钻探用聚晶金刚石复合体高压合成、性能表征与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以提高钻探用聚晶金刚石复合体(PDC)的性能为目的,从PDC合成块尺寸的计算、合成块组装方式的改进出发,采用SEM、EDX、XRD、Raman光谱、DTA-TG和有限元分析等研究方法,对PDC的高压烧结过程、残余应力检测、性能表征与优化等方面进行了研究。
     基于有限元方法,探讨了合成块反应腔温度场的分布及其影响因素;在分析不同烧结时间PDC金刚石层表面XRD图谱的基础上,证实了PDC的烧结经历了金刚石的石墨化,发现了烧结过程中WC衍射峰强度的变化规律;分别采用应力释放法、XRD法和Raman光谱法测定了PDC金刚石层表面的残余应力,通过与有限元模拟结果对比,确认了这三种方法测定PDC残余应力的可行性;对PDC耐磨性、耐热性和抗冲击性能的表征方法进行了探讨并提出了改进措施;在优化PDC制备工艺的基础上设计并合成出了内置过渡层的PDC。
     对照国内外有关PDC的研究情况,本研究取得如下创新性成果:
     1、针对六面顶压机,提出了合成PDC所用叶腊石块的临界边长(Lk)、实用边长(L0)与顶锤端面正方形边长(a)的关系式:LO/Lk=0.985exp(-a/9.05)+1.135使得根据硬质合金顶锤参数准确计算所用叶腊石合成块边长成为可能,对高压物理的研究和超硬材料的工艺设计具有重要的实用价值。
     2、对传统的PDC合成块组装设计进行了改进,对改进后合成块反应腔温度场的有限元模拟表明:PDC烧结反应区域轴向温差在30°C左右,径向温差约15°C,完全可以满足高品质PDC烧结的要求;分析了合成块预热温度和初始顶锤温度对反应腔温度场的影响,发现预热温度的增加可缩短反应腔体达到平衡温度的时间,但对进入“平衡态”后合成块的温度场分布以及腔体内的最高温度几乎没有影响。初始顶锤温度的提高对反应腔温度场和反应腔温度达到平衡的时间影响不大,但会使合成腔内最高温度明显增加。
     3、分别用XRD法和有限元分析方法对金刚石层表面残余应力进行了测定和计算,测试值与计算值基本相同;通过X射线应力检测仪测试,得到了PDC中心和边缘表面残余应力与金刚石层厚度(h)的关系式:σφ中心=758h-2294.5,σφ边缘=253.8h-366,这一关系式可为PDC的结构设计提供理论指导。
     4、鉴于采用现行的PDC磨耗比测试标准易产生称量误差以及较大规格PDC受天平称量范围限制的问题,笔者提出了以PDC的体积磨损代替重量磨耗的评估方法,并推导出了PDC磨损体积v与磨损面弦长L1的关系式:实践证明这一改进可提高测试结果的准确性,且大大简化了测试过程。
     5、将非平面连接技术及梯度过渡技术相结合研制出了内置过渡层的PDC。经过检测,其耐磨性、耐热性和抗冲击性均优于普通PDC。油田钻探的现场应用结果显示这种PDC钻头的总进尺比普通钻头深200-500米,研究成果现已应用于生产。
Sintering process, residual stress measurement, Characterization and Optimization of Polycrystalline Diamond Compact (PDC) for drilling were studied using SEM, EDX, XRD, Raman spectroscopy, DTA-TG and finite element analysis (FEA) method.
     The distribution of the temperature in high-pressure cell assembly for sintering PDC and factors influencing it were discussed by using FEA method. Based on the XRD patterns of the diamond top surface of PDC sintered at the same temperature and different times, the sintering of PDC was proved to have gone through the graphitization of diamond and the changing pattern of the intensity of WC peak during sintering was discovered. Residual stresses in the diamond layer of PDC were measured using stress-release method, XRD and Raman spectroscopy, respectively. It was confirmed that the three methods could be used to test the residual stress of PDC by comparing the testing values with the results in the FEA model. Characterization of wear-resistant ability, thermostability and toughness of PDC were analyzed, and improving measurements were brought forward. A new kind of PDC with transition layer inside was designed and manufactured by optimizing the technology preparing PDC.
