基于Y型腔正交偏振双频激光器的激光加速度计初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与其它导航方式相比,惯性导航由于能够不受任何外界的干扰,完全自主地提供不间断的导航信号,在军事上具有极其重要的战略意义。作为惯性制导与导航系统中的主要器件,加速度计和陀螺仪一直是世界上各发达国家研究的热点。随着光学陀螺精度和性能的不断提高,加速度计已成为制约我国惯性导航系统性能提高的瓶颈。本文在系统分析我国在高精度加速度计的研制方面总体形势的基础上,结合我国在氦氖激光器的技术和工艺及其在精密测量方面应用的研究基础和优势,独辟蹊径,提出了基于Y型腔正交偏振激光器的激光加速度计方案,并对其开展了初步研究。
     全面回顾了加速度计,特别是光学加速度计的发展历史和研究现状,重点分析了我军信息化建设对高精度加速度计的迫切需求与我国在高精度加速度计的研制方面总体落后、潜力不足之间的矛盾,指出了我国研制激光加速度计的必要性和紧迫性。
     系统总结了谐振腔传感器的基本原理和关键技术,对基于谐振腔传感器的加速度测量方案进行了几种探索。详细分析了气体膜盒式激光加速度计和密度梯度盒式激光加速度计的基本原理和影响它们性能的主要因素。理论分析表明,气体膜盒式激光加速度计的比例因子可达
     针对激光加速度计对Y型腔正交偏振氦氖激光器的输出功率、横模、纵模等物理特征的要求,研究了激光器参数优化和模式分析这两个具有普遍意义的问题。提出了人工神经网络和遗传算法相结合的激光器参数全局优化设计方法,研究表明,该方法可以显著地提高激光器输出功率。研究了谐振腔模式的有限元传输矩阵分析方法(FETM)中有限单元的划分问题,提出了一条新颖而有效的合理确定有限单元划分格数的方法,该方法可以更合理地确定有限单元划分格数,提高FETM方法的计算效率。
     系统总结了双频激光干涉仪及双频激光器的种类、应用、发展历程和研究现状,详细回顾了国内外双折射效应双频激光器的种类和研究情况。重点对复合腔进行了系统地定义和分类,对其在激光技术中的不同应用进行了总结和比较。成功研制了Y型腔正交偏振激光器,介绍了该激光器的基本原理、结构和特征,测试了激光器的偏振特性,并对其进行了理论分析。通过实验研究了不同频差下共用段调谐过程中,该激光器的光强调谐曲线和相应的拍频变化规律,采用三阶微扰近似下的Lamb半经典气体激光器理论,较为系统、全面地分析和总结了影响光强调谐曲线的各种因素及影响机理。通过实验研究了激光器的频差闭锁现象和闭锁阈值与放电电流之间的关系,并对其进行了理论分析。测试了激光器的频差稳定性,并对其在精密测量中的应用进行了初步探索。
     从理论和实验上对磁场抑制Y型腔正交偏振激光器的频差闭锁进行了研究。采用Lamb半经典理论建立了磁场中双频激光器两正交偏振纵模间耦合强度的理论模型,定量分析了磁感应强度和频差大小对耦合强度的影响。通过实验验证了横向磁场对频差闭锁具有抑制作用,研究了横向磁场的磁感应强度大小对其抑制频差闭锁效果的影响。理论分析了横向磁场对频差失谐的影响和横向交互磁场对频差失谐的抑制作用,通过实验验证了横向交互磁场对双频激光器频差闭锁和频差失谐的抑制作用。
     搭建了基于气体膜盒式激光加速度计的微力测量系统和加速度测量系统。实验表明,该测试系统的输入力与拍频变化成正比关系,测量范围为5个量级,最大比例因子为Hz/N,由于拍频不稳定引起的测试系统等效分辨率为10PN。通过优化传感器结构和使用一体化Y型腔正交偏振双频激光器,测试系统的分辨率可达10P-6PN。以MEMS加速度计作为参考,通过实验验证了气体膜盒式激光加速度计的可行性,测试了其性能参数,分析了其性能潜力。实验表明,激光加速度计的输出频差变化与输入加速度成正比关系,比例因子的实验值与理论值基本一致,通过优化激光加速度计结构,其比例因子可达10P9 PHz/g,分辨率可达1Pg,其量程可达±5 g。根据不同方向加速度输入时激光器各输出量的变化规律,提出了基于工作点模式识别的加速度判向方法。
Unlike many other types of navigation system, inertial navigation system can affords continuous navigation signals by themselves, possessing immunity to environmental interference, which sustains its important military strategic significance. As the key sensor of inertial navigation system, accelerometer has been under intense research in developed countries. With the rapid development of optical gyro technology, accelerometer has become a bottleneck to hamper the advancement of performance of inertial navigation system in our country. Taking into account the current status of domestic research on high performance accelerometer, and the advantages on the He-Ne laser technique, we propose a novel laser accelerometer based on Y-shaped cavity dual-frequency laser. The primary theoretical and experimental researches on this laser accelerometer have been made and summarized in the dissertation.
