大豆蛋白高水分挤压组织化技术和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挤压法是适于工业化、连续化大生产,高效、节能的植物蛋白质质构重组核心技术。由挤压法生产的组织化大豆蛋白是现代大豆蛋白工业的重要组成部分。高水分湿法挤压组织化是国际上新兴的植物蛋白重组技术。产品具有组织化化程度高、质地均匀、富有弹性和韧性、营养成分和生理活性成分损失少等优点。
     本文对大豆蛋白高水分挤压组织化技术和机理进行了研究,研究内容包括:首先采用系统分析法,研究了大豆蛋白高水分挤压过程中,挤压机操作参数(螺杆转速、物料水分、喂料速度和机筒温度)对系统参数(系统压力、扭矩、单位机械能等)、目标参数(组织化度、色泽、硬度、弹性、咀嚼性、吸水率、产量等)的影响规律,建立了各因变参数的统计模型;采用因子分析法对产品进行了综合评价,并对高水分挤压组织化工艺进行了优化;其次,研究了大豆蛋白高水分挤压中的停留时间分布以及大豆异黄酮的损失动力学;最后,研究了大豆蛋白组织化过程中化学键、微观结构和蛋白质二级结构的变化规律,提出了大豆蛋白高水分挤压组织化的机理假设。主要结论如下:
     响应面分析结果表明,系统参数一般随物料水分和机筒温度的升高而降低;压力和扭矩随喂料速度的提高而增加,单位机械能随喂料速度的提高而减小;螺杆转速对压力和扭矩影响较小,对单位机械能影响显著。依据逐步回归分析法建立了双螺杆挤压机系统参数的数学统计模型,预测精度较高,可用于挤压过程的控制和挤压结果的预测。相关分析表明,挤压机系统参数间存在极显著相关性。
     不同的产品品质指标符合不同的回归模式,物料水分对产品的组织化度、弹性、色泽、水分含量和产量起正向效应,而对产品的硬度、咀嚼性起负向效应;机筒温度对产品的组织化度、硬度、色泽、粘结性起正向效应,而对产品水分含量起负向效应;螺杆转速主要对产品的粘结性起正向效应;喂料速度对产品的弹性、咀嚼性、色泽、水分含量和产量起正向效应,而对产品的组织化度、粘结性起负向效应。其中物料水分和机筒温度是影响各目标参数的最重要工艺参数。相关分析表明,系统参数与目标参数也存在着密切联系。系统参数一般与产品的组织化度、L*值、产品水分含量呈显著或极显著负相关,而与硬度、咀嚼度、和△E*呈显著或极显著正相关。
     应用因子分析方法,采用4个公因子来表征目标参数的12个原始指标,公因子间无相关性,而同一公因子所控制的原始指标间显著相关。根据各样本的因子得分对样本进行了综合评价,构建了综合评分的回归方程,采用频数分析法对高水分挤压组织化工艺进行了优化。优化的工艺参数为:物料水分为52.5%~53.5%,机筒温度为144~148℃,螺杆转速为113~127rpm,喂料速度为28.3~32.4g/min。
     大豆蛋白高水分挤压的最小停留时间在70.7~163.3s之间,平均停留时间在108.2~255.4s之间,彼克列准数值(Pe)在16.3~277.0之间。操作参数对停留时间分布的各表征参数具有显著的影响。影响最小停留时间的操作参数按作用强弱依次为:喂料速度>螺杆转速>物料水分>机筒温度,最小停留时间均随前三者的提高而减小,机筒温度对其影响不显著。影响平均停留时间的操作参数依次为:喂料速度>机筒温度>螺杆转速>物料水分,平均停留时间均随前三者的增加而减小,物料水分对其影响不显著。影响彼克列准数的操作参数依次为:机筒温度>物料水分>喂料速度>螺杆转速,机筒温度对其为正效应,物料水分和喂料速度对其为负效应,螺杆转速对其影响不显著。
     Wolf-Rescnick模型和Yeh-Jaw模型均能较好的描述大豆蛋白高水分挤压中物料的流动状态。根据Yeh-Jaw模型,表示活塞流体积分数的p值范围为0.55~0.83,均值为0.69;保留体积分数和叉流体积分数所占比例很小,两者之和为1%左右。p值随着螺杆转速和物料水分的增加而降低,随着机筒温度的升高而增加。
     大豆蛋白高水分挤压后异黄酮总含量和组分分布发生了明显改变,总异黄酮损失率在0%~47.6%之间。4个操作参数对异黄酮总含量和组分均有显著影响,以机筒温度影响最大,随机筒温度的增加总异黄酮和丙二酰基异黄酮含量明显减少,异黄酮糖苷含量略有增加;喂料速度和物料水分对异黄酮含量均起正效应,随着喂料速度和物料水分的增加,总异黄酮损失和丙二酰基异黄酮的降解减少;螺杆转速的影响最小,主要起负效应,螺杆转速增加,丙二酰基异黄酮降解速率加快。
     丙二酰基染料木苷(MG)损失的速率常数在0.00043~0.01034s-1之间,平均为0.0040 s-1,活化能为85.21 kJ/mol;丙二酰基大豆苷(MD)损失的速率常数在0.000006~0.01072 s-1之间,平均为0.00383 s-1,活化能为96.58 kJ/mol;总异黄酮损失的速率常数在0.00002~0.00420 s-1之间,平均为0.00193 s-1。
     组织化后的大豆蛋白的氮溶解指数一般在6.4%~9.2%之间。操作参数对氮溶解指数有一定的影响。挤压加工并没有造成新的蛋白质亚基的形成。蛋白质的不溶性主要是由疏水作用和二硫键共同导致的。根据对高水分组织化过程的系统分析和产品扫面电镜结果判断,提出了挤压机理的“膜状气腔理论”假设。
     高水分挤压组织化并没有完全破坏蛋白质的二级结构,仍保留着一定的β-折叠和转角结构。机筒温度、物料水分含量、喂料速度和螺杆转速等操作参数对大豆蛋白二级结构具有显著的影响。较低温度时(温度<140℃,只发生蛋白质的热变性而不发生组织化),二级结构的变化主要表现为α螺旋向转角的转变;较高温度时(温度>140℃,蛋白质开始发生组织化),二级结构的变化主要表现为β-折叠向无规则卷曲的转变。较高的水分对组织化起促进作用,水分促进了α螺旋向转角的转变,以及β-折叠向无规则卷曲的变化过程。喂料速度太低时大豆蛋白二级结构向无规则卷曲发展;当喂料速度增至一定程度,对大豆蛋白二级结构的影响较小。随螺杆转速的加快,β-折叠逐渐降低,而转角的比例逐渐升高。
Extrusion cooking is an important textural reorganization technology of vegetable protein in food industry, which has the advantages such as low energy cost, high efficiency, and continuous process. The texturization soy protein produced by extrusion is an important part of modern soy protein industry. Texturization processes via high moisture extrusion is a new development area in extrusion cooking, which can make products that imitate the texture, taste, and appearance of meat with high texturized degree, springiness, and nutritional value.
     In this paper, texturization technology and mechanism of soy protein by high moisture extrusion, the study includes: First, using system analysis method, the relationships of extruder operation parameters (screw speed, mass moisture content, feed rate, and barrel temperature) on the system parameters (pressure, torque, specific mechanical energy, etc.), and objective parameters (texturized degree, color, hardness, springiness, chewing, water absorption, yield, etc.) were investigated in the high moisture soy protein extrusion process, and the statistical models of system and objective parameters were built, using the step-by-step regression analysis; A comprehensive evaluation of the products, and the process optimization of high moisture extrusion were obtained,using factor analysis; Secondly, residence time distribution and soy isoflavones losses kinetics were studied in the high moisture extrusion; Finally, chemical bonding process, the micro-structure and protein secondary structure changes were investigated in the texturization of soy protein, then the mechanism assumptions of texturization soy protein by moisture extrusion were proposed.