     Referring to the corresponding researches at home and abroad, there are several points of highlight in this work as follows:
     a) An expression on the relationship among the critical length (Lk), practical length (Lo) of the pyrophillite cube used for the sintering of PDC and the dimension of the square (a) of cemented carbide anvil was presented:LO/Lk=0.985exp(-a/9.05)+1.135. This makes it possible to calculate the practical length of the pyrophillite cube accurately based on the parameters of the anvil used in the experiment.
     b) A new cell assembly for sintering PDC was designed; the results of FEA show that the axial temperature difference in the chamber in which PDC is sintered is about 30℃, and the radial temperature difference is about 15℃. This means that the assembly is suitable for manufacturing high quality PDC. The influence of the anvil's temperature and preheating temperature of the cubic assembly on the temperature distribution in the chamber was taken into consideration. The time-history graph of the temperature in the chamber obtained from FEA illuminates that the increase of the heating temperature shortens the time the temperature in the chamber to reach the maximum while it has no influence on the temperature distribution and maximum. The change of the initial temperature in an anvil has no great impact on the temperature distribution in the chamber and the time it took to reach the equilibrium state though it affects the maximum of the temperature to some extent.
     c) XRD and FEA method were used to measure and simulate the stress in the diamond layer of PDC respectively, the FEA model result was found to correlate well with the measured values. The relations between the residual stress in the top surface of the diamond layer and the thickness of the diamond layer resulted from measuring the stress using XRD residual stress instrument were given:σφcenter=758 h -2294.5,σφedge =253.8h -366. The expression provides theoretical guideline for the designing of PDC.
     d) The shortcomings of the present measuring method of the wear-resistant of PDC were analyzed. The weighing of PDC was considered as an important factor influencing the veracity of testing results. The length of the abrasion facet of PDC is suggested to be measured by microscope, and then the abrasion volume can be calculated rather than weighted. A formula for calculating the volume based on the length of the abrasion facet was derived:
     This improvement is proved in the practice to have increased the accuracy of the testing result and simplified the testing process.
     e) The PDC with transition layer inside was developed by combining the non-planer interface technology with transition layer technology; its wear-resistant, thermo stability and toughness are shown to be superior to ordinary ones in performance test. On-site drilling result shows that the total footage of this kind of PDC can drill is 600-1600ft deeper than that of the common ones.This kind of PDC has now put into production.