     The dissertation begins with reviewing the history and current status of accelerometer, particularly the optical accelerometer in detail. Conflict between our military equipments’stringent demands for high performance accelerometer, and low level and potential of domestic research on that is studied and analyzed. As a result, the necessity and urgency of laser accelerometer are pointed out.
     The basic principle and key technology of resonator sensor are summarized detailedly. Then several methods to measure acceleration applying resonator sensor have been proposed and discussed. Especially, the basic principles and characteristics of two laser accelerometers, which are based on gas sylphon and density gradient box respectively, are analyzed and studied. Theoretical analysis shows that the scale factor of the former laser accelerometer is 3.23×10PHz/g and its resolution can reach 4.24×10P-6Pg with measurement range of 10P6P.
     In view of physical characteristic requirement of Y-shaped cavity dual-frequency laser in the laser accelerometer, including output power, transverse mode, and longitudinal mode, two essential issues, i.e. global optimization method to design laser parameters and finite element transmission matrix method(FETM) for analysis of optical resonator modes, are studied and analyzed. For the first issue, a novel global optimization method based on artificial neural network and genetic algorithm has been proposed for laser parameters design. The output power of laser with parameters optimized by optimization method mentioned above is larger than another laser with the same cavity length, which proves the effectiveness of the above proposed method. For the second issue, the topic of division number of finite elements of cavity mirror has been further investigated. In the end, a novel and effective method to determine the number of finite elements is presented and discussed.
     The category, application, history and current status of dual-frequency laser and developed birefringence dual-frequency laser is introduced in detail. In addition, the compound cavity is redefined and classified. Comparison and analysis on the different application of compound cavity in laser technology is presented. Applying the Y-shaped cavity, an orthogonal polarized He-Ne laser has been designed and implemented, which is named as Y-shaped cavity dual-frequency laser. The laser’s structure and basic principle are detailed. Afterwards, the transverse model and longitudinal model, the power, the ellipticity of the output light and frequency difference lock-in phenomenon and frequency difference tuning characteristics are experimentally investigated. Based on the Lamb’s semiclassic gas laser theory of three-order perturbation, longitudinal mode competition’s influencing factors and their mechanism are developed and generalized detailedly. The relation between the lock-in frequency difference and discharge current is analyzed through experiment. The frequency difference stability of the laser is tested and estimated. Furthermore, the dissertation makes a primary attempt at several promising applications, such as micro/nano force measurement, refractive index measurement.
     For overcoming the effect of the lock-in phenomenon in the Y-shaped cavity dual-frequency laser, magnetic field’s suppressing the frequency difference lock-in phenomenon in is experimentally studied and theoretically analyzed. At first the coupling parameter in the magnetic filed strength between two orthogonal polarized modes is derived applying the Lamb’s semiclassic gas laser theory. Experiments show that the transverse magnetic field’s decreasing the frequency difference lock-in effect is valid. The influence of the magnetic filed strength and frequency difference on the coupling parameter is experimentally investigated and quantitatively analyzed according to the coupling parameter derived above. The theories about frequency difference detuning induced by transverse magnetic field and mutually orthogonal transverse magnetic field’s suppressing frequency difference detuning are presented and discussed. Experiments demonstrate that it is feasible to suppress the frequency difference lock-in phenomenon with little frequency difference detuning through adopting the mutually orthogonal transverse magnetic field.
