脲酶的组合固定化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脲酶是催化尿素分解为氨和二氧化碳的专一性水解酶,固定化脲酶已成为工业上以脲酶为基础催化水解底物的必要条件。通过实验研究中改变不同的环境因素,如pH值、温度、缓冲反应液等已成功的实现了脲酶的固定化;酶固定化方法有很多,每种方法既有其优点又有缺点,如吸附法操作过程虽然简单有效,但酶容易脱落;共价法和交联法有效并且储存稳定,但材料昂贵且对固定化酶酶活有损害;在膜反应器法,包埋法和微囊法中的内部传质效率较差;通常作为衡量最佳固定化酶条件的标准是对所选择的酶及其固定化方法的反复试验来得出的,对选择固定化酶的材料原则上以无毒,价格低,可再生及生物降解性为主要的标准。
     本课题选取的主要载体材料包括壳聚糖和亲水性聚合物,通过将材料按不同比例混合,采用不同的方法制备酶载体,包括膜块、微球、微膜等,其中固定化技术采用吸附-交联、包埋-交联以及无载体固定等几种方法;同时对以壳聚糖为主体载体进行了形态表征以及接触角的测定,从微观和宏观上检测其固定化酶的效果,以及微膜表面及内部的孔洞形成情况。通过比较不同材料和技术固定化脲酶,综合性质最佳的是在壳聚糖与聚乙二醇为1:1时形成的微膜,从SEM图片上来看CS/PEG薄膜表面及内部形成了孔径均一,分布均匀的多孔结构,增大了比表面积,提高了固定化酶的活力回收值,达到了102.75%左右,通过接触角测量,在CS/PEG=1在吸附酶前后有明显的变化,而且其固定化酶活力回收值大于其他薄膜,其固定化效果为103.72U/(cm2·min),表明酶蛋白成功吸附在薄膜上,使薄膜表面的亲水性增加。
Urease is present in abundance of jackbean' seeds which catalyzes decomposition of urea to produce ammonia and carbon dioxide. Urease immobilization has been a prerequisite for industries based on enzyme hydrolyzed products, it has been successfully implemented at lab scales for enzyme stabilization from various environment factors including pH, temperature, buffers, etc. Several methods of enzyme immobilization have been known,each of them has their own weakness and strength.Adsorption is simple,cheap and effective but frequently reversible, covalent and cross-linking are effective and durable, but expensive and easily worsening the enzyme activity,and in membrane reactor-confinement,entrapment and micro--encapsulations diffusional problems are inherent. Principlally, as a standard the optimal immobilization conditions for a chosen enzyme and its application are done empirically by a process of trial.Meanwhile, the matrixs chosen which are non-toxic, cheap, renewable and biodegradable.
     In this work, chitosan and some hydrophilic polymers were mainly chosen as matrixs.and blended with them in different ratio to form different shape including gelatin.microsphere and micro membrane. The methods of immobilization contained adsorption-crosslink, entrapment-crosslink and CLEA, meanwhile SEM and Automatic Contact Angle measure device were used to observe the structure and pore distribution on the surface and cross-section, the change of hydrophilicity on the chitosan matrix surface. Immobilization methods above were compared, the best one was chitsoan/PEG=1micro membrane. Uniform and thoroughfare pores had formed on the membrane which enlarged the specific surface area and enhanced the relative activity which had reached to102.75%. The measurement of contact angle on chitosan/PEG membrane showed that the hydrophilicity of membrane surface had changed after urease adsorption and relative activity was higer than other chitosan matrix sharply, the effect of immobilization was103.72U/(cm2·min) which revealed that urease was adsorbed on chitosan membrane successfully.
引文
[1]Arvind M.A simple laboratory experiment for teaching enzyme immobilization with urease and its applieation in blood urea estimation.Biochemical Education 1999,27:114-117
    [2]曾焕升.脲酶及其拟态化合物之介绍[J].化学(中国化学协会,台北).2010,67(2):119-132
    [3]赵圣国.脲酶在生物工程中的应用[J].生物技术通报.2009(3):37-41.
    [4]Jasper B. Structured reactors for enzyme immobilization advantages of tuning the wall morphology[J]. Chemical Engineering Science.2004,59:5027-5033.