引文
[1]F. P. Bundy, H. T. Hall,H, M.Strong et al. Man-made diamonds. Nature,1955 (176):51-55
    [2]王裕昌.人造大单晶金刚石的合成技术进展及主要应用.超硬材料工程,2008,20(6):28-32
    [3]贾晓鹏.宝石级金刚石大单晶的合成技术与最新研究进展.新材料产业,2008(8):55-57
    [4]宋健民.钻石合成.台北:全华图书股份有限公司,2008:2-29
    [5]亓曾笃.大单晶金刚石的生长.人造金刚石,1978(2):12-15
    [6]邓福铭.陈启武.PDC超硬复合刀具材料及其应用.北京:化学工业出版社,2003
    [7]Delai. Diamond compact abrasive.U.S.Pat.3141723,1964
    [8]A.Blainley. Diamond abrasive particles in a metal matrix. U.S.Pat.3239321, 1966
    [9]L.F.Veshchagin.Method of producing polycrystalline diamond. U.S.Pat. 4049783,1967
    [10]H.T. Hall.Sintered diamond:a synthetic carbonado. Science,1970,169: 868-869
    [11]H.D.Strongburg. Process for producing sintered diamond compacts and products. U.S.Pat.3574580,1970
    [12]H.K.Katzman, W.F.Libby. Science,1971,172:1132-1134
    [13]R.H. Wentorf, R.C. Devries, F.P. Bundy. Sintered superhard materials. Science, 1980,208:872-880
    [14]A.Lammer. Mechanical properties of polycrystalline diamond. Material Science and Technology,1988 (4):949-955
    [15]寇自力.超硬刀具的发展与应用.工具技术,2000,34(8):6-8
    [16]赵云良.金刚石复合片及其石油、天然气钻头发展慨况.第五届郑州国际超硬材料及制品研讨会论文集:284-292.北京:海洋出版社,2008.9
    [17]马保松.PDC钻头的新发展及应用.世界地质,1996,15(4):94-97
    [18]D.E. Scott. The History and Impact of Synthetic Diamond Cutters and Diamond Enhanced Inserts on the Oil and Gas Industry. Proceedings,1st International Industrial Diamond Conference, Barcelona, Spain, October20-21, 2005
    [19]于鸿昌,李尚劫.烧结型多晶金刚石中晶界物相的类型与数量对其某些物性的影响.高压物理学报,1989,3(3):221-224
    [20]吕智,唐存印.金刚石聚晶技术与发展.超硬材料与宝石,2004,2(16):1-6
    [21]邓福铭.PDC超硬复合材料高压合成规律及其机理研究:[博士学位论文].长沙:中南大学,1999
    [22]焦魁一.国外金刚石聚结体的研制技术.磨料磨具与磨削,1987,3(39):34-36
    [23]沈主同,孙国显,池用谦,等.高压下烧结体系中的界面结合问题和新型多晶金刚石的研究.高压物理学报,1988,3(2):104-111
    [24]彭应聪,张兴栋,李伯勋,等.添加剂对人造多晶金刚石抗石墨化性能的影响.人工晶体学报,1991,20(1):81-94
    [25]H.Akio. Diamond/sintered carbide cutting tool, U.S.Pat.4171973,1979
    [26]洪时明.金刚石烧结体中的异常晶粒成长过程.人工晶体学报,1991,20(3-4):395-398
    [27]P.A.Bex, G.R.Shafto. The influence of temperature and heating time on PCD performance. Industrial Diamond Review,1989, (3):128-131
    [28]赵云良,王宏志,吴霖.金刚石一硬质合金复合片的耐热性能.人工晶体,1987,16(3):249-254
    [29]王春生.烧结中的多晶金刚石石墨化.人工晶体,1991,20(3-4):354-357
    [30]冯时雍,邱淑蓁,李伯勋.多晶烧结过程中金刚石表面石墨化研究.人工晶体,1987,16(3):238-242
    [31]P.N.Tomlison. Recent progress of diamond and cubic boron nitride composite. Industrial Diamond Review,1983 (4):234-241
    [32]M. Akaishi, H Kanda. Sintering Behavior of the Diamond-cobalt System at High Temperature and Pressure. Journal of Mater. Sci.1982 (17):193-198
    [33]张兴栋,彭应聪,邱淑蓁,等.多晶金刚石烧结中晶粒表面石墨化的实验研究.高压物理学报,1989,3(2):125-131
    [34]H.P.Bovenkerk. Temperature resistant abrasive compact and method for making same. U.S.Pat.4224380,1980
    [35]宋健民.钻石合成.台北:全华图书股份有限公司,2008:4-50