     Response surface analysis results showed that with the barrel temperature and moisture content increase, the system parameters were dropped; With feed rate increase, torque and pressure increased, but the specific mechanical energy (SME) decreased; screw speed was significantly affected on SME, but a relatively small impact on the pressure and torque. According to the stepwise regression analysis, the models of system parameters with high prediction precision was obtained, which can be used to control the process, and forecast the outcome of extrusion. Correlation analysis shows that there were very significant correlations between the system parameters.
     Stepwise regression analysis showed that with the increase of mass moisture content, the texturized degree, springiness, color, moisture content and yield of products increased, and the hardness and chewiness of products reduced; With the increase in barrel temperature, the texturized degree, hardness, color, and adherence of products increased, and moisture content of products decreased. With the increase in feed rate, the springiness, Chewiness, color, moisture content, and yield of extrudates increased, and the texturized degree reduced. With the increase of Screw speed, the extrudates’adhesiveness increased, but little effect on other products’properties. the models of objective parameters with high prediction precision was obtained, which can be used to control the process, and forecast the properties of extrudates. Correlation analysis shows that there were very significant correlations between the system parameters and objective parameters.
     With factor analysis method, four common factors were used to substitute the 12 objective parameters in order to simplify and reduce the number of dimensional space. According to the factor score of samples, a comprehensive evaluation of samples was carried out, and the regression equation of the comprehensive evaluation score was constructed. A frequency analysis was used to optimize the high moisture extrusion process. Optimization of process parameters were: moisture content 52.5%~53.5%, barrel temperature 144~148℃, screw speed 113~127rpm, feed rate 28.3~32.4g/min.
     In high moisture extrusion of soy protein, the minimum residence time was between 70.7~163.3s, average residence time was between 108.2~255.4s, and the Peclet numer (Pe) was between 16.3~277.0. The operating parameters had significant effects on characterization parameters of the residence time distribution. The effect of Operating parameters to the minimum residence time, was followed by feed rate> screw speed> moisture content. The minimum residence time was decreased with the increase of the three operating parameters, and was effected little by barrel temperature. The effect of Operating parameters to the mean residence time, was followed by feed rate> barrel temperature > screw speed> moisture content. The mean residence time was decreased with the increase of the three anterior operating parameters, and was effected little by moisture content. The effect of Operating parameters to the Pe, was followed by barrel temperature > moisture content> feed rate> screw speed. The Pe was increased with the increase of barrel temperature, and decreased with the increase of the moisture content and feed rate, and was effected little by screw speed.
     Wolf-Rescnick model and Yeh-Jaw model all described the flow modality of blend in extruder suitably. According to the Yeh-Jaw model, the p value, which represent the volume fraction of piston flow, was 0.55~0.83, and the mean was 0.69; the volume fraction of dead space and crossing flow had a very small percent, the sum of the two fractions was about 1%. P value was decreased with the increase of screw speed and moisture content, and increased with the increase of barrel temperature.
     The profile and total isoflavones were changed obviously after the extrusion texturization, and the losing percent of total isoflavones was between 0%~47.6%. The four operating parameters had markedly effect on the profile and total isoflavones. With the increase of barrel temperature, the total and malonyl isoflavones were decreased remarkably, and the conjugates (daizin and genistin) were increased slightly. With the increase of feed rate and moisture content, the decomposed speed decreased. With the screw speed increase, the decomposed speed increased.
     The degradation rate constant of malonylgenistin (MG) was between 0.00043 ~ 0.01034 s-1, with an average of 0.0040 s-1, and the activation energy was 85.21 kJ/mol; the degradation rate constant of malonyldaidzin (MD) was between 0.000006 ~ 0.01072 s-1, with an average of 0.00383 s-1, and the activation energy was 96.58 kJ/mol; The degradation rate constant of total isoflavones was between 0.00002 ~ 0.00420 s-1, with an average of 0.00193 s-1.
     The nitrogen solubility index of extrudates ranged from 6.4%~9.2%, which was influenced by operating parameter. New protein subunit was not formed after high moisture extrusion. The insoluble of protein was caused by the hydrophobic interaction and disulfide bond. The microstructure of the extrudates was studied on three profiles by scanning electron microscopy (SME), and then the“membranous air cavity”hypothesis of soy protein texturization by extrusion was present.
     The protein secondary structure was not damaged completely, and theβ-sheet andβ-turn structure was preserve at some degree. The protein secondary structure was affected by the temperature remarkably, and at the lower temperature (T<140℃), the secondary structure changed fromα-helix to turn; but at the higher temperature (T>140℃) , changed fromβ-sheet to random coil. High moisture accelerated the secondary structure changed which was beneficial to texturization, because water was advantageous to the second structure transformation fromα-helix to turn andβ-sheet to random coil. With the lower feeding rate, more random coil was became; but with the higher feeding rate, the soy protein secondary structure was affected little. With the screw speed increase, theβ-sheet decreased, and turn segment increased.
引文
[1] 李里特, 刘志胜. 大豆蛋白营养品质和生理功能研究进展[J]. 中国食物与营养, 1999, (4): 21~23.
    [2] 徐超, 王晓红, 等. 大豆蛋白和高钙摄入对高血胆固醇模型大鼠血脂水平的影响[J]. 中华预防医学杂志, 2001,8 : 318~321.
    [3] 周春晖, 黄惠华等. 大豆蛋白生理保健作用研究进展[J]. 粮食与油脂, 2001, (2): 37~39.
    [4] 中华人民共和国卫生部. 中国居民营养与健康现状[J]. 中国心血管病研究杂志, 2004, 2(12): 919~922.
    [5] Riaz M N. Extruders in Food Applications[M]. CRC Press, 2000.
    [6] Harper J M. Extrusion of Foods[M]. CRC Press Boca Raton, Fla, 1981.
    [7] Harper J M. Extrusion texturization of foods[J]. Food Technol, 1986, 40(3): 70~76.
    [8] Swientek B. Extrusion yields fibrous, meat-like products[J]. Prepared Foods, 2000, 169(1): 53~54.
    [9] Akdogan H. High moisture food extrusion[J]. International Journal of Food Science & Technology, 1999, 34(3): 195~207.
    [10] Cheftel J C, Kitagawa M, Queguiner C. New protein texturization processes by extrusion cooking at high moisture levels[J]. Food Reviews International, 1992, 8(2): 235–275.
    [11] Choudhury G S, Moir M A, Gogoi B K. High moisture extrusion: possibilities and prospects[J]. Advances in Food Engineering (Proceed. 4th Conf. Food Eng.), 1997 : 117~124.
    [12] Li Y H, A, Dep A E. Texturization of soy protein with wheat starch at high moisture conditions using a twin screw extruder.[J]. 1996 IFT annual meeting: book of abstracts, 1996.
    [13] Lin S H, A, Correspondence R F. Texture and chemical characteristics of soy protein meat analog extruded at high moisture[J]. Journal of Food Science, 2000, 65(2): 264~269.
    [14] Lin S, Huff H E, Hsieh F. Extrusion process parameters, sensory characteristics, and structural properties of a high moisture soy protein meat analog[J]. J. Food Sci, 2002, 67(3): 1066~1072.
    [15] Liu S X, Peng M, Tu S, et al. Development of a New Meat Analog Through Twin-Screw Extrusion of Defatted Soy Flour-lean Pork Blend[J]. Food Science and Technology International, 2005, 11(6): 463~470.
