分析结果及主要病害情况,确定大跨悬索桥安全监测在线监测内容及定期检测内容。
     (二)既有大跨悬索桥运营期安全监测系统及监测手段研究
     1.我国大跨悬索桥运营时间短,相关经验资料积累少,本文详细调研分析了欧美及日本大跨悬索桥运营期间技术状况及相关安全监测系统技术手段。
     2.目前大跨悬索桥“生命线”-主缆无有效监测手段,完全依赖于耗费人力、财力、影响交通的开放式检查;吊索索力无长期实时在线监测手段,仅可进行定期检测。大部分监测系统仍采用电类传感器。大跨悬索桥安全监测系统面临主要技术指标缺乏实时在线监测手段的现状。
     (三)多项针对大跨悬索桥远程实时在线光纤光栅(FBG)传感技术研究
     1.结合主缆内部钢丝构成及工作状态,基于FBG传感测试技术,研发了主缆内部钢丝应变温度监测系统。
     2.针对悬索桥吊索索力无长期实时在线监测手段的现状,研发了新型FBG应变传感器长期实时在线监测,振动索力传感器标定测试吊索索力的新方法。
     3.针对悬索桥新型无粘结可更换预应力锚固体系,研制了长效监测FBG压力传感器,对锚索索力进行实时在线监测,真正实现预应力锚固体系的可更换。
     5.对大跨悬索桥主塔、主梁应变采用FBG埋入式应变传感器及FBG表面式应变传感器进行监测。对于主梁、主塔、吊索、主缆温度场分别采用专用FBG温度传感器进行实时在线监测。
     6.采用FBG高速解调仪器结合专用FBG传感器,监测吊索、锚索索股、锚箱吊耳的疲劳应力。
     (四)监测内容完善的大跨悬索桥长期安全监测系统研究
     将研发的FBG传感系统应用于武汉阳逻长江公路大桥健康监测系统,构建了监测内容完善、规模较大的长期实时在线监测系统。为大规模采用先进FBG传感测试技术的大跨悬索桥健康与安全监测系统。分析各监测子系统监测数据,证明各子系统工作正常,监测数据准确有效。
     (五)实用大跨悬索桥安全状况评估系统研究
     针对大跨悬索桥安全状况评估的实际需要,提出了在线监测与定期检测数据相结合的评估策略。充分发挥监测系统长期实时在线监测数据及离线检测数据的功能,确定了各层次指标评估标准及各层指标权重,开发了适用于武汉阳逻长江大桥的安全状况评估系统。为其他大跨悬索桥安全状况评估提供借鉴。
Currently China has come into the large-scale development period of of civil engineering construction. Anchored suspension bridge has become the most favorable competitors as a bridge span more than 1000 m because of its simple structure, unambiguous forceing and effective material useing. In China, the large scale, designing and construction of large-span suspension bridge have reached the world advanced level. Healthy and safe operation of large-span suspension bridges become a focus of attention. Large changes have occured in bridge monitoring software and hardware condition, which maked it possible for bridge health monitoring with sensing technology, data analysis and processing technology, computer network technology, system integration technology, bridge health monitoring on the sensing element and mass data processing problem have been resolved.
     As late start of large-span suspension bridges construction, the operation period of most large-span suspension bridges is less than two decades. Contrarily in Europe and the United States, the period is dozens or even hundreds of years and a mass of disease have appeared on the bridges which possibly menaced the structural safety.
     This paper carried out the following research contents:
     (I) Analysis of the influence factors of structural safety and research on the contents of safety monitoring system
     1. Analyse the influence factors of structural safety for the characteristics of the various components of large-span suspension bridge system, including: cable system, anchor system, the main tower system, stiffening girder system.
     2. Determine the large-span suspension bridge safety monitoring online contents and regular inspection contents according to the analysis of influence factors of structural safety and major diseases.
     (II) Study on safety monitoring system and monitoring instrumentality on existing large-span suspension bridge in operation
     1. Because of the short-term operations of large-span suspension bridges in China, we hane less accumulation of empirical data. This paper has investigated and analysed detailedly the technology condition and related safety monitor system techniques of large-span suspension bridge in Europe, United States and Japan during the operation of large-span suspension bridge.