    [36]P.D. Gigl. Coated oxidation-resistant porous abrasive compact and method for making same.U.S.Pat.4738689,1988
    [37]M.D.Herton. Infiltrated thermally stable polycrystalline diamond. U.S.Pat. 4664705,1987
    [38]徐国平,梁红原,杨世珍,等.对国内金刚石复合片(PDC)耐磨性测试方法的探讨.金刚石与磨料磨具工程,2001 (4):11-12
    [39]B.J.Park. Development of new PDC material and evaluation of properties.Finer points.2008, Winter: 24-28
    [40]全国磨料磨具标准化技术委员会.JB/3235-1983.人造金刚石烧结体磨耗比测定方法.北京:中国标准出版社,1983
    [41]黎明发,张力,吴永桥,等.金刚石复合片的性能检测及发展趋势.武汉理工大学学报,2007,29(6):1-4
    [42]K. E. Bertagnolli, C. H. Cooley. Polycrystalline diamond compact (PDC) design methodology utilizing strain energy capacity. Proceedings of ETCE 2001 23rd Energy Sources Conference and Exhibition, Houston, USA, February 5-7,2001
    [43]马宝松,张祖培,郑治川,等.PDC抗冲击性能测试及测定仪的研制.金刚石与磨料磨具工程,2000,6:10-13
    [44]Muzaffer Zeren, Sadi Karagoz. Sintering of polycrystalline diamond cutting tools. Materials and Design.28(2007):1055-1058
    [45]焦淑静,高万夫.金刚石复合片的界面形态及性能特点.金刚石与磨料磨具工程,2004(4):61-66
    [46]G.M. Flood, C. Winchester, D.M. Johnson. Abrasive tool insert.U. S.Pat. 5484330,1996
    [47]D.M. Johnson, F.J. Klug.Polycrystalline diamond cutter with reduced Failure during brazing. U.S.Pat.6042463,2000
    [48]M.D.Dennis.Drill bit insert with sinusoidal interface.U.S. Pat.5709279,1998
    [49]M.D.Dennis.Cutting element having composite formed of cemented cardide substrate and diamond layer. U.S.Pat.4784023,1988
    [50]D.R.Hall. Polycrystalline diamond and/or cubic boron nitride composite, U.S.Pat.4604106,1986
    [51]叶玉屏,周连科,蔡家品.带保护层新型金刚石复合片的研究.探矿工程,1992(3):1-3.
    [52]赵大钢.PDC的超声检测.金刚石与磨料磨具工程,2004(4):68-71
    [53]曹宗杰,潘希德,薛锦,等.提高超声C扫描图像分辨率的插值方法研究.西安交通大学学报,2005,39(9):921-924
    [54]徐国平,尹志民,陈启武.聚晶金刚石复合片(PDC)残余应力的检测方法.金刚石与磨料磨具工程,2007(2):30-33.
    [55]K.E.Bertagnolli, R. Vale. Understanding and Controlling Residual Stresses in Thick Polycrystalline Diamond Cutters for Enhanced Durability. Proceedings, An International Technical Conference on Diamond, Cubic Boron Nitride and their Applications, Vancouver, Canada, July 17-21,2000
    [56]J.W. Paggett, E.F.Drake, A.D.Krawitz, et al. Residual stress and stress gradients in polycrystalline diamond compacts. International Journal of Refractory Metals & Hard Materials,2002 (20):187
    [57]S. A. Catledge, Y. K. Vohra, R.Ladi, et al. Micro-Raman stress investigations and X-ray diffraction analysis of polycrystalline diamond (PCD) tools. Diamond and Related Materials,1996 (5):1159-1165
    [58]王光祖.超硬材料.郑州:河南科学技术出版社,1996:66
    [59]中国磨料磨具工业年鉴.中国机床工具工业协会超硬材料分会编,2009.10
    [60]陈启武,熊湘君,邓福铭.超高压技术研究.矿冶工程,2001,21(1):62-65
    [61]陈宏燕,陈志鄂.浅析六面顶压机的合成腔体.超硬材料与工程,2000(3):10-11
    [62]王德新,王福泉,刘光海.烧结多晶钻石的压力、温度与压力场、温度场.人工晶体学报,2004,33(2):272-277
    [63]刘书锋.聚晶金刚石复合片的均匀烧结.探矿工程,1998(4):47-48
    [64]亓曾笃.多晶金刚石复合材料的某些质量问题.高压物理学报,1991,5(3): 215-219
    [65]陶知耻,蒲正行.赵家台叶蜡石的品种类型、矿物相变及其对合成金刚石的影响.中国科学,1977(2):174-181
    [66]李达明,刘光照,周军学.水促进的叶腊石在超高压高温下的相转变以及对技术应用的影响.科学通报,1978(8):481-485.