    [16] Hayakawa I. Food processing by ultra pressure twin-screw extrusion[M]. 1992.
    [17] Hayashi N, Abe H, Hayakawa I, et al. Texturization of dehulled whole soybean with a twin screw extruder and texture evaluation[A]. In: Food Processing by Ultra High Pressure Twin-Screw Extrusion [M]. Technomic Publishing Co, Hayakawa A. 1992.
    [18] 王洪武, 林炳鉴. 复合组织蛋白挤压加工工艺的初步研究[J]. 农业工程学报, 2004, 20(4): 54~58.
    [19] 王洪武, 周建国. 双螺杆挤压机工艺参数对组织蛋白的影响[J]. 中国粮油学报, 2001, 16(2): 54~58.
    [20] 赵团结, 盖钧镒. 栽培大豆起源与演化研究进展[J]. 中国农业科学, 2004, 37(7): 952~962.
    [21] Singh R J, Hymowitz T. Soybean genetic resources and crop improvement[J]. Genome, 1999, 42: 605~616.
    [22] 傅翠真, 常汝镇, 邱丽娟. 中国大豆品种营养品质评价[J]. 中国食物与营养, 2000, (3): 12~13.
    [23] Utsumi S, Matsumura Y, Mori T, Structure-function relationships of soy proteins. Food Proteins and Their Applications [J]. lnstitus National de la Recherche Agronomique Centre de Recherche de Tours Nouzilly France 1997, 257~291
    [24] D F. Recent progress in research and technology Oil soybeans[J][J]. Food Science and Technology Research, 2001, 7(1): 8~16.
    [25] 黄友如, 裘爱泳, 华欲飞. 大豆蛋白结构与功能的关系[J]. 中国油脂, 2004, 29(11): 24~28.
    [26] Young V R, Pellett P L. Protein evaluation, amino acid scoring and the Food and Drug Administration's proposed food labeling regulations.[J]. J Nutr, 1991, 121(1): 145~150.
    [27] Schaafsma G. The Protein Digestibility-Corrected Amino Acid Score[J]. The Journal of Nutrition, 2000, 130(7): 1865~1867.
    [28] 李里特, 刘志胜. 大豆蛋白营养品质和生理功能研究进展[J]. 中国食物与营养, 1999, (04): 21~23.
    [29] Endres J G. Soy Protein Products: Characteristics, Nutritional Aspects, and Utilization[M]. AOCS Press, 2001.
    [30] Kato A, Fujisawa N, Matsudomi N. Improvement of the Functional Properties of Soy Protein by Spontaneous Deamidation Occurred in a Low Water Activity[R]. SOY PROTEIN RESEARCH COMMITTEE(Japan). 1995, 16: 104~108.
    [31] Wu W U, Hettiarachchy N S, Qi M. Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration[J]. J Amer Oil Chemists Soc, 1998, 75(7): 845~850.
    [32] S L E, Hajos G, T M S. Functional properties of the enzymatically modified soya protein isolate[J]. Acta alimentaria (Acta aliment.) ,1997, 26: 279~285.
    [33] Jung S, Lamsal B P, Stepien V, et al. Functionality of soy protein produced by enzyme-assisted extraction[J]. J.AOCS, 2006, 83(1): 71~78.
    [34] Tandang M R, Atsuta N, Maruyama N, et al. Evaluation of the solubility and emulsifying property of soybean proglycinin and rapeseed procruciferin in relation to structure modified by protein engineering[J]. J. Agric. Food Chem., 2005, 53(22): 8736~8744.
    [35] CODEX STAN 175-1989. General Standard for Soy Protein Products (SPP)[S].
    [36] Ribotta P D, Arnulphi S A L A E. Effect of soybean addition on the rheological properties and breadmaking quality of wheat flour[J]. Journal of the Science of Food and Agriculture, 2005, 85(11): 1889~1896.
    [37] HOJILLA-EVANGELISTA M P, SESSA D J, MOHAMED A. Functional properties of soybean and lupin protein concentrates produced by ultrafiltration-diafiltration[J]. Journal of the American Oil Chemists' Society, 2004, 81(12): 1153~1157.
    [38] WANG H, JOHNSON L A, WANG T. Preparation of soy protein concentrate and isolate from extruded-expelled soybean meals[J]. Journal of the American Oil Chemists' Society, 2004, 81(7): 713~717.
    [39] 华谷飞, 顾玉兴. 功能性大豆浓缩蛋白的性能及应用研究[J]. 中国油脂, 1997, 22(1): 22~24.
    [40] L H L, Boye J I, Arcand Y. Composition and Functional Properties of Soy Protein Isolates Prepared Using Alternative Defatting and Extraction Procedures[J]. Journal of food science, 2006, 71(3):137.
    [41] Chove B E, Grandison A S, Lewis M J. Emulsifying properties of soy protein isolate fractions obtained by isoelectric precipitation[J]. J Sci Food Agric, 2001, 81(8): 759~763.
    [42] Wagner J R, Sorgentini D A, A M C. Thermal and electrophoretic behavior, hydrophobicity, and some functional properties of acid-treated soy isolates[J]. J. Agric. Food Chem., 1996, 44(7): 1881~1889.
    [43] 黄友如, 华欲飞, 裘爱泳. 醇洗豆粕对大豆分离蛋白功能性质的影响 (Ⅰ)--凝胶性能[J]. 中国油脂, 2003, 28(10):23~27
    [44] Petruccelli S, Anon M C. Relationship between the Method of Obtention and the Structural and Functional Properties of Soy Proteins Isolates. 1. Structural and Hydration Properties[J]. J. Agric. Food Chem., 1994, 42(10): 2161~2169.
    [45] 刘红武. 食品挤压技术[J]. 食品科学, 2000, 21(012): 184~187.
    [46] 张裕中, 王景, 食品挤压加工技术与应用[M].中国轻工业出版社,北京,1998.
    [47] Riaz M N. Extruders in Food Applications[M]. CRC Press, 2000.
    [48] Yeh A N, Hwang S. Effect of screw profile on extrusion-cooking of wheat flour by a twin-screw extruder[J]. International journal of food science & technology, 1992, 27(5): 557~563.
    [49] Faller J F, A, Dep F S. Physical and sensory characteristics of extruded corn/soy breakfast cereals.[J]. Journal of Food Quality, 2000, 23(1): 87~102.
    [50] Robert B. Breakfast cereals: processed grains for human consumption[J]. Cereal Food World, 1987, 32(3): 241~243.
    [51] Frame N D. The Technology of Extrusion Cooking[M]. Aspen Publishers, 1994.
    [52] 吴卫国, 杨伟丽, 唐书泽等. 双螺杆挤压机操作参数对早餐谷物产品特性影响的研究[J]. 食品科学, 2005, 26(4): 150~155.
    [53] Crowe T W, Johnson L A. Twin-screw extrusion texturization of extruded-expelled soybean flour[J]. Journal of the American Oil Chemists' Society, 2001, 78(8): 781~786.
    [54] DAHL S R, VILLOTA R. Twin-screw extrusion texturization of acid and alkali denatured soy proteins[J]. Journal of food science, 1991, 56(4): 1002~1007.
    [55] Frame N D. The Technology of Extrusion Cooking[M]. Aspen Publishers, 1994.
    [56] Screw-extrusion of chocolate and other fat-containing confectionery materials. In: US Patent 6051267: 2000.
    [57] Lesko A J, Degady M, Continuous production of chewing gum using corotating twin screw extruder. USA Patents: 1991.
    [58] Pecz B, Radnoczi G, Cassette S, et al. Water soluble oxidized starches by peroxide reactive extrusion[J]. Industrial Crops and Products, 1997, 7(1): 45~52.