     In the end, two experiments are carried out and investigated. Firstly, a precise force measurement system based on the Y-shaped cavity dual frequency laser and gas sylphon is built. The experiments are then performed, and demonstrate the force measurement to be proportional to a high degree over almost 5 decades of input signal range. The maximum scale factor is observed as 5.02×10~P9PHz/N with the beat frequency instability equivalent resolution of 10P-5PN. By optimizing the optical and geometrical parameters of the laser sensor, a force measurement resolution of 10P-6PN could be expected. Secondly, an acceleration measurement system based on a Y-shaped cavity dual-frequency laser and gas sylphon is set up and demonstrated. Preliminary experiments confirm the validity of the laser sensor. The experimental results show that the laser sensor in this approach characterizes a nearly linear response to the input acceleration, which is a projection of gravitational acceleration. The experimental values of the scale factors are mostly in good agreement with theoretical ones. By optimizing the optical and geometrical parameters of the laser sensor, an acceleration measurement resolution of P gravitational acceleration (within±5 g measurement range) could be expected. Furthermore, we investigate the principle about the sign of the scale factor in detail, and propose a simple but efficient method to distinguish the direction of the acceleration acted on the laser sensor.
引文
[1]邓正隆.惯性技术[M].哈尔滨:哈尔滨工业大学出版社, 2006.
    [2]张天光,王秀平,王丽霞.捷联惯性导航技术[M].北京:国防工业出版社, 2004.
    [3]毛奔,林玉荣.惯性器件测试与建模[M].哈尔滨:哈尔滨工程大学出版社, 2007.
    [4]朱家海.惯性导航[M].北京:国防工业出版社, 2008.
    [5]周世勤.新型惯性技术的发展[J].飞航导弹. 2001(6): 70~77.
    [6]赵君辙,邢馨婷,杨中柳.线加速度计的现状与发展趋势综述[J].计测技术. 2007, 27(5): 1~4.
    [7]刘俊,石云波,李杰.微惯性技术[M].北京:电子工业出版社, 2005.
    [8] Grattan K T V, Sun T. Fiber optic sensor technology: an overview[J]. Sensors and Actuators A: Physical. 2000, 82(1-3): 40~61.
    [9] Kyuma K, Tai S, Nunoshita M. Development of fibre optic sensing systems--A review[J]. Optics and Lasers in Engineering. 1982, 3(3): 155~182.
    [10] Ning Y N, Grattan K T V, Wang W M, et al. A systematic classification and identification of optical fibre sensors[J]. Sensors and Actuators A: Physical. 1991, 29(1): 21~36.
    [11] Fernando G F, Liu T, Crosby P, et al. A multi-purpose optical fibre sensor design for fibre reinforced composite materials[J]. Measurement Science and Technology. 1997, 8(10): 1065.
    [12] Barbosa F R, Borin F, Arakaki A, et al. A novel optical accelerometer[C]//. New York: 2005 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 2005,4: 1~4.
    [13] Lopez-Hignera J M, Morante M A, Cobo A. Simple low-frequency optical fiber accelerometer with large rotating machine monitoring applications[J]. Journal of Lightwave Technology. 1997, 15(7): 1120~1130.
    [14] Freal J, Zarobila C, Davis C. A microbend horizontal accelerometer for borehole deployment[J]. Journal of Lightwave Technology. 1987, 5(7): 993~996.
    [15] Malki A, Lecoy P, Marty J, et al. Optical fiber accelerometer based on a silicon micromachined cantilever[J]. Appl. Opt. 1995, 34(34): 8014~8018.
    [16] Grattan K, Palmer A, Saini D. Optical vibrating quartz crystal pressure sensor using frustrated-total-internal-reflection readout technique[J]. Lightwave Technology, Journal of. 1987, 5(7): 972~979.