     2. The main cable is the "lifeline" of large-span suspension bridge but depends on the open-examination which costs large of human and financial resources, impacts traffic and without an effective monitoring method. The hanging cable tension without long-term real-time online monitoring method and rely on regular inspection. Most monitoring systems still use the electric sensors. Large-span suspension bridge safety monitoring system is facing lack of real-time online monitoring methods of major technical indicators.
     (III) Study on long distance real-time and online monitoring FBG sensing technology of large-span suspension bridge
     1. The main cable wire strain and temperature monitoring system has been developed and combined with the main cable wire form and working condition based on FBG sensing technology.
     2. A new real-time online monitoring method of the hanging cable tension using FBG strain sensors and calibrated by vibration cable force sensors has been proposed, in allusion to the condition of hanging cable tension force has no long-term and real-time online monitoring method.
     3. According to the new prestressed anchorage system of suspension bridge which can be replaced without bond, a long-term monitoring method with FBG pressure sensor has been developed.The monitor method of anchor cable force is on-line and real time and make the anchorage system interchangeably.
     4. The tower and beam strain of largr-span suspension bridge has been monitored by using embedded FBG strain sensors and the FBG surface strain sensors. The temperature of the tower, beam, hanging cable and main cable were real time and on line monitored by special FBG temperature sensors.
     5. The high-speed FBG demodulation equipment combined with special FBG sensors were used in monitoring the fatigue stress of hanging cable, anchor cable unit, anchor box hanging ear.
     (IV) Study on the long term safety monitoring system with improved contents of large-span suspension bridg
     The proposed FBG sensors have been used in the longterm health monitoring system of Wuhan Yangluo Yangtze River Highway Bridge which built an improved contents and large-scale long term real time monitoring system.The health and safety monitoring system of this bridge used large-scale advanced FBG testing technology. The subsystems are working properly and the data are accurate and effective by analysising the monitoring data of the subsystems.
     (V) Study on applied safety condition evaluation system of large-span suspension bridge
     According to the actual needs of large-span suspension bridge safety condition evaluation, the evaluation strategy with combination of online monitoring and periodic inspection has been proposed. This strategy fullly used the function of long-term real-time online monitoring data and offline inspection data, and the evaluation standards and weigh of each level indicator have been determined. The safety condition evaluation system for Wuhan Yangluo Yangtze River Highway Bridge is developed. And the system provided reference for other large-span suspension bridges safety condition evaluation systems.
引文
[1]Housner G, Caughey T. Structure control:Past,present,and future [J]. Journal of Bridge Engineering Mechanics,1997,123(9):897-971.
    [2]张启伟.大型桥梁健康监测概念与监测系统设计[J].同济大学学报(自然科学版),2001,29(1):65-70.
    [3]Myroll F, DIbiagio E. Instrumentation for monitoring the Skarnsunder Cable-stayed Bridge [C]. Krokcborg J Proceedings of the 3rd Symposium on strait Crossing, Rotterdam: Balkema,1994.
    [4]Andersen E. Structure monitoring of the Great Belt East Bridge [C]. Krokcborg J Proceedings of the 3rd Symposium on Strait Crossing, Rotterdam:Balkema,1994.
    [5]Curran P, Tilly G. Design and monitorinf of Flintshire Bridge [J]. Structure Engineering International,1999,3:225-228.
    [6]Chueng M, Tadros G, Brown T. Field monitoring and research on performance of Confederation Bridge [J]. Canadian Journal of Civil Engineering,1997,24(6):951-962.
    [7]Sunaryo, Sumitro. Long span bridge health minitoring system in Japan,2001.
    [8]兰海.大跨斜拉桥结构综合监测与评估系统[D].2000.
    [9]王迎军.虎门大桥悬索桥实时监测与分析[D].2003.
    [10]张宇峰.江阴长江大桥结构健康监测系统升级改造及部分数据分析[C].2008全国公路特大桥梁运营安全管理及信息化技术研讨会论文集,2008.18-21.
    [ll]苏木标.芜湖长江大桥长期健康监测与报警系统研究[J].铁道学报,2007,29(2):71-76.
    [12]丁幼亮.润扬长江大桥结构损伤预警系统的设计与实现[J].东南大学学报(自然科学版),2008,38(4).
    [13]李爱群.润扬长江大桥结构健康监测系统研究[J].东南大学学报(自然科学版),2003,33(5):544-548.