    [67]马庆芳,方荣生,项立成等.实用热物理性质手册.北京:中国农业机械出版社,1986
    [68]庞贵彬,苏桂.新型传压介质的研究.金刚石与磨料磨具工程,2001(4):32-33
    [69]程明山,石安家.新型复合传压介质的研究.金刚石与磨料磨具工程,2003(4):70-71
    [70]梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社,1993
    [71]李瑞,马红安,臧传义,等.有限元法计算模拟金刚石合成腔内的电学场.金刚石与磨料磨具工程,2006(6):4-7
    [72]李瑞,马红安,韩奇钢,等.基于ANSYS的金刚石合成腔内的温度场分析.吉林大学学报(工学版),2008,38(3):535-538
    [73]S.M.Hong, M.Akaishi. Behavior of Cobalt Infiltration and Abnormal Grain Growth During Sintering of Diamond on Cobalt Substrate. Journal of Mater.Sci,1988 (23):3821-3826
    [74]邓福铭,陈启武.PDC材料烧结过程中钴在金刚石层中的扩散熔渗迁移机制.高压物理学报,2004,18(1):53-58
    [75]冯时雍,邱淑蓁,李伯勋.多晶烧结过程中金刚石表面石墨化研究.人工晶体,1987,16(3):238-242
    [76]邓福铭,陈启武,卢学军等.金刚石-硬质合金系统超高压烧结过程的X射线衍射研究.粉末冶金技术,2004,22(4):205-209
    [77]洪时明,罗湘捷,陈叔鑫等.D-D结合型金刚石聚晶的高压合成研究.高压物理学报,1990,4(2):105-113
    [78]株洲硬质合金厂编.硬质合金的生产.北京:冶金工业出版社,1974:250
    [79]刘寿荣,刘宜.WC-Co硬质合金γ相的Ⅹ射线结构分析.硬质合金,1997,14(3): 134-138
    [80]周玉,武高辉.材料分析测试技术一材料X射线衍射与电子显微分析.哈尔滨:哈尔滨工业大学出版社,1998
    [81]易建宏,人造金刚石合成的亚稳定间隙固溶体机制.粉末冶金材料科学与工程,1999,4(3):175-177
    [82]刘寿荣,郝建民,褚连青.硬质合金的比矫顽磁力.硬质合金,2000,17(1):48-51
    [83]F.P. Bundy, H.P. Bovenkerk, H.M. Strong, et al. Diamond-Graphite Equilibrium Line from Growth and Graphitization of Diamond. J. Chem. Phys. 1961,35(2):383-391.
    [84]若规雅男.金刚石的成核与生长.日本结晶成长学会志.1989,116(2):2-13.