    [17] Soref R A, Mcmahon D H. Tilting-mirror fiber-optic accelerometer[J]. Appl. Opt. 1984, 23(3): 486~491.
    [18] Grattan K, Palmer A, Saini D. Optical vibrating quartz crystal pressure sensor using frustrated-total-internal-reflection readout technique[J]. Lightwave Technology, Journal of. 1987, 5(7): 972~979.
    [19] Taylor R M, Ranshaw M J. Coherence multiplexed polarimetric fibre sensor arrays for aerospace applications[J]. Optics and Lasers in Engineering. 1992, 16(2-3): 223~236.
    [20] Wolinski T R. I Polarimetric optical fibers and sensors[M]. Progress in Optics, Wolf E, Elsevier, 2000: 40, 1~75.
    [21] Zhang Y J, Chen C H, Hao Y J, et al. Michelson all-fiber acceleration seismicgeophone with dual-optic routes[C]//. Bellingham: Proceedings of SPIE, 2005,5623: 546~553.
    [22] Wu B, Chen C H, Ding G L, et al. Hybrid-integrated Michelson fiber optic accelerometer[J]. Optical Engineering. 2004, 43(2): 313~318.
    [23] Fu S Y, Ding G L, Chen C H, et al. An all-fiber dual-optic paths acceleration seismic geophone[C]//. Bellingham: Proceedings of SPIE, 2002,4920: 168~173.
    [24] Ding G L, Fu S Y, Chen C H, et al. All-riberoptic acceleration geophone and its signal processing system[C]//. Harbin: Proceedings of the second international symposium on instrumentation science and technology, 2002,3: 308~311.
    [25] Shindo Y, Yoshikawa T, Dobashi K, et al. Earthquake observation on the seafloor by the fiber-optic accelerometer[C]//. New York: CLEO(R)/PACIFIC RIM , 2001,1: 492~493.
    [26] Chen C H, Zhang D L, Ding G L, et al. Broadband Michelson fiber-optic accelerometer[J]. Applied Optics. 1999, 38(4): 628~630.
    [27] Pang M, Zhang M, Wang L W, et al. Phase mode-matching demodulation scheme for interferometric fiber-optic sensors[J]. IEEE Photonics Technology Letters. 2007, 19(1): 39~41.
    [28] Liu S C, Zhang L Y, Zhu X F, et al. A fiber laser accelerometer base on the double flexure strips structure[C]//. Bellingham: Proceedings of SPIE, 2010,7853
    [29] Tang D, Zhang X, Zhao G, et al. A novel three-component hybrid-integrated optical accelerometer based on a Mach-Zehnder interferometer with a LiNbO3 photoelastic waveguide[C]//. Zhejiang University Press, co-published with Springer: 2009,10: 595~600.
    [30] Cao J N, Zhang Y B, Wang W X, et al. Research and design of a large phase shift fringe count interferometric fiber-optic accelerometer[C]//. Bellingham: Proceedings of SPIE, 2004,5634: 315~322.
    [31] Jackson D A, Kersey A D, Corke M, et al. Pseudoheterodyne detection scheme for optical interferometers[J]. Electronics Letters. 1982, 18(25): 1081~1083.
    [32] Ke T, Zhu T, Rao Y, et al. Accelerometer based on all-fiber Fabry–Pérot interferometer formed by hollow-core photonic crystal fiber[J]. Microwave and Optical Technology Letters. 2010, 52(11): 2531~2535.
    [33] Gerges A S, Newson T P, Jones J D C, et al. High-sensitivity fiber-optic accelerometer[J]. Optics Letters. 1989, 14(4): 251~253.
    [34] Stephens M. A sensitive interferometric accelerometer[J]. Review of Scientific Instruments. 1993, 64(9): 2612~2614.
    [35] Pechstedt R D, Jackson D A. Design of a compliant-cylinder-type fiber-optic accelerometer: theory and experiment[J]. Applied Optics. 1995, 34(16): 3009~3017.
    [36] Pang M, Zhou H P, Zhang M, et al. Analysis and Amelioration About the Cross-Sensitivity of a Fiber-Optic Accelerometer Based on Compliant Cylinder[J]. J. Lightwave Technol. 2008, 26(3): 365~372.