    [14]丁鸿志.南京长江三桥健康监测系统在2008年雪灾中的应用[C].中国公路学会桥梁和结构工程分会2008年全国桥梁学术会议论文集,2008.
    [15]淡丹辉.大型桥梁健康监测系统的实践与展望[C].第四届全国公路科技创新高层论坛论文集,2008.
    [16]刘正光.人造卫星定位系统在桥梁结构健康监测系统中的应用——以香港悬索体系桥梁为例[J].现代交通技术,2008,5(6):23-27.
    [17]陈新.香港青马交通管制区实时GPS桥梁变形监测系统[J].交通世界,2002,(1).
    [18]刘石.基于GIS的桥梁健康监测与安全评估研究[D].2005.
    [19]梁雪冰.应用于大跨度桥梁结构的损伤指标对比研究[D].2001.
    [20]高赞明.基于振动方法的汲水门大桥损伤检测研究[J].地震工程与工程振动,2001,21(4):117-124.
    [21]王卫锋.香港汀九大桥自振特性测量[J].郑州工业大学学报(自然科学版),2001,22(2):39-42.
    [22]周仙通.基于概率神经网络方法汀九大桥损伤类型和位置识别[C].国际结构控制与健康诊断研讨会论文集,2000.
    [23]王兆辉.系统辨识在桥梁状态监测中的应用[J].中南公路工程,2006,31(3):159-163.
    [24]石顺祥,孙艳玲,马琳.光纤技术及应用[M].武汉:华中科技大学出版社,2009.
    [25]Ferdinand P, Magne S. Applications of Bragg grating sensors in Europe [C].12th International conference on optical fibre sensors, Williamsburg,1997.
    [26]Valery N, Andrey N. FIber optic sensors for simultaneous measurement of voltage and temperature. SPIE Vol 4578; 2005.
    [27]Murphy K, Gunther M. Fabry-Perot optic sensors in full scale fatigue testing on an F-15 Aircraft [J].1991.
    [28]Borinski J, Meller S. Optical fiber sensors for In-flight health monitoring. SPIE Proceedings Vo13986; 2000.
    [29]Jennifer L, Mark E. Optical fiber extrinsic fabry-pert interferometric(EFPI)-based biosensors. 2000.
    [30]JenniferL.Elaster, AngelaTrego. Flight demonstration of fiber optic sensors.2003. Proceedings of SPIE Vol 5050.
    [31]JenniferL.Elaster. Corrosion mnitoring in aging aircraft using optical fiber-based chemical sensors.2000.
    [32]Sagvolden G, Pran K, Vines L. Fiber optic system for ship hull monitoring [C]. Optical fiber sensors conference technical digest, Portland,2002.
    [33]Hjelme D, Bjerkan L. Application of Bragg grating sensors in the characterization of scaled marine vehicle modes [J]. Appl Opt,1997,36:328-344.
    [34]Jason S, Chris S. Certification of a submarine design using fiber Bragg grating sensors.2005. Proceedings of SPIE Vol 5388.
    [35]Wang G, Pran K. Ship hull structure monitoring using fibre optic sensors [J]. Smart MaterStruct, 2001,10:472-479.
    [36]Brown C. A wave-induced fatigue strain recorder for surface ships [J].1999:20-36.
    [37]Baldwin C, Niemczuk J. Structure testing of Navy vessels using Bragg grating and a prototype Digital Spatial Wavelength Domain Multuplexing (DSWDM) system [J]. Naval Engineerings Journal, 2001,114(1):63-70.
    [38]Ramesh S, Kamath G, Nitesh G. Structure health monitoring of co-cured composite structures using FBG sensors [C]. Proc of SPIE, Bellingham,2005.
    [39]Casas R, Cruz JS. Fiber optic sensors for bridge monitoring [J]. Journal of Bridge Engineering, 2003,6(8):362-366.
    [40]J.Udd. Monitoring trucks,cars,and joggers on the Horsetail Falle Bridge using fiber grating strain sensors.2005. Proceedings of SPIE,Vol 4185.
    [41]JohnSeim, EricUdd. Development and deployment of fiber optic high way and bridge monitoring systems.2005. Proceedings of SPIE Vol 3995.
    [42]A.M.Anisfeld, H.R.Kast-Woelbern. Activation of the nuclear receptor FXR induces fibrinogen expression:a new role for bile acid signaling [J]. Journal of Lipid Research,2005,46(3):458-468.