    [5]Natalia L K, Andrey V L. Bioorganic synthesis in reverse micelles and related systems[J]. Current Opinion in Colloid and Interface and Science.2003(8):179-186.
    [6]Dileep K K. Pressure-induced covalent immobilization of enzymes onto solid surface[J]. Biochemical Engineering Journal.2009,48:136-140.
    [7]Ye P, Rong-Bing W. Quantitative enzyme immobilization Control of the surface[J]. Journal of Molecular Catalysis B:Enzymatic.2009,61:296-302.
    [8]王洪祚.酶与细胞的固定化[J].化学通报.1997(22-27).
    [9]Dean B, Justin J. Spherezymes:a novel structured self-immobilisation enzyme technology[J]. BioMed Central Biotechnology.2008,8(8).
    [10]Guillermina Estiu, Kenneth MMerz. Am Chem Soc,2004,126 (22):6932-6944.
    [11]A P N, Frances N. Biomimetic silication of surfaces and its application to preventing leaching of electrostatically immobilized enzymes[J]. Sensors and Actuators B:Chemical. 2008(135):21-26.
    [12]朱启忠,生物固定化技术及应用.化学工业出版社,2009.5
    [13]Neil J N, David R M, Marcela M B. A New Surface for Immobilizing and Maintaining the Function of Enzymes in a Freeze-Dried State[J]. Biomacrmolecules.2009(10):2577-2583.
    [14]彭立凤CaCO3粉沫作载体固定化脂肪酶催化合成单甘酯[J].日用化学工业.2001(5):13-15.
    [15]邱广亮.磁性琼脂糖复合微球固定化纤维素酶的研究[J].精细化工.2000,17(2).
    [16]王海雄.活性炭吸附法固定猪胰脂酶的初步研究[J].上海大学学报(自然科学版).2003,9(5):428-432.
    [17]郭刚军.新型芳香胺-领醌聚合物的合成及其作为纳米固定化酶载体的研究[J].化学学 报.2002,60(3):499-503.
    [18]高阳.大孔树脂固定化脂肪酶及在微水相中催化合成生物柴油的研究[J].生物工程学报.2006,22(1).
    [19]王燕.大孔阴离子树脂DEAE-E/H固定化氨基酰化酶的研究[J].离子交换与吸附.2005,21(3):248-254.
    [20]虞英.离子交换树脂吸附法固定化脂肪酶的研究[J].食品与生物技术学报.2007,26(4):97-100.
    [21]韩际宏.氨基酰化酶的固定化及其对D-L-蛋氨酸的光学拆分[J].离子交换与吸附.1993,9(2):107-113.
    [22]孔维;周慧.重氮法固定化糖化酶活力和稳定性[J].高等学校化学学报.1995,15(5):681-684.
    [23]郭桥.α淀粉酶与糖化酶的共固定化研究[J].生物化学杂志.1994,10(3):259-263.
    [24]曹国民.蚕丝固定化脂肪酶的研究[J].生物工程学报.1997,13(1):88-92.
    [25]邱广亮.磁性淀粉微球固定化乙酰乳酸脱羧酸及应用[J].广州化工2000,28(4):24-27.
    [26]钱军民.氨基化硅胶固定化葡萄糖氧化酶的研究[J].生物化!学与生物物理进展.2002,29(394-397).
    [27]韩平治.赤豆β-半乳糖苷酶固定化及其性质研究[J].甘肃科学学报.2001,13(1):59-61.
    [28]王海英.固定化木瓜蛋白酶的研究及其应用[J].青岛海洋大学学报.2001,31(5):689-694.
    [29]贾英民.几丁质固定化菊粉酶的研究[J].河北农业大学学报.1997,20(3):80-84.
    [30]杨秀芳.戊二醛交联法固定化β-D-呋喃果糖苷酶的研究[J].大豆科学.2009,28(5):901-905.
    [31]潘道东.乳糖酶的固定化及其特性的研究[J].中国乳品工业.1991,19(3):99-103.
    [32]龚伟中.聚丙烯酰胺固定化糖化酶特性的研究[J].分子催化.2004,18(4):291-294.