    [85]王世清.金刚石高压合成中控制形核研究:[博士学位论文].长沙:中南大学,1997
    [86]许斌,李丽,田彬,等.高温高压触媒法金刚石生长的热力学分析.高压物理学报,2009,23(3):189-195
    [87]谢有赞.金刚石理论与合成技术.长沙:湖南科学技术出版社,1993
    [88]林铭西,李英华.粗粒金刚石的生长及热力学条件的确定.高压物理学报,1994,8(1):36-41
    [89]邓福铭,赵国刚,王振廷,等.聚晶金刚石复合体超高压液相烧结理论研究.高压物理学报,2004,18(3):252-260
    [90]赵云良,赵爽之.金刚石烧结机理的探讨.超硬材料论文集.长沙:湖南省超硬材料协会,2001
    [91]P.A.Bex, W.I.Wilson. Syndite - The New Isotropic Diamond. Industrial Diamond Review,1977 (1):10-16
    [92]沈主同,孙帼显,池用谦等.高压下金刚石烧结体系中的界面结合问题和新型多晶金刚石的研究.高压物理学报,1988,2(2):104-111
    [93]A.D.Krawitz, R.A.Winholtz, E.F.Drake. Residual stresses in polycrystalline diamond compacts. Refactory Metals & Hard Materials.1999 (17):117-122
    [94]T.P.Lin, M.Hood, GA.Cooper. Residual stresses in polycrystalline diamond compacts. J.Am.Ceram.Soc.1994,77((6):1562-1568
    [95]徐根,陈枫,肖建清等.油田钻探用金刚石复合片热残余应力分析.石油钻探技术,2008,36(4):49-52
    [96]K.J. DUNN, M. LEE. The fracture and fatigue of sintered diamond compact. J. Mater. Sci.1979 (14):882--890
    [97]F.Chen, G.Xu, C.D.Ma, et al. Thermal residual stress of polycrystalline diamond compacts. Trans.Nonferrous Met.Soc.China,2010 (20):227-232
    [98]T.P.Lin. Material Characterization of Polycrystalline Diamond Compacts (PDC):[Ph.D dissertation]. Berkeley:University of California,1992
    [99]徐根,陈枫,徐国平.采用应力释放法测量PDC热残余应力.石油钻探技术,2010,38(11):67-71
    [100]张定铨 何家文.材料中残余应力的X射线衍射分析和作用.西安:西安交通大学出版社,1999
    [101]徐国平,尹志民,陈启武.金刚石复合片(PDC)表面残余应力的XRD研究.粉末冶金技术,2010,28(1):16-20
    [102]曹品鲁,刘宝昌,殷琨.梯度结构聚晶金刚石复合片残余热应力的有限元分析.探矿工程,2006(3):50-54
    [103]徐国平,陈启武,尹志民,金刚石层厚度对复合片(PDC)残余应力的影响,高压物理学报,2009,23(1):24-30
    [104]叶永权,匡同春,雷淑梅,等.金刚石(膜)的拉曼光谱表征技术进展.金刚石与磨料磨具工程,2007(5):17-21
    [105]陈培榕,李景虹,邓勃.现代仪器分析实验与技术.北京:清华大学出版社,2006
    [106]A. C. Ferrari, J. Robertson. Raman Spectroscopy in Carbon:from Nanotubes to Diamond. London:Royal Society Press,2004
    [107]M.Yoshikawa, Y.Mori, M.Maegawa, et al. Raman scattering from diamond particles. Appl.Phys.Lett.1993,62 (24):3114-3116
    [108]M.Yoshikawa, Y.Mori, H.Obata, et al. Raman scattering from nanometer-sized diamond. Appl.Phys.Lett.1995,67 (5):694-696
    [109]S. Fukura, T. Nakagawa, H. Kagi. High spatial resolution photoluminescence and Raman spectroscopic measurements of a natural polycrystalline diamond, carbonado. Diamond & Related Materials,2005 (4):1950-1954
    [110]徐根,陈枫,徐国平.不同界面形态聚晶金刚石复合片热残余应力分析.超硬材料工程,2007,19(4):10-15
    [111]G.P. Xu, Z.M. Yin, Q.W. Chen. Residual Stress and Radial Stress Gradient in Polycrystalline Diamond Compacts. Diamond& Abrasives Engineering,2008 (3):88-91
    [112]K.H Chen, L.Y.Lai, J.C Lin. Micro-Raman for diamond film stress analysis. Diamond and Related Materials,1995 (4):460-463