    [43]Schroeder. High pressure and temperature sensing for oil industry using fiber Bragg gratings written onto side hole single mode fiber.2005. Proceedings of SPIE Vol 3042.
    [44]F.O.Ferdinand, LechienJL. Mine operating accurate stability control with optical sensing and Bragg grating technology [J]. Lightwave Technology,1995, (13):1303-1306.
    [45]ProhaskaJD, SnitzerE. Fiber optic Bragg grating strain sensor in large scale concrete structures.1997. Proceedings of SPIE Vol 1798.
    [46]C.K.Y.Leung, N.Elvin. A novel distributed optical crack sensor for concrete structures [J]. Engineering Fracture Mechanics,2000,65:133-148.
    [47]Y.M.Gebremichael, W.Li. A field deployable multiplexed Bragg grating sensor system used in an extensive highway bridge monitoring evaluation tests [J]. Ieee Sensors Journal,2005,5(3):510-519.
    [48]RaoYJ, WebbDJ. In Bragg grating temperature sensor system for medical applications [J]. Lightwave Technology,2005,14:779-815.
    [49]RaoYJ, WebbDJ. In Bragg grating two-directed thermodilution catheter for cardiac monitoring [J].1997.
    [50]W.T.Garvey, S.Kwon. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concerntration determined by nuclear magnetic resonance [J]. Diabetes,2003,52(2): 453-462.
    [51]杜善义,冷劲松.智能材料系统和结构[M].北京:科学出版社,2001.
    [52]Measures M, Alavie A, Maaskant. Bragg grating fiber optic sensing for bridge and other structures [C]. Second european conference on smart structures and materimals, Glasgow: SPIE, 1994.
    [53]姜德生,RichardO C.智能材料器件结构与应用[M].武汉:武汉工业大学出版社,2000.
    [54]蒋洪涛.光纤传感器在桥梁健康监测中的应用[J].北方交通,2006,(10):56-59.
    [55]郑宪政.大跨度悬索桥的设计[J].国外桥梁,1993,71(2):136-140.
    [56]周孟波.悬索桥手册[M].北京:人民交通出版社,2003.
    [57]严国敏.现代悬索桥[M].北京:人民交通出版社,2001.
    [58]金增洪.明石海峡大桥简介[J].国外公路,2001,21(1):13-18.
    [59]蔡国宏.明石海峡大桥营运阶段监控和养护新技术[J].中外公路,2002,22(3):45-48.
    [60]李运生.明石海峡大桥的监测[J].世界桥梁,2002,(3):52-54.
    [61]欧庆保.江阴长江公路大桥上部结构的安全监测系统[C].工程安全及耐久性,2000.
    [62]缪长青.江阴大桥原结构安全监测系统设计分析[J].公路交通科技,2007,24(11):81-86.
    [63]朱绍玮.江阴大桥结构健康监测系统升级改造及初步数据分析[J].公路,2007,(4):69-72.
    [64]WongKaiYuen. Structural identification of Tsing Ma Bridge [J]. Transactions Hong Kong Institution of Engineers,2003,10(1):38-47.
    [65]Chan T, Yu L. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation [J]. Engineering Structures,2006,28(5):648-659.
    [66]NiTYQ, YeXW. Fatigue reliability analysis of a suspension bridge using long-term monitoring data [J]. Key Engineering Materials,2006, V321-3231:223-229.
    [67]KoJM, ChakKK. Formulation of an uncertainty model relating modal parameters and environmental factors by using long-term monitoring data.2003. Proceedings of SPIE-The International Society for Optical EngineeringVol 5057.
    [68]LIZX, Chan T. Statistical analysis of online strain response and its application in fatigue assessment of along-span steel bridge [J]. Engineering Structures,2003,25(14):1731-1741.
    [69]NiYQ, YeXW. Fatigue reliability analysis of a suspension bridge using long-term monitoring data [J]. Key Engineering Materials,2006,321-323.
    [70]NiYQ, HuaXG. Reliability-based assessment of bridges using long-term monitoring data [J]. Key Engineering Materials,2006, V321-3231:217-222.
    [71]邓扬.润扬大桥悬索桥桥址风环境的长期监测与分析[J].空气动力学学报,2009,27(6):632-637.