    [33]姜忠义.酶催化二氧化碳转化为甲醇反应初探[J].催化学报.2002,23(2):162-164.
    [34]顾旭炯.海藻酸钠包埋法共固定α-淀粉酶和糖化酶的研究[J].化学与生物工程.2006,23(5):26-28.
    [35]王金梅.凝胶法固定乙酰胆碱酯酶的研究[J].河北科技大学学报.2004,25(4):26-29.
    [36]Maria Z. Microemulsion-based organogels as matrices for lipase immobilization [J].Biotechnology Advances.2010,28:395-406.
    [37]高虹.以聚乙烯醇为载体制备微囊化脲酶基因工程菌的研究[J].离子交换与吸附.2003, 19(6):540-546.
    [38]郑艺华.微胶囊化提高生物传感器中固定化鸡肝酶操作稳定性的研究[J].食品科学.2005,26(4):32-36.
    [39]黄一新.脲酶系统微囊制剂及其在实验性尿毒症的治疗中的应用[J].中华肾脏病杂志.1991,7(5):281-284.
    [40]Chang-Won L, Song-Se Y. Improved immobilized enzyme systems using spherical micro silica sol-gel enzyme beads[J]. Biotechnology and Bioprocess Engineering.2006(11): 277-281.
    [41]Barjor G. Cell encapsulation and oxygenation in nanoporous[J]. Biomed Microdevices. 2009(11):1205-1212.
    [42]Wenfang L, Songping Z. Nanoparticle-supported multi-enzyme Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration [J]. Journal of Biotechnology. 2009,139:102-107.
    [43]李伟.适用于酶包埋的高分子载体材料研究进展[J].功能高分子学报.2001,14(3):365-369.
    [44]Akihiro H, James C O. Acetylation of loofa (Luffa cylindrica) sponge as immobilization carrier for bioprocesses involving cellulase[J]. Journal of Bioscience and Bioengineering. 2007,103(4):311-317.
    [45]Chung K D, A-Rang J. Biological functionality of active enzyme structures immobilized on various solid surfaces[J]. Current Applied Physics.2009(9):1454-1458.
    [46]许松伟.载体对包埋酶微环境的影响分析[J].化学进展.2008,20(1):163-169.
    [47]Sandeep K. Immobilization of soybean (Glycine max) urease on alginate and chitosan beads showing improved stability Analytical applications[J]. Journal of Molecular Catalysis B:Enzymatic.2009,58:138-145.
    [48]张国睿.海藻酸钠明胶协同固定化酵母生产ATP[J].食品与发酵工业.2008,34(4):16-20.
    [49]王孝华.海藻酸钠的提取及应用[J].重庆工学院学报(自然科学版).2007,21(5).
    [50]P K. Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation[J]. Separation and Purification Technology.2004,40:259-266.
    [51]王家荣.海藻酸钠—壳聚糖-海藻酸钠生物微胶囊的制备[J].宁波大学学报(理工版)2007,20(4).
    [52]杨本宏.海藻酸钠固定化根霉脂肪酶的制备及其性质[J].催化学报.2005,26(11):977-981.
    [53]Kespi P. Immobilization of urease in alginate, paraffin and lac[J]. Journal of the Serbian Chemical Society.2010,75(2):175-183.
    [54]刘铮.交联海藻酸钠磁性微球的制备及固定化胰蛋白酶研究[J].材料导报.2006,20(12):137-140.
    [55]蒋宇宏.几种固定化细胞载体的比较[J].环境科学.1993,14(2):11-15.
    [56]胡永红.卡拉胶混合凝胶固定化延胡素酸酶生产L—苹果酸[J].生物工程学报.1995,11(4):396-398.
    [57]杨吕英.明胶固定化猪胰脂肪酶催化牛油合成单甘酯[J].日用化学工业.2003,33(1):64-68.
    [58]梁足培.明胶膜固定化脲酶的制备及性质[J].精细化工.2004,21(7):512-515.
    [59]郭丽.明胶固定化改性壳聚糖膜的制备与性能表征[J].功能材料.2008,11(39):1929-1932.