    [37] Chen C H, Ding G, Zhang D, et al. Michelson fiberoptic accelerometer[J]. Rev. Sci. Instrum. 1998, 69: 3123~3126.
    [38] Chen C H, Zhang D L, Ding G L, et al. Broadband Michelson fiber-optic accelerometer[J]. Applied Optics. 1999, 38(4): 628~630.
    [39] T A B, A D K. Experimental demonstration of a fiber Bragg grating accelerometer[J]. IEEE Photonics Technology Letters. 1996, 8(12): 1677~1679.
    [40] Spammer S J, Fuhr P L. Temperature insensitive fiber optic accelerometer using a chirped Bragg grating[J]. Optical Engineering. 2000, 39(8): 2177~2181.
    [41] Li L, Dong X, Shao L, et al. Temperature-independent acceleration measurement with a strain-chirped fiber Bragg grating[J]. Journal of Optoelectronics and Advanced Materials. 2010, 12(8): 1666~1669.
    [42] Yinian Z, Ping S, Chao L, et al. Temperature-insensitive fiber Bragg grating accelerometer[J]. IEEE Photonics Technology Letters. 2003, 15(10): 1437~1439.
    [43] Zhang Y, Yin Z F, Chen B Q, et al. A novel fiber Bragg grating based seismic geophone for oil/gas prospecting[C]//. Bellingham: Proceedings of SPIE, 2005,5765: 1112~1120.
    [44] Zhang Y, Li S G, Yin Z F, et al. Unattended ground sensor based on fiber Bragg grating technology[C]//. Bellingham: Proceedings of SPIE, 2005,5796: 133~140.
    [45] Zhang Y, Li S G, Ning J, et al. Seismic wave detection system based on fiber optic sensor [C]//. Bellingham: Proceedings of SPIE, 2006,6296: J2961.
    [46] Zhang Y, Li S G, Yin Z F, et al. Fiber-Bragg-grating-based seismic geophone for oil/gas prospecting[J]. Optical Engineering. 2006, 45(0844048).
    [47] Muller M S, Buck T C, Koch A W. Fiber Bragg Grating-based Acceleration Sensor[C]//. New York: ISOT: 2009 Inernational Symposium on Optmechatronic Technologies, 2009: 127~132.
    [48] Talebinejad I, Fischer C, Ansari F. Serially multiplexed FBG accelerometer for structural health monitoring of bridges[J]. Smart Structures and Systems. 2009, 5(4): 345~355.
    [49] Bocciolone M, Bucca G, Cigada A, et al. An application of FBG accelerometers for monitoring pantographs of underground trains[C]//. Bellingham: Proceedings of SPIE, 2010,7653
    [50] Barreda A, Molina T, Valero E, et al. Use of fiber optic sensors for measurement railway vibrations[C]//. Bellingham: Proceedings of SPIE, 2010,7653
    [51] Kim D H, Lee J J, Feng M Q. Structural health monitoring of real bridge by using novel fiber optic accelerometer[C]//. Lancaster: Structural health monitoring 2007: Quantification,Validation and Implementation, 2007,1-2: 299~306.
    [52] Kim D H. A fiber-optic tiltmeter system based on the moire-fringe effect[J]. Mersurement Science & Technology. 2009, 20(0252032).
    [53] Kim D H. Real-time frequency compensatory filter for adjusting dynamic bandwidth of single-degree-of-freedom sensor system[J]. Sensors and Actuators A-Physical. 2007, 140(2): 251~256.
    [54] Kim D H, Feng M Q. Real-time structural health monitoring using a novel fiber-optic accelerometer system[J]. IEEE Sensors Journal. 2007, 7(3-4): 536~543.
    [55] Llobera A, Seidemann V, Plaza J A, et al. Surface quad beam polymer optical accelerometer[M]. Vienna, Austria: Institute of Electrical and Electronics Engineers Inc., 2004: 1546~1549.