    [72]丁幼亮.润扬长江大桥结构损伤预警系统的设计与实现[J].东南大学学报(自然科学版),2008,38(4):704-708.
    [73]李爱群.基于SHMS的润扬悬索桥桥址区强风特性[J].东南大学学报(自然科学版),2007,37(3):508-511.
    [74]孙君.润扬长江大桥钢箱梁的温度分布监测与分析[J].公路交通科技,2009,26(8):94-98.
    [75]王浩.台风”麦莎”作用下润扬悬索桥抖振响应实测研究[J].空气动力学学报,2008,26(3):297-303.
    [76]王浩.基于现场实测的润扬悬索桥桥址区台风与强北风特性对比[J].东南大学学报(英文版),2009,25(1):99-103.
    [77]王滢.润扬悬索桥钢箱梁结构疲劳应力监测及其分析[J].东南大学学报(自然科学版),2007,37(2):280-286.
    [78]尼尔斯J.吉姆辛.缆索支承桥梁-概念与设计[M].北京:人民交通出版社,2002.
    [79]Betti R, yangcv B. Conditions of Suspension Bridge Cables New York City Case Study [J]. Transportation Research Record,1999,1654:105-111.
    [80]付春晓,雷俊卿.既有悬索桥主缆现状的检测与研究[J].世界桥梁,2002,(4):70-74.
    [81]Yanev B. Suspension Bridge Cables: 200 Years of Empiricism, Analysis and Management [J].
    [82]刘海燕,陈开利.日本来岛海峡大桥主缆防腐新方法[J].世界桥梁,2003,(2):68-69.
    [83]王敬民.大跨径悬索桥的主缆防护[J].公路,2000,(3):30-32.
    [84]Kazuhiko F, Shoichi S. Corrosion Protection for the Cables of Suspension Bridge [C]. International Association for Bridges and Structure Engineering Symposium KOBE,1998.
    [85]党志杰,郑杉.海洋大气环境下悬索桥主缆及吊索的腐蚀特点[J].桥梁建设,2000,(3):69-71.
    [86]温文峰,张宇峰,马爱斌.悬索桥主缆的腐蚀与防护[J].腐蚀与防护,2007,28(11):598-601.
    [87]刘仲波,王海龙,陈伟.旧金山-奥克兰海湾新桥的主缆设计[J].世界桥梁,2004,(1):5-8.
    [88]李闯,黎世彬,徐绍机.悬索桥主缆防腐系统的现状分析[J].公路交通技术,2003,(4):64-67.
    [89]向桂兵.悬索桥吊索疲劳裂纹扩展行为研究[D].2009.
    [90]朱玉.大跨径悬索桥隧道锚变位分析[J].岩石力学与工程学报,2005,24(19):3588-3593.
    [91]朱玉.隧道锚设计体系中的关键问题研究与实践[D].2005.
    [92]赵启林.悬索桥锚碇及地基基础中的力学问题研究动态[J].水利水电科技进展,2001,21(1):22-26.
    [93]李家平.悬索桥重力式锚碇结构变位规律研究[J].岩土力学,2007,28(1):145-150.
    [94]小西一郎.钢桥(第五分册)[M].北京:人民铁道出版社,1981.
    [95]卢成江.悬索桥加劲梁的风振特性及损伤识别研究[J].工业建筑,2006,36(zl):570-574.
    [96]雷俊卿.悬索桥钢箱梁生命周期安全性与耐久性的研究[C].土建结构工程的安全性与耐 久性,2001.
    [97]邹小洁.超大跨度悬索桥颤振控制措施及其机理研究[D].2005.
    [98]埃米尔.希缪,罗伯特.H.斯坎伦.风对结构的作用[M].上海:同济大学出版社,1992.
    [99]项海帆,林志兴.公路桥梁抗风设计指南[M].北京:人民交通出版社,1996.
    [100]王浩.基于SHMS的大跨度悬索桥风致抖振响应实测研究[D].南京:东南大学.2007.
    [101]施文剑.国外基于声控理论的结构健康监测[C].杭州市科协第二届学术年会论文集,2005.
    [102]Diouron L. Contimuous remote acoustic health monitoring of cable-supported bridges [C]. SEWC Yokohama,2002.
    [103]Diouron L. Continuous remote zcoustic health monitoring of tensioned elements in structures [C]. FIB congress, Osaka,2002.