    [113]赵大钢.PDC磨耗比检测中称重问题的探讨.金刚石与磨料磨具工程,2003(2):63-65
    [114]张力.1308型复合片的合成及力学性能研究:[硕士学位论文].武汉:武汉理工大学,2007
    [115]徐国平,陈启武,尹志民,PDC测试部位的几何形状对耐磨性测试结果的影响,超硬材料工程,2007(1):23-25
    [116]汪冰峰,王绍斌,杨扬,等.聚晶金刚石复合片耐磨性的表征.矿冶工程,2009,29(1):94-96
    [117]梁红原,徐国平.落锤法测定PDC抗冲击韧性的影响因素.超硬材料工程,2006(3):23-25
    [118]李国民,张平占,孙友宏,等.DFZY型钻探用超硬材料抗动载性能测试仪的研制.探矿工程,1997(6):10-13
    [119]汪冰峰.聚晶金刚石复合片聚晶层的冲击破坏研究.矿冶工程,2008,28(5):100-102
    [120]杨永顺.落锤式冲击试验台研制.中国钎钢钎具协会论文集,2009
    [121]D.I. Choi, B.J.Park. Improved impact resistance of PDC and test of it in Laboratory. An international technical conference on diamond, cubic boron nitride and their applications. Orlando, Florida USA, May 5-7,2008
    [122]P.A.Bex, G.R.Shafto. The influence of temperature and heating time on PCD performance. Industrial Diamond Review,1989, (3):128-131
    [123]王适.金刚石热稳定性及其刀具受热损伤的研究:[博士学位论文].大连:大连理工大学,2003
    [124]王适.聚晶金刚石石墨化温度的研究.超硬材料工程,2005(5):32-35
    [125]刘寿荣.硬质合金的粘结相及其相变.硬质合金,1998,15(4):200-207
    [126]I.E.Clark, P.A.Bex. The use of PCD for petroleum and mining drilling. Industrial Diamond Review,1999, (1):43-49
    [127]浙江大学,武汉建材学院,华南工学院,南京化工学院合编.硅酸盐物理化学.北京:中国建筑工业出版社,1980:6
    [128]司效东.金刚石复合片烧结体磨耗比的提高.大庆石油学院学报,2004,28 (1): 86-88
    [129]焦魁一.国外金刚石聚结体的研制技术.磨料磨具与磨削,1987,41(5):43-47
    [130]G. S. Bobrovnitchii, O.S. Osipov, M. Filgueira. Some Aspects of Diamond Micro-Powder Sintering By HPHT. An international technical conference on diamond, cubic boron nitride and their applications. Vancouver, British Columbia, Canada, July 28- August 1,2003
    [131]M.A.Vail. The role of diamond surface and intrinsic contaminates on sintering of Polycrystalline Diamond Compacts (PDC). An international technical conference on diamond, cubic boron nitride and their applications. Vancouver, British Columbia, Canada,,July 28- August 1,2003
    [132]D.Miess, G.Rai. Fracture toughness and thermal resistance of polycrystalline diamond compacts. Materials Science and Enginnering 1996, A 209:270-276
    [133]黄培云.粉末冶金原理(第2版).北京:冶金工业出版社,2008:418-419
    [134]刘寿荣,杨惠琴.淬火热处理对硬质合金性能和组织的影响.稀有金属材料与工程,1994,23(2):39-45
    [135]陈石林.聚晶金刚石复合体界面及复合机理的研究:[1尊士学位论文].长沙:中南大学,2004
    [136]刘寿荣.WC-Co硬质合金的矫顽磁力.中国有色金属学报,1995,5(2):132-134
    [137]杨雄,刘昌明,吴文秀,等.复合片与硬质合金刀柱间真空扩散焊的工艺研究.江汉石油学院学报,1995,17(3):71-75
    [138]董海,张弘弢,李嫚.聚晶金刚石复合片钎焊基础研究.金刚石与磨料磨具工程,2005(4):25-28
    [139]林峰,吕海波,冯吉福.采用过渡层合成金刚石复合片研究.粉末冶金技术,2007,25(3):185-193
    [140]刘宝昌.新型梯度结构金刚石-硬质合金复合球齿的研究:[博士学位论文].长春:吉林大学,2005
    [141]姜荣超,王进保.均匀过渡层结构金刚石强化柱齿及其钻具的研制.超硬材料与工程,2000(2):28-30
    [142]徐根,徐国平,陈枫.内置过渡层金刚石复合片.中国专利ZL200820053430X,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700