    [59] H N E. Functional properties of pregelatinized and cross-linked cassava starch obtained by extrusion with sodium trimetaphosphate[J]. Carbohydrate Polymers, 2001, (45): 347~353.
    [60] Wang L, Shogren R L, Willett J L. Preparation of starch succinates by reactive extrusion[J]. St?rke, 1997, 49(3): 116~120.
    [61] Kahlon T S, Edwards R H, Chow F I. Effect of extrusion on hypocholesterolemic properties of rice, oat, corn, and wheat bran diets in hamsters[J]. Cereal chemistry, 1998, 75(6): 897~903.
    [62] Lucas E W. Oilseeds: Extrusion for solvent extraction[J]. J. Am. Oil Chem. Soc., 1988, (65):1109~1114.
    [63] 申德超. 膨化啤酒辅料酿造啤酒的试验研究[J]. 农业工程学报, 2002, 18(2):
    [64] 陈莹. 醇法大豆浓缩蛋白挤压组织化的研究[D]. 无锡轻工业学院博士论文, 1991.
    [65] Heywood A A, Myers D J, Bailey T B, et al. Effect of value-enhanced Texturized soy protein on the sensory and cooking properties of beef patties[J]. Journal of the American Oil Chemists' Society, 2002, 79(7): 703~707.
    [66] Yanez E V. Texturization of sunflower/soy flour mixtures: chemical and nutritive evaluation[J]. Journal of Food Science, 1979, 44(6): 1714~1716.
    [67] Sun Y, Muthukumarappan K. Changes in functionality of soy based extrudates during single-screw extrusion processing[J]. International Journal of Food Properties, 2002, 5(2): 379~389.
    [68] Riaz M N. Textured Soy Protein and its Uses[J]. Agro-Food Ind. Hi-Tech, 2001, 3(12): 28~31.
    [69] Mermelstein N H. Extrusion of ingredients.[J]. Food Technology, 2000, 54(3): 92~93.
    [70] 康立宁, 魏益民. 大豆蛋白及其组织化技术[J]. 食品科学, 2004, 25(z1): 112~116.
    [71] Hayakawa I, A, CH-Basel S T. Food processing by ultra high pressure twin-screw extrusion.[M]. Technomic Publishing Co, 1992.
    [72] Meuser F, van L B. System analytical model for the extrusion of starches [A]. In: Zeuthen P, Chefiel JC, et al.Thermal processing and quality of foods[M]. London and New York: Elsevier Applied Science Publishers, 1984. 175~179.
    [73] Lin S, Huff H E, Hsieh F. Extrusion process parameters, sensory characteristics, and structural properties of a high moisture soy protein meat analog[J]. J. Food Sci., 2002, 67(3): 1066~1072.
    [74] Fernandes M S, Wang S H, Ascheri J L, et al. Effect of extrusion temperature in water absorption, solubility and dispersibility of pre-cooked corn-soybean (70: 30) flours[J]. Ciência e Tecnologia de Alimentos, 2003, 23(2): 234~239.
    [75] Seker M. Selected properties of native or modified maize starch/soy protein mixtures extruded at varying screw speed[J]. Journal of the Science of Food and Agriculture, 2005, 85(7): 1161~1165.
    [76] Crowe T W, Johnson L A. Twin-screw extrusion texturization of extruded-expelled soybean flour[J]. Journal of the American Oil Chemists' Society, 2001, 78(8): 781~786.
    [77] Dahl S R, Villota R. Effect of thermal denaturation on the texturization of soybean protein via twin-screw extrusion[J]. Canadian Institute of Food Science and Technology journal, 1991, 24(3-4): 143~150.
    [78] Ning L V. Influence of 7S and 11S globulins on the extrusion performance of soy protein concentrates[J]. Journal of Food Processing & Preservation, 1994, 18(5): 421~436.
    [79] Liu S X, Peng M, Tu S, et al. Development of a New Meat Analog Through Twin-Screw Extrusion of Defatted Soy Flour-lean Pork Blend[J]. Food Science and Technology International, 2005, 11(6): 463~470.
    [80] Park J, Rhee K S, Kim B K, et al. Single-screw extrusion of defatted soy flour, corn starch and raw beef blends[J]. J Food Sci., 1993, 58(1): 9~20.
    [81] Yuryev V P, Zasypkin D V, Alexeev V V, et al. Expansion ratio of extrudates prepared from potato starch-soybean protein mixtures[J]. Carbohydrate Polymers, 1995, 26(3): 215~218.
    [82] Nwabueze T U. Effect of process variables on trypsin inhibitor activity (TIA), phytic acid and tannin content of extruded African breadfruit-corn-soy mixtures: a response surface analysis[J].LWT - Food Science & Technology, 2007, 40(1): 21~29.
    [83] Cherry J P. Protein functionality in foods[M]. American Chemical Society Washington, DC, 1981.
    [84] Harper J M. Extrusion of Foods[M]. CRC Press Boca Raton, Fla, 1981.
    [85] 陈莹, 沈蓓英. 蛋白质的挤压组织化改性:大豆蛋白在挤压过程中的物理,化学变化[J]. 华东理工大学学报(自然科学版), 1994, 20(6): 758~763.
    [86] Chen-Lung, Been Chu. Lipid-protein and lipid-starch interactions during extrusion of soy protein isolate and rice flour blend.[J]. Food Science, Taiwan, 1995, 22(6): 714~721.
    [87] Chi-Tang H, Izzo M T, Lipid-protein and lipid-carbohydrate interactions during extrusion. In Food Extrusion Science and Technology, MARCEL DEKKER, INC: New York, 1992. 415~426
    [88] Ning L. Texturization of soy protein via twin-screw extrusion(D).University of Illinois at Urbana-Champaign, 1993.
    [89] TARANTO M V, KUO C M, RHEE K C. Possible Role of the Crude Fiber of Soy Flour in Texture Formation During Nonextrusion Texturization Processing[J]. Journal of Food Science, 1981, 46(5): 1470~1477.
    [90] Sheard P R, Ledward D. Macromolecular changes associated with the heat treatment of soya isolate[J]. Journal of Food Technology, 1986, 21: 55~60.
    [91] Smith J, Mitchell J R, Ledward D A. Effect of the inclusion of polysaccharides on soya extrusion[J]. Prog Food Nutr Sci, 1982, 6: 139~147.
    [92] Boison G, Taranto M V, Cheryan M. Extrusion of defatted soy flour-hydrocolloid mixtures--Effect of operating parameters on selected textural and physical properties[J]. Journal of Food Technology, 1983, 18: 719~730.
    [93] Simonsky R W, Stanley D W. Texture–structure relationships in a textured soy protein. V. Influence of pH and protein acylation on extrusion–texturization[J]. Canadian Institute of Food Science and Technology Journal, 1982, 15: 294~301.
    [94] Hsieh F, Mulvaney S J, Huff H E, et al. Effect of dietary fiber and screw speed on some extrusion processing and product variables[J]. Lebensm.-Wiss. u. Technol, 1989, 22: 204~207.
    [95] Ledward D A, Tester R F. Molecular transformations of proteinaceous foods during extrusion processing[J]. Trends in Food Science and Technology, 1994, 5: 117~117.
    [96] Tolstoguzov V B. Thermoplastic extrusion- the mechanism of the formation of extrudate structure and properties.[J]. Journal of the American Oil Chemists' Society, 1993, 70(4): 417~424.
    [97] Ledward D A, Mitchell J R, Protein extrusion-more questions than answers. In Food Structure-Its Creation and Evaluation, JMV B S, JR M, ''Eds.' Butterworths: London, 1988. 219~229
    [98] Kitabatake N, Megard D, Cheftel J C. Continuous gel formation by HTST extrusion-cooking: Soy proteins[J]. Journal of Food Science, 1985, 50(5): 1260~1265.