    [56] Llobera A, Seidemann V, Plaza J A, et al. Integrated polymer optical accelerometer[J]. IEEE Photonics Technology Letters. 2005, 17(6): 1262~1264.
    [57] Llobera A, Seidemann V, Plaza J A, et al. Characterization of optical accelerometers based on UV-sensitive polymers[J]. IEEE Sensors Journal. 2006, 6(2): 412~419.
    [58] Pang M, Zhang M, Wang L W, et al. Phase mode-matching demodulation scheme for interferometric fiber-optic sensors[J]. IEEE Photonics Technology Letters. 2007, 19(1): 39~41.
    [59] Zou Q L, Wang L W, Pang M, et al. Down-hole seismic survey system with fiber-optic accelerometer sensor array for 3-dimensions vertical seismic profile(3D-VSP) [C]//. Bellingham: Proceedings of SPIE, 2006,6293: W2930.
    [60] Zeng N, Zhang M, Lai S R, et al. 3-Component bellows-type riber-optic accelerometer[C]//. Bellingham: Proceedings of SPIE, 2004,5634: 361~369.
    [61] Zeng N, Shi C Z, Zhang M, et al. A 3-component fiber-optic accelerometer for well logging[J]. Optics Communications. 2004, 234(1-6): 153~162.
    [62] Shi C Z, Zeng N, Ho H L, et al. Cantilever optical vibrometer using fiber Bragg grating[J]. Optical Engineering. 2003, 42(11): 3179~3181.
    [63] Cao J N, Zhang Y B, Wang W X, et al. Research and design of a large phase shift fringe count interferometric fiber-optic accelerometer[C]//. Bellingham: Proceedings of SPIE, 2004,5634: 315~322.
    [64] Cao J N, Wang W X, Zhang Y B, et al. Design of a practical intensity modulated dynamic optical fiber accelerometer[C]//. Bellingham: Proceedings of SPIE, 2004,5634: 548~552.
    [65] Zhang Y J, Chen C H, Hao Y J, et al. Michelson all-fiber acceleration seismic geophone with dual-optic routes[C]//. Bellingham: Proceedings of SPIE, 2005,5623: 546~553.
    [66] Wu B, Chen C H, Ding G L, et al. Hybrid-integrated Michelson fiber optic accelerometer[J]. Optical Engineering. 2004, 43(2): 313~318.
    [67] Fu S Y, Ding G L, Chen C H, et al. An all-fiber dual-optic paths acceleration seismic geophone[C]//. Bellingham: Proceedings of SPIE, 2002,4920: 168~173.
    [68] Ding G L, Fu S Y, Chen C H, et al. All-riberoptic acceleration geophone and its signal processing system[C]//. Harbin: Proceedings of the Second International Symposium on Instrumentation Science and Technology, 2002,3: 308~311.
    [69] Chen C H, Qin Y L, Zhang Y M, et al. Hybrid integrated optical accelerometer[C]//. Bellingham: Proceedings of SPIE, 1996,2895: 497~500.
    [70] Chen C H, Qin Y L, Zhang Y M, et al. Optical integrated circuits in Ti:LiNbO3 for a fiber accelerometer[C]//. Bellingham: Proceedings of SPIE, 1996,2895: 501~504.
    [71] Li L, Dong X Y, Shao L Y, et al. Temperature-independent acceleration measurement with a strain-chirped fiber Bragg grating[J]. Journal of Optoelectronics and Advanced Materials. 2010, 4(7): 943~946.
    [72] Llobera A, Seidemann V, Plaza J A, et al. Integrated polymer optical accelerometer[J]. IEEE Photonics Technology Letters. 2005, 17(6): 1262~1264.
    [73] Llobera A, Volker S, Jos A P, et al. SU-8 Optical Accelerometers[J]. Journal of Microelectromechanical Systems. 2007, 16(1): 111~121.
    [74]郑露滴, Asundi A, Tien N C, et al.采用微机械加工技术的微光学加速度计[J].仪器仪表学报. 2001, 22(1): 162~164.
    [75] Noell W, Clerc P A, Dellmann L, et al. Applications of SOI-based optical MEMS[J]. IEEE Journal of Selected Topics in Quantum Electronics. 2002, 8(1): 148~154.