    [104]李冬生,欧进萍.声发射技术在拱桥吊杆损伤监测中的应用[J].沈阳建筑大学学报,2007,23(1):6-9.
    [105]孙宗光.斜拉桥桥面结构损伤位置识别的指标比较[J].工程力学,2003,20(1).
    [106]孙宗光.基于神经网络的损伤构件及损伤程度识别[J].工程力学,2006,23(2):18-22.
    [107]Wang M, Lloyd G, Hovorka O. Development of a remote coil magneto-elastic stress sensor for steel cables [C]. Health Monito ring and Management of civil Infrastructure Systems, Newport Beach CA,2001.
    [108]ZLChen, MLWang, SSumitro. A new magnetoelastic stress/corrosion sensor for cables in cable-stayed bridges using measurement of anhysteretic curve [C].2nd Workshop on ATUEDM, Kyoto,2000.
    [109]郝超,裴岷山,强士中.斜拉索力测试新方法-磁通量法[J].公路,2000,(11):30-31.
    [110]龙跃,邓年春,朱万旭.磁通量传感器及其在桥梁监测中的应用[J].预应力技术,2007,(2):3-6.
    [111]徐国平,刘明虎,黄芳玮.悬索桥锚定可更换无粘结预应力锚固系统试验研究[J].预应力技术,2005,49(2):3-7.
    [112]徐国平.武汉阳逻长江公路大桥关键技术[J].公路,2009,34(5):34-38.
    [113]邱法维.虎门大桥应变监测数据处理系统设计[J].桥梁建设,2003,(2):66-69.
    [114]贾明.远程结构健康(应变)监测系统的设计与研究[D].2005.
    [115]姜德生,梁磊,周雪芳.光纤Bragg光栅传感器在冷饭盒大桥的应用[J].交通科技,2003,(3):l-3.
    [116]叶贵如.倾角仪在大跨度桥梁挠度检测中的应用[J].公路交通科技,2009,26(11):103-106.
    [117]董辉.激光图像挠度传感技术研究[C].中国光学学会2004年学术大会,2004.
    [118]董辉.一种激光图像挠度测量方法[J].传感器技术,2004,23(10):63-68.
    [119]刘念东.激光挠度测量系统的实现[J].电子工程师,2001,27(4):48-50.
    [120]石振荣.基于Lonworks现场总线的大型桥梁监测系统的设计[D].2000.
    [121]熊先才.光电液位传感器及其在桥梁挠度自动测量中的应用[J].地震工程与工程振动,2006,26(4):260-264.
    [122]曾威.基于连通管原理的桥梁挠度自动监测系统[J].湖南大学学报(自然科学版),2007,34(7):44-47.
    [123]王敬民.江阴长江公路大桥主梁运动特性分析[C].第四届全国公路科技创新高层论坛论 文集,2008.
    [124]张宇峰.基于健康监测实测数据的江阴长江大桥伸缩缝状态分析与评定[C].2008年全国既有桥梁加固、改造与评价学术会议论文集,2008.
    [125]Ashkenzai-v, Roberts-gw. Experimental Monitoring of humber bridge using GPS [J]. Proceeding of the Institution of Civil Engineers: Civil Engineering,1997,120(4):177-182.
    [126]Kyashima s, yanaka y. Monitoring the Akashi Kaikyo Bridge:First Experimences [J]. Structure Engineering International,2001, (2):120-123.
    [127]朱桂新.GPS RTK技术在虎门大桥运营安全监测中的应用[J].公路,2002,(7):55-58.
    [128]周智.FBG智能传感器及其在土木工程中的应用研究[C].第五届中国功能材料及其应用学术会议论文集Ⅰ,2004.
    [129]邓年春.一种新型平行钢丝智能拉索[J].公路交通科技,2007,24(3):82-85.
    [130]周智.FBG智能传感器及其在土木工程中的应用研究[J].功能材料,2004,35(zl):152-156.
    [131]周智.土木工程结构光纤光栅智能传感元件及其监测系统[D].2003.
    [132]岳丽娜,黄俊,姜德生.光纤传感技术在长江二桥加固监测中的应用[J].武汉理工大学学报,2009,31(2):10-12.
    [133]余波.正交异性桥面板钢箱梁疲劳设计和疲劳评估规范的现状研究[C].2008年全国既有桥梁加固、改造与评价学术会议论文集,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700