    [99] Tolstoguzov V. Texturising by phase separation[J]. Biotechnol Adv, 2006, :
    [100] Tolstoguzov V B. Functional properties of food proteins and role of protein–polysaccharide interaction[J]. Food Hydrocolloids, 1991, 4(6): 429~468.
    [101] Tolstoguzov V. Some thermodynamic considerations in food formulation[J]. Food Hydrocolloids, 2003, 17(1): 1~23.
    [102] Tolstoguzov V B. Functional properties of protein-polysaccharide mixtures[J]. Functional Properties of Food Macromolecules, 1986, 385–415.
    [103] Sheard P R. The Role of Protein and Carbohydrate in Soya Extrusion.[M]. University of Nottingham, 1985.
    [104] Sheard P R, Mitchell J R, Ledward D. Comparison of the extrusion cooking of a soya isolate and a soya flour[J]. Journal of Food Technology, 1985, 20: 763~771.
    [105] Matveev Y I, Grinberg V Y, Tolstoguzov V B. The plasticizing effect of water on proteins, polysaccharides and their mixtures. Glassy state of biopolymers, food and seeds[J]. Food Hydrocolloids, 2000, 14(5): 425~437.
    [106] 王镜岩, 朱圣庚, 徐长法. 高级生物化学[M]. 北京: 高等教育出版社, 2000.
    [107] Burgess G D, Stanley D W. A possible mechanism for thermal texturization of soybean protein[J]. Canadian Institute of Food Science and Technology, 1976, 9: 228–230.
    [108] Jeunink J, Cheftel J C. Chemical and physicochemical changes in field bean and soybean proteins texturized by extrusion[J]. J. Food Sci, 1979, 44: 1322–1326.
    [109] Camire M E. Chemical changes during extrusion cooking. Recent advances.[J]. Adv Exp Med Biol, 1998, 434: 109~121.
    [110] Hager D F. Effects of extrusion upon soy concentrate solubility[J]. Journal of Agricultural and Food Chemistry, 1984, 32(2): 293~296.
    [111] Park J, Rhee K S, Kim B K, et al. Single-screw extrusion of defatted soy flour, corn starch and raw beef blends[J]. J Food Sci., 1993, 58(1): 9~20.
    [112] Privalov P L, Gill S J. Stability of protein structure and hydrophobic interaction.[J]. Adv Protein Chem, 1988, 39: 191~234.
    [113] PRUDENCIO-FERREIRA S H, AREAS J A. Protein-protein interactions in the extrusion of soya at various temperatures and moisture contents[J]. Journal of food science, 1993, 58(2): 378~381.
    [114] Marsman G J, Gruppen H, de G J, et al. Effect of Toasting and Extrusion at Different Shear Levels on Soy Protein Interactions[J]. Journal of agricultural and food chemistry(Print), 1998, 46(7): 2770~2777.
    [115] KUMAR A, GANJYAL G M, JONES D D, et al. Digital image processing for measurement of residence time distribution in a laboratory extruder[J]. Journal of food engineering, 2006, 75(2): 237~244.
    [116] Schmid A H, Dolan K D, Ng P K. Effect of extruding wheat flour at lower temperatures on physical attributes of extrudates and on thiamin loss when using carbon dioxide gas as a puffing agent.[J]. Cereal Chemistry, 2005, 82(3): 305~313.
    [117] Likimani T A, Sofos J N, Maga J A, et al. Methodology to determine destruction of bacterial spores during extrusion cooking.[J]. Journal of Food Science, 1990, 55(5): 1388~1393.
    [118] Ziegler G R, Aguilar C A. Residence time distribution in a co-rotating, twin-screw continuous mixer by the step change method[J]. Journal of Food Engineering, 2003, 59(2): 161~167.
    [119] Seker M. Residence time distributions of starch with high moisture content in a single-screw extruder.[J]. Journal of Food Engineering, 2005, 67(3): 317~324.
    [120] Fichtali J, van V F. Fundamental and practical aspects of twin screw extrusion[J]. Cereal Foods World, 1989, 34(11): 921~929.
    [121] Wolf D, Resnick W. Residence Time Distribution in Real Systems[J]. Industrial & Engineering Chemistry Fundamentals, 1963, 2(4): 287~293.
    [122] Yeh A I, Jaw Y M. Modeling Residence Time Distributions for Single Screw Extrusion Process[J]. Journal of Food Engineering, 1998, 35(2): 211~232.
    [123] Bhattacharya M, Hanna M A. Kinetics of starch gelatinization during extrusion cooking[J]. J. Food Sci, 1987, 52(3): 764~766.
    [124] Ibanoglu S, Ainsworth P. Kinetics of starch gelatinization during extrusion of tarhana, a traditional turkish wheat flour-yogurt mixture.[J]. Int J Food Sci Nutr, 1997, 48(3): 201~204.
    [125] Badescu V, Zamfir E, Ilo S, et al. Kinetics of colour changes during extrusion cooking of maize grits[J]. Journal of Food Engineering, 1999, 39(1): 73~80.
    [126] Ilo S, Berghofer E. Kinetics of lysine and other amino acids loss during extrusion cooking of maize grits.[J]. Journal of Food Science, 2003, 68(2): 496~502.
    [127] Ilo S, Berghofer E. Kinetics of thermomechanical destruction of thiamin during extrusion cooking[J]. Journal of Food Science, 1998, 63: 312–316.
    [128] Wolf J C, Thompson D R, Reineccius G A. Kinetics of available lysine loss during thermal processing of a soy protein isolate: reversion of no-loss to rapid-loss phase[J]. Journal of Food Processing & Preservation, 1977, 1(4): 271~278.
    [129] VAN D E, MEERDINK G, VAN T R. Modelling of the inactivation kinetics of the trypsin inhibitors in soy flour[J]. Journal of the science of food and agriculture, 1999, 79(1): 63~70.
    [130] R G, JC C. Thiamine destruction during extrusion cook- ing as an indicator of the intensity of thermal processing[J]. Int J Food Sci Tech- nol, 1987, (22): 549~562.
    [131] Ganjyal G, Hanna M. A review on residence time distribution (RTD) in food extruders and study on the potential of neural networks in RTD modeling[J]. J Food Sci, 2002, 67(6): 1996~2002.
    [132] van Mueser, F. L. System analytical model for the extrusion of starches[A]. In: Zeuthen P, Cheftel JC, Eriksson C, Jul M, Leniger H, Linko P, Varela G, Vos G, editors. Thermal processing and quality of foods[M]. New York: Elsevier Applied Science., 1984, 175~179.
    [133] Yacu W A. Modelling a twin screw co-rotating extruder[J]. J. Food Process Eng., 1985, 8: 1~21.
    [134] Tayeb J, Vergnes B, Della V G. A basic model for a twin-screw extruder[J]. J. Food Sci., 1989, 54(5): 1047~1056.
    [135] Shang J S, Tadikamalla P R. Output maximization of a CIM system: simulation and statistical approach[J]. International Journal of Production Research, 1993, 31(1): 19~41.
    [136] van E R, van G A, Boom R M. Understanding Molecular Weight Reduction of Starch During Heating–shearing Processes[J]. J Food Sci, 2003, 68(8): 2396~2405.
    [137] 文东辉, 徐克非. 国外双螺杆挤压膨化机的研究现状[J]. 食品与机械, 1999, (5): 35~37.
    [138] FEKETE R J. Influence of Rotor on Extrusion Pressure[J]. Powder Technology, 2004, 141: 210~218.