    [60]张慧.浅谈我国适当发展醋酸纤维工业的必要性[J].济南纺织化纤科技.2001(4):8-12.
    [61]梅洁.醋酸纤维素的现状与发展趋势[J].纤维素科学与科技.1999,7(4).
    [62]张文娟.二醋酸纤维素的碱降解性能[J].纤维素科学与技术.2008,16(1):45-49.
    [63]曲洪波.多孔酯酸纤维球形载体固定化糖化酶的研究[J].生物化学与生物物理进展.1998,25(2):155-158.
    [64]王顺光.膜为基础的葡萄糖生物传感器的研制[J].生物工程学报.1995,11(3):260-265.
    [65]刘玉荣.醋酸纤维素——丙烯腈接枝改性反渗透干膜[J].水处理技术.1996,22(6):323-327.
    [66]郭永胜.醋酸纤维素固定化酰化酶膜的研究[J].生物化学与生物物理进展.2001,28:748-751.
    [67]Filiz Y M. The effects of urease immobilization on the transport characteristics and protein adsorption capacity of cellulose acetate based hemodialysis membranes[J]. Journal of Material Science.2009(20):2167-2179.
    [68]下小红.甲壳素,壳聚糖及其衍生物的应用[J].功能高分子学报.1999,12(2):197-202.
    [69]夏文水.甲壳素和壳聚糖的化学改性及其应用[J].无锡轻工业学院学报.1994,13(2):162-169.
    [70]胡文玉.壳聚糖的性质和用途及其在农业上的应用前景[J].研究通讯.1994,30(4):294-296.
    [71]陈盛.壳聚糖固定化纤维素酶的研究[J].生物化学与生物物理进展.1996,23(3):250-254.
    [72]马秀玲.磁性固定化酶处理含酚废水的研究[J].广州化学.2003,28(1).
    [73]方波.乙二胺羟丙基壳聚糖固定化天门冬酰胺酶[J].华东理工大学学报.2001,27(4):341-348.
    [74]任广智.磁性壳聚糖微球用于酶的固定化研究:Ⅲ磁性壳聚糖微球的活化及其对脲酶的固化研究[J].离子交换与吸附.2001,17(3):224-229.
    [75]宋扬.改性与修饰壳聚糖固定化酶纯化抑肽酶研究[J].生物化学与生物物理进展.200,27(1):82-86
    [76]陈庆春.聚乙二醇在新材料制备中的作用及其机理[J].日用化学工业.2002,32(5):35-37.
    [77]戴华成.多聚乙二醇化蒜酶的特性研究[J].华中科技大学学报(医学版).2002,31(1):24-26.
    [78]王良友.多肽和蛋白质的聚乙二醇化修饰方法[J].有机化学.2003,23(11):1320-1323.
    [79]黄家贤.聚碳酸乙烯撑酯与双端氨基聚乙二醇交联体系固定化酶载体的合成与表征[J].高等学校化学学报.2001,22(4):678-682.
    [80]汪秀全.聚乙二醇对合成多孔Si02块体结构和性能的影响[J].硅酸盐学报.2005,33(8):975-979.
    [81]姜波.聚乙二醇修饰的高分子磁性微球的合成及表征[J].过程工程学报.2001,1(4):382-386.
    [82]王彦芳.明胶_PEG制备多孔块状SiO_2载体及葡萄糖淀粉酶的固定[J].无机化学学报.2007,23(11):1959-1964.
    [83]门学虎.聚乙烯醇载体的制备及应用研究进展[J].甘肃科学学报.2004,16(3):30-34.
    [84]李花子.聚乙烯醇—硎酸固定化方法的改进[J].环境科学研究.2002,15(5):25-27.
    [85]Lili W, Xiaoyan Y. Immobilization of cellulase in nanofibrous PVA membranes by electrospinning[J]. Journal of Membrane Science.2005(250):167-173.
    [86]S R. Preparation and characterization of urease bound on crosslinked poly(vinyl alcohol)[J]. Journal of Molecular Catalysis B:Enzymatic.1998,4:61-66.
    [87]潘继伦.聚乙烯醇高含水胶固定化脲酶的研究[J].高等学校化学学报.1991,12(9):1272-1274.