    [139] 徐孟平, 唐跃. 挤出机机头中有关压力降的研究进展[J]. 工程塑料应用, 2004, 32(9): 75~77.
    [140] 王洪武, 马榴强. 大豆蛋白质流变性能的研究[J]. 高分子材料科学与工程, 2002, 18(2): 112~114.
    [141] Della V G, Tayeb J, Melcion J P. Relationship of extrusion variables with pressure and temperature during twin screw extrusion cooking of starch[J]. Journal of Food Engineering, 1987, 6(6): 423~444.
    [142] Akdogan H. Pressure, torque, and energy responses of a twin screw extruder at high moisturecontents[J]. Food Research International, 1996, 29(5): 423~429.
    [143] 文东辉, 徐克非. 基于响应面法的双螺杆挤压参数的研究和应用[J]. 粮食与饲料工业, 1999, (12): 27~28.
    [144] Lei H W, Fulcher R G, Ruan R, et al. SME-Arrhenius model for WSI of rice flour in a twin-screw extruder.[J]. Cereal Chemistry, 2005, 82(5): 574~581.
    [145] GROPPER M, MORARU C I, KOKINI J L. Effect of specific mechanical energy on properties of extruded protein-starch mixtures[J]. Cereal chemistry, 2002, 79(3): 429~433.
    [146] Batterman-Azcona S J, Lawton J W, Hamaker B R. Effect of specific mechanical energy on protein bodies and α-zeins in corn flour extrudates[J]. Cereal Chemistry, 1999, 76: 316~320.
    [147] Lai L S, Kokini J L. Physicochemical changes and rheological properties of starch during extrusion.(A review)[J]. Biotechnology Progress, 1991, 7(3): 251~266.
    [148] Cha J Y, Suparno M, Dolan K D, et al. Modeling thermal and mechanical effects on retention of thiamin in extruded foods.[J]. Journal of Food Science, 2003, 68(8): 2488~2496.
    [149] Rauwendaal C. Scale-up of single screw extruders[J]. Polymer Engineering and Science, 1987, 27(14): 1059~1068.
    [150] Gonzalez R J, Torres R L, De G D. Application of an ideal model to the scaling up of a laboratory extruder[J]. Journal of Food Engineering, 2001, 48(1): 45~51.
    [151] Bhattacharya M, Hanna M A. Influence of process and product variables on extrusion energy and pressure requirements[J]. Journal of food engineering, 1987, 6(2): 153~163.
    [152] Likimani T A, Sofos J N, Maga J A, et al. Extrusion cooking of corn/soybean mix in presence of thermostable amylase[J]. Journal of Food Science, 1991, 56(1): 99~105.
    [153] 杨绮云, 李德溥. 操作参数对双螺杆挤压机挤压效果影响的研究[J]. 食品科学, 2001, 22(2): 14~17.
    [154] Bruin S, Van Z D, Stolp W. A review of fundamental and engineering aspects of extrusion of biopolymers in a single screw extruder[J]. Journal of Food Process Engineering, 1978, 2(1): 1~37.
    [155] 马海乐. 大豆面团粘度模型的研究[J]. 江苏理工大学学报(自然科学版), 22(2): 34~37.
    [156] Seker M. Selected properties of native or modified maize starch/soy protein mixtures extruded at varying screw speed[J]. Journal of the Science of Food and Agriculture, 2005, 85(7): 1161~1165.
    [157] Frazier P H, Crawshaw A, Daniels N W, et al. Optimization of process variables in extrusion texturing of soya[A]. In: Extrusion Cooking Technology, Jowitt R Eds., Elsevier, Essex, England, 1984.1~25.
    [158] Iwe M O. Effects of extrusion cooking on some functional properties of soy-sweet potato mixtures–A response surface analysis[J]. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum), 2000, 55(2): 169~184.
    [159] Zasypkin D V, Lee T C. Extrusion of soybean and wheat flour as affected by moisture content[J]. J Food Sci, 1998, 63: 1058~1061.
    [160] Sun Y, Muthukumarappan K. Changes in functionality of soy based extrudates during single-screw extrusion processing[J]. International Journal of Food Properties, 2002, 5(2): 379~389.
    [161] 李里特. 食品物性学[M]. 北京: 中国农业出版社, 2001.
    [162] Yao G, Liu K S, Hsieh F. A new method for characterizing fiber formation in meat analogs during high-moisture extrusion.[J]. Journal of Food Science, 2004, 69(7): 303~307.
    [163] AMES J M, APRIYANTONO A, SGARAMELLA S, et al. The development and control of colour in extrusion cooked foods[J]. Food chemistry, 1993, 46(2): 129~132.
    [164] Guzman-Tello R, Cheftel J C. Colour loss during extrusion cooking of b-carotene-wheat flour mixes as an indicator of the intensity of thermal and oxidative processing[J]. International Journal of Food Science and Technology, 1990, 25: 420~434.
    [165] Slade L, Levine H, Finley J W, Protein-water interactions: Water as a plasticizer of gluten and other protein polymers[A]. In Protein Quality and the Effects of Processing[M]. Marcel Dekker: New York, 1989. 9~124
    [166] Lusas E W. Modern texturized soy proteins: Preparation and uses[J]. Food Tech, 1996, 132: 1~12.
    [167] Karel M, Effects of water activity and water content on mobility of food components, and their effects on phase transitions in food systems. In Properties of Water in Foods, 1985: 153–169
    [168] 杨文雄, 高彦祥. 响应面法及其在食品工业中的应用[J]. 中国食品添加剂, 2005, (2): 68~71.
    [169] Giovanni M. Response surface methodology and product optimization[J]. Food Technol, 1983, 37(11): 41~45.
    [170] Myers R H, Montgomery D C. Response Surface Methodology: Process and Product in Optimization Using Designed Experiments[M]. John Wiley & Sons, Inc. New York, NY, USA, 1995.
    [171] 吴涛, 潘卫三. 多目标同步优化法优化硫酸沙丁胺醇渗透泵控释片的制备工艺[J]. 药学学报, 2000, 35(8): 617~621.
    [172] 陈敏, 王静馨. 发酵工艺条件的多目标优化[J]. 生物技术, 1995, 5(4): 37~39.
    [173] 林锉云, 董加礼. 多目标优化的方法与理论[M]. 长春: 吉林教育出版社, 1992.
    [174] 苏为华. 多指标综合评价理论与方法研究[M]. 北京: 中国物价出版社, 2001.
    [175] 虞晓芬, 傅玳. 多指标综合评价方法综述[J]. 统计与决策, 2004, (11):
    [176] 尚卫平. 多指标综合评价方法的优选[J]. 南京经济学院学报, 2003, 2: 50~52.
    [177] 袁志发, 周静芋. 多元统计数据分析[M]. 北京: 科学出版社, 2002.
    [178] 王芳. 主成分分析与因子分析的异同比较及应用[J]. 统计科学与实践, 2004, (2): 26~29.
    [179] F M, N G, van L B, A system analytical approach to extrusion[A]. In Food extrusion science and technology[M]. Marcel Dekker: New York, 1992.
    [180] Colonna P, Melcion J P, Vergnes B, et al. Flow, mixing and residence time distribution of maize starch within a twin-screw extruder with a longitudinally-split barrel[J]. Journal of Cereal Science, 1983, (1): 115~121.
    [181] Gogoi B K, Yam K L. Relationships between residence time and process variables in a corotating twin-screw extruder[J]. Journal of Food Engineering, 1994, 21(2): 177~196.
    [182] 张先明, 许忠斌, 冯连芳. 螺杆挤出机中停留时间分布模拟研究进展[J]. 高分子材料科学与工程, 2005, (06): 1~5.
    [183] van T Jager, P Santbulte D Z. Residence time distribution in kneading extruders[J]. Journal of Food Engineering, 1995, (24): 285~294.
    [184] OLLETT A L, LI Y, PARKER R, et al. A comparative study of the conveying performance of screws in a twin-screw co-rotating extrusion-cooker[J]. Journal of food engineering, 1989, 10(3):165~181.
    [185] Fichtali J, van V F, Diosady L L. Performance Evaluation of Acid Casein Neutralization Process by Twin-screw Extrusion[J]. Journal of Food Engineering, 1995, 26(3): 301~318.
    [186] LEE S Y, MCCARTHY K L. Effect of screw configuration and speed on RTD and expansion of rice extrudate[J]. Journal of food process engineering, 1996, 19(2): 153~170.
    [187] Ainsworth P, Ibanoglu S, Hayes G D. Influence of Process Variables on Residence Time Distribution and Flow Patterns of Tarhana in a Twin-screw Extruder[J]. Journal of Food Engineering, 1997, 32(1): 101~108.
    [188] De R H. Modelling of the Residence Time Distribution in a Twin Screw Extruder[J]. Journal of Food Engineering, 1997, 32(4): 375~390.
    [189] LEE S Y, MCCARTHY K L. Effect of screw configuration and speed on RTD and expansion of rice extrudate[J]. Journal of food process engineering, 1996, 19(2): 153~170.
    [190] Altomare R E, Ghossi P. An analysis of residence time distribution patterns in a twin screw cooking extruder[J]. Biotechnology Progress, 1986, 2(3): 157~163.
    [191] Davidson V J, Paton D, Diosady L L, et al. Residence time distributions for wheat starch in a single screw extruder[J]. Journal of Food Science, 1983, 4(8): 1157~1161.
    [192] VAN Z U, JAGER T, STOLP W. Residence time distributions in extrusion cooking. Part II: single-screw extruders processing maize and soya[J]. Journal of food engineering, 1988, 7(3): 197~210.
    [193] Lin J K, Armstrong D J. Process variables affecting residence time distributions of cereals in an intermeshing, counter rotating twin screw extruder[J]. Trans of the ASAE, 1990, 33(6): 1971~1978.
    [194] YEH A N, WU T Q, JAW Y. Starch transitions and their influence on flow pattern during single-screw extrusion cooking of rice flour[J]. Trans IChemE, 1999, 77(Part C): 47~54.
    [195] Kim C T, Hwang J K, Kim C J, et al. Analysis of Residence Time Distribution During Twin-Screw Extrusion of Wheat Bran[J]. Food Science and Biotechnology, 2000, 9(1): 10~13.
    [196] 李里特, 刘志胜. 大豆异黄酮及其生理功能研究进展[J]. 食品工业科技, 2000, (1): 78~80.
    [197] Lee S J, Yan W, Ahn J K, et al. Effects of year, site, genotype and their interactions on various soybean isoflavones[J]. Field Crops Res, 2002, 4150: 1~12.
    [198] Lee S J, Ahn J K, Kim S H, et al. Variation in isoflavone of soybean cultivars with location and storage duration[J]. J. Agric. Food Chem, 2003, 51(11): 3382~3389.
    [199] Eldridge A C, Kwolek W F. Soybean isoflavones: effect of environment and variety on composition[J]. Journal of Agricultural and Food Chemistry, 1983, 31(2): 394~396.
    [200] 傅翠真, 常汝镇, 邱丽娟. 中国大豆品种营养品质评价[J]. 中国食物与营养, 2000, (3): 12~13.
    [201] 孙君明, 常汝镇. 中国大豆异黄酮含量的初步分析[J]. 中国粮油学报, 1995, 10(4): 51~54.
    [202] Wang H, Murphy P A. Isoflavone Content in Commercial Soybean Foods[J]. Journal of Agricultural and Food Chemistry, 1994, 42(8): 1666~1673.
    [203] KUDOU S, FLEURY Y, WELTI D, et al. Malonyl isoflavone glycosides in soybean seeds(glycine max MERRILL)[J]. Agricultural and biological chemistry, 1991, 55(9): 2227~2233.
    [204] 毛峻琴, 宓鹤鸣. 大豆异黄酮的研究进展[J]. 中草药, 2000, 31(1): 61~64.
    [205] Dr. Setchell K, Brown N M, Desai P, et al. Bioavailability of Pure Isoflavones in Healthy Humansand Analysis of Commercial Soy Isoflavone Supplements[J]. J. Nutr., 2001, 131(suppl 4):
    [206] Watanabe S, Uesugi S, Kikuchi Y. Isoflavones for prevention of cancer, cardiovascular diseases, gynecological problems and possible immune potentiation.[J]. Biomed Pharmacother, 2002, 56(6): 302~312.
    [207] Nagata C, Takatsuka N, Kawakami N, et al. Soy Product Intake and Hot Flashes in Japanese Women: Results from a Community-based Prospective Study[J]. American Journal of Epidemiology, 153(8): 790~793.
    [208] Sarkar F H, Li Y. Mechanisms of Cancer Chemoprevention by Soy Isoflavone Genistein[J]. Cancer and Metastasis Reviews, 2002, 21(3): 265~280.
    [209] 刘寒强, 王枫. 大豆异黄酮抗肿瘤作用机制研究进展[J]. 国外医学: 卫生学分册, 2005, 32(006): 329~332.
    [210] Kao T H, Chen B H. An improved method for determination of isoflavones in soybean powder by liquid chromatography[J]. Chromatographia, 2002, 56(7): 423~430.
    [211] WANG C, MA Q, PAGADALA S, et al. Changes of isoflavones during processing of soy protein isolates[J]. Journal of the American Oil Chemists' Society, 1998, 75(3): 337~341.
    [212] Faraj A, Vasanthan T. Soybean Isoflavones: Effects of Processing and Health Benefits[J]. Food Reviews International, 2004, 20(1): 51~75.
    [213] Batt H P, Thomas R L, Rao A. Characterization of Isoflavones in Membrane-processed Soy Protein Concentrate[R]. 2002 Annual Meeting and Food Expo-Anaheim, California, 2002.
    [214] Shimoni E. Stability and shelf life of bioactive compounds during food processing and storage: soy isoflavones.[J]. Journal of Food Science, 2004, 69(6): 160~166.
    [215] Franke A A, HPLC analysis of isoflavonoids and other phenolic agents from foods and from human fluids[J]. Proc Soc Exp Biol Med,1998,217(3):263~273.
    [216] Coward L, Barnes N C, Dr. Setchell K, et al. Genistein, daidzein, and their. beta.-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets[J]. Journal of Agricultural and Food Chemistry, 1993, 41(11): 1961~1967.
    [217] 张炳文, 郝征红. 发酵处理对大豆制品中异黄酮含量与组分的影响[J]. 食品与发酵工业, 2002, 28(7): 6~9.
    [218] 张晓峰, 李里特, 殷丽君等. 腐乳发酵过程中大豆异黄酮构型和含量的变化[J]. 粮油加工与食品机械, 2004, (10): 58~60.
    [219] Coward L, Chemical modification of isoflavones in soyfoods during cooking and processing[J]. Am J Clin Nutr, 1998, 68 (suppl.): 1486~1491.
    [220] Murphy P A, Barua K, Hauck C C. Solvent extraction selection in the determination of isoflavones in soy foods.[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2002, 777(1-2): 129~138.
    [221] Mahungu S M, Diaz-Mercado S, Li J, et al. Stability of isoflavones during extrusion processing of corn/soy mixture[J]. J Agric Food Chem, 1999, 47(1): 279~284.