    [88]张梅.接枝共聚法制备聚乙二醇(PEG)聚乙烯醇(PVA)高分子固—固相变材料性能研究[J].高等学校化学学报.2005,26(1):170-174.
    [89]周剑平.聚乙烯醇复合凝胶固定化糖化酶研究[J].微生物学通报.2003,30(3):10-13.
    [90]廖红东.基于聚乙烯醇/Fe2O3纳米颗粒的纤维素酶固定化[J].高等学校化学学报. 2008,29(8):1564-1568.
    [91]邵兵.聚乙烯醇空心微球的制备及其对尿素的缓释作用[J].安徽农业科学.2008.36(33):14383-14385.
    [92]许鑫华.聚乙烯醇静电纺丝法固定葡萄糖氧化酶[J].天津大学学报.2006,39(7):857-860.
    [93]龙宇升.聚乙烯吡咯烷酮的性质及测定[J].广州化工.1999,27(2):33-35.
    [94]张晟卯.二氧化钛聚乙烯吡咯烷酮纳米复合薄膜的制备与表征[J].化学研究.2003,14(1).
    [95]王怀生.壳聚糖/聚乙烯吡略烷酮固定辣根过氧化物酶的过氧化氢生物传感器[J].分析化学研究简报.2005,33(22):1623-1626.
    [96]周国清.基于聚乙烯吡咯烷酮纳米金固定辣根过氧化物酶的生物传感器[J].西南师范大学学报(自然科学版).2011,36(4).
    [97]D A D. Novel crosslinked chitosan poly(vinylpyrrolidone) blend membranes for dehydrating tetrahydrofuran by the pervaporation technique[J]. Journal of Membrane Science.2006,280: 45-53.
    [98]Zhen-Mei L. Surface modification of polypropylene microfiltration membranes by the immobilization of poly(N-vinyl-2-pyrrolidone) a facile plasma approach[J]. Journal of Membrane Science.2005,249:21-31.
    [99]董晓毅.交联脲酶聚集体的制备和初步应用[J].生物工程学报.2003,19(3):332-336.
    [100]K. Sangeetha, T E A. sdarticlePreparation and characterization of cross-linked enzyme aggregates (CLEA) of Subtilisin for controlled release applications[J]. International Journal of Biological Macromolecules.2008,43:314-319.
    [101]Robert L B. Jack bean urease (EC 3.5.1.5). A new purification and reliable rate assay.[J]. Biochemistry.1984,8(5).
    [102]Peng Y, Zhi-Kang X. Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization[J]. Biomaterials.2006,27: 4169-4176.
    [103]Ayse D, Azmi T. Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads[J]. Journal of Molecular Catalysis B:Enzymatic. 2007(45):10-14.
    [104]邓红涛.酶的膜固定化及其应用的研究进展[J].膜科学与技术.2004,24(3):47-53.
    [105]Filiz Y M. The effects of urease immobilization on the transport characteristics and protein adsorption capacity of cellulose acetate based hemodialysis membranes[J]. Journal of Material Science.2009(20):2167-2179.
    [106]钱春梅.甘油明胶栓剂基质组方的改进研究[J].西安交通大学学报(医学版).2002,23(6).
    [107]M Z P P. Esterification reactions catalyzed by lipases immobilized in organogels. effect of temperature and substrate diffusion[J]. Biotechnol Lett.2008(30):1627-1631.
    [108]Qiao Ling Hu, Z.P.F., a new method to prepare chitosan membrane as a biomedical material. Chinese Jouranl of Polymer Science,2001.19(5):p.467-470.
    [109]Kok Sum Chow, E.K., Novel Fabrication of Open-Pore Chitin Matrixes. Biomacromolecules, 2000(1):p.61-67.
    [110]Xianfang, Z., Cross-linked macroporous chitosan anion-exchange membranes for protein separations. Journal of Membrane Science,1998(148):p.195-205.
    [111]Mansoor, M., Permeability and blood compatibility properties of chitosan-poly(ethylene oxide) blend membranes for haemodialysis. Biomaterials,1995(16):p.593-599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700