    [222] Ungar Y, Osundahunsi O F, Shimoni E. Thermal stability of genistein and daidzein and its effect on their antioxidant activity[J]. J Agric Food Chem, 2003, 51(15): 4394~4399.
    [223] Eisen B, Ungar Y, Shimoni E. Stability of isoflavones in soy milk stored at elevated and ambient temperatures.[J]. Journal of Agricultural and Food Chemistry, 2003, 51(8): 2212~2215.
    [224] Walsh K R, Zhang Y C, Vodovotz Y, et al. Stability and bioaccessibility of isoflavones from soybread during in vitro digestion[J]. J. Agric. Food Chem, 2003, 51(16): 4603~4609.
    [225] 黄惠华, 郭乾初, 梁汉华等. 豆浆热处理过程中 3 种大豆异黄酮苷原的热降解比较[J]. 食品科学, 2006, 27(9): 132~136.
    [226] Singletary K, Faller J, Li J Y, et al. Effect of extrusion on isoflavone content and antiproliferative bioactivity of soy/corn mixtures[J]. J. Agric. Food Chem, 2000, 48(8): 3566~3571.
    [227] Murphy P A, Song T, Buseman G, et al. Isoflavones in soy-based infant formulas[J]. J Agric Food Chem, 1997, 45(4): 4635~4638.
    [228] 王松, 丁立, 周荣琪等. HPLC 法测定豆粕中大豆异黄酮的含量[J]. 化工进展, 2005, 24(2): 196~199.
    [229] Chiang W D, Shih C J, Chu Y H. Optimization of acid hydrolysis conditions for total isoflavones analysis in soybean hypocotyls by using RSM[J]. Food Chemistry, 2001, 72(4): 499~503.
    [230] Van B M. Statistical aspects of kinetic modeling for food science problems[J]. Journal of Food Science, 1996, 61(3): 477~485, 489.
    [231] Chien J T, Hsieh H C, Kao T H, et al. Kinetic model for studying the conversion and degradation of isoflavones during heating.[J]. Food Chemistry, 2005, 91(3): 425~434.
    [232] Liang M, Huff H E, Hsieh F H. Evaluating energy consumption and efficiency of a twin screw extruder[J]. Journal of Food Science, 2002, 67(5): 1803~1807.
    [233] Kitabake N, Doi E, Denaturation and texturization of food protein by extrusion cooking. In Food extrusion science and technology, L K J, 'Ed.' ; Marcel Dekkcer Inc: NewYork, 1993.
    [234] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970, 227(259): 680~685.
    [235] 郭尧君. 蛋白质电泳实验技术[M]. 北京: 科学出版社, 2001.
    [236] Tolstoguzov V B, Grinberg V Y, Gurov A N. Some physicochemical approaches to the problem of protein texturization[J]. Journal of Agricultural and Food Chemistry, 1985, 33(2): 151~159.
    [237] HORVATH E, CZUKOR B. Effect of extrusion temperature and initial moisture content on the protein solubility and distribution in full fat soybean[J]. Acta alimentaria(Budapest), 1993, 22(2): 151~167.
    [238] 魏益民,康立宁,张波等. 高水分大豆蛋白组织化生产工艺和机理分析[J]. 农业工程学报, 2006, 22(10): 193~197.
    [239] Bikbov T M, Grinberg V Y, Schmandke H, et al. A study on gelation of soybean globulin solutions[J]. Colloid & Polymer Science, 1981, 259(5): 536~547.
    [240] Clark A H, Lee-Tuffnell C D. Gelation of globular proteins[J]. Functional Properties of Food Macromolecules, 1986, 272: 203~272.
    [241] Cooper E A, Knutson K. Fourier transform infrared spectroscopy investigations of protein structure.[J]. Pharm Biotechnol, 1995, 7: 101~143.
    [242] Jackson M, Mantsch H H. The use and misuse of FTIR spectroscopy in the determination of protein structure[J]. Critical Reviews in Biochemistry and Molecular Biology, 1995, 30(2): 95~120.
    [243] BYLER D M, BROUILLETTE J N, SUSI H. Quantitative studies of protein structure by FT-IR spectra deconvolution and curve-fitting [J][J]. Spectroscopy, 1986, 1(3): 29~32.
    [244] KAIDEN K, MATSUI T, TANAKA S A. study of the amide Ⅲ by FT-IR spectrometry of the secondary structure of albumin, myoglobin, and γ-globulin [J]. Appl Spectrosc, 1987, 41(2): 180~184.
    [245] 王建华, 卫亚丽, 文宗河等. 蛋白质结构的 FT-IR 研究进展[J]. 化学通报, 2004, 67(7): 482~486.
    [246] Dubois J, Ismail A A, Chan S L, et al. Fourier transform infrared spectroscopic investigation of temperature-and pressure-induced disaggregation of amyloid A[J]. Scand J Immunol, 1999, 49(4): 376~380.
    [247] Meersman F, Smeller L, Heremans K. Comparative Fourier Transform Infrared Spectroscopy Study of Cold-, Pressure-, and Heat-Induced Unfolding and Aggregation of Myoglobin[J]. Biophysical Journal, 2002, 82(5): 2635~2644.
    [248] Torrent J, Rubens P, Ribo M, et al. Pressure versus temperature unfolding of ribonuclease A: An FTIR spectroscopic characterization of 10 variants at the carboxy-terminal site[J]. Protein Science, 2001, 10(4): 725~734.
    [249] 卞为东, 黄岳顺. FTIR 光谱法研究天花粉蛋白的热去折叠过程[J]. 光谱学与光谱分析, 2000, 20(004): 471~473.
    [250] Griebenow K, Klibanov A M. Lyophilization-Induced Reversible Changes in the Secondary Structure of Proteins[J]. Proceedings of the National Academy of Sciences, 1995, 92(24): 10969~10976.
    [251] DIRIX C, MEERSMAN F, HEREMANS K. Pressure sxtability of insuln: a fourier transform infrared spectroscopy study[J]. International Journal of High Pressure Research, 2003, 23(1): 63~66.
    [252] Dogan A, Siyakus G, Severcan F. FTIR spectroscopic characterization of irradiated hazelnut (Corylus avellana L.)[J]. Food Chemistry, 2007, (100): 1106~1114.
    [253] 陆彬. 白蛋白微球的热变性对其水溶性及酶降解性的影响[J]. 药学学报, 2000, 35(07): 535~538.
    [254] 张红娟, 周瑞宝. 豫豆—25 11S 球蛋白凝胶性的研究 I. 蛋白浓度和温度的影响[J]. 郑州工程学院学报, 2003, 24(001): 6~9.
    [255] Ker Y C, Chen R H, Wu C S. Relationships of secondary structure,microstructure, and mechanical properties of heat-induced gel of soy 11S globulin[J]. Biosci Biotech Biochem, 1993, 57(4): 536~541.
    [256] Wang C H, Damodaran S. Thermal gelation of globular proteins: influence of protein conformation on gel strength[J]. Journal of Agricultural and Food Chemistry, 1991, 39(3): 433~438.
    [257] Jiang H, Song Z, Ling M, et al. FTIR studies of recombinant human granulocyte-macrophage colony-stimulating factor in aqueous solutions: secondary structure, disulfide reduction and thermal behavior.[J]. Biochim Biophys Acta, 1996, 1294(2): 121~128.
    [258] Byler D M, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra[J]. Biopolymers, 1986, 25(3): 469~487.
    [259] Smeller L K, Goossens, Heremans K. Determination of the secondary structure of proteins at high pressure[J]. Vib. Spectrosc, 1995, (8): 199~203.
    [260] 赵多勇. 高水分组织化大豆蛋白产品特性研究[D].西北农林科技大学, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700