    [76] Borinski J W, Boyd C D, Dietz J A, et al. Fiber optic sensors for predictive health monitoring[C]//. New York: IEEE Systems Readiness Technology Conference, 2001,21: 250~262.
    [77] Degani O, Seter D, Socher E, et al. Micromachined accelerometer with modulated integrative differential optical sensing[J]. Electronics Letters. 1998, 34(7): 654~655.
    [78] Bochobza-Degani O, Seter D J, Socher E, et al. Novel dual-axisal soi micromachined inertial sensors with optical sensing: Design and fabrication[C]//. New York: 21st IEEE Convention of the Electrical and Electronic Engineers in Israel, 2000,5: 65~68.
    [79] Bochobza-Degani O, Seter D J, Socher E, et al. From single to multi-axial, decoupled mode micromachined inertial sensors with MDOS[J]. Sensors and Microsystems. 2000: 308~312.
    [80] Bochobza-Degani O, Seter D J, Socher E, et al. Design and noise consideration of an accelerometer employing modulated integrative differential optical sensing[J]. Sensors and Actuators A-Physical. 2000, 84(1-2): 53~64.
    [81] Bochobza-Degani O, Seter D J, Socher E, et al. Comparative study of novel micromachined accelerometers employing MIDOS[J]. Sensors and Actuators A-Physical. 2000, 80(2): 91~99.
    [82] Bochobza-Degani O, Yechieli R, Bar-Lev S, et al. Characterization of a novel micromachined accelerometer with enhanced-MIDOS[C]//. 12th International Conference on Transducers, Solid-state Sensors, Actuators and Microsystems, 2003,2: 1395~1398.
    [83] [苏]巴特拉柯夫.激光测量系统[M].北京:电子工业出版社, 1989.
    [84]张书练.正交偏振激光原理[M].北京:清华大学出版社, 2005.
    [85]张毅,张书练.光电振动传感技术新进展[J].激光技术. 2001, 25(3): 161~165.
    [86] Holzapfel W, Settgast W. Precise force measurement over 6 decades applying the resonator-internal photoelastic effect[J]. Applied Physics B: Lasers and Optics. 1989, 49(2): 169~172.
    [87] Holzapfel W, Settgast W. Force to frequency conversion by intracavity photoelastic modulation[J]. Applied Optics. 1989, 28(21): 4585~4594.
    [88] Holzapfel W, Finnemann M. High-resolution force sensing by a diode-pumped Nd:YAG laser[J]. Optics Letters. 1993, 18(23): 2062~2064.
    [89] Holzapfel W, Neuschaefer-Rube S, Kobusch M. High-resolution, very broadband force measurements by solid-state laser transducers[J]. Measurement. 2000, 28(4): 277~291.
    [90] Ficalora J P, Ridge O. High accuracy laser accelerometer[P]. U.S. Patent, 5456112. Oct. 10, 1995.
    [91] Hall L H, Hills W. Laser accelerometer[P]. U.S. Patent, 4841774. Jun.27, 1989.
    [92]龙兴武,肖光宗,张斌.双Y型腔双频激光加速度计[P].中国专利, 200910227028.8. 2009.11.26.
    [93] [德]马科斯玻, [美]埃米尔沃.光学原理[M].北京:电子工业出版社, 2005.
    [94]康崇,刘佳杰,黄宗军,等. F-P型同振式光纤矢量水听器相位产生载波解调算法[J].光电子激光. 2011, 22(1): 51~55.
    [95]李发明.光学加速度计方案的初步研究[D].长沙:国防科学技术大学, 2009.
    [96]吴宇.微纳光纤环MOEMS加速度传感器理论与应用研究[D].杭州:浙江大学, 2008.
    [97] Nieva P M, Mcgruer N E, Adams G G. MEMS-based Fabry-Perot vibration sensor for harsh environments[C]//. San Diego, CA, United states: Proceedings of SPIE, 2006,6174 II
    [98]董玉珮.微型非本征法布里-珀罗干涉光纤压力传感器研究[D].大连:大连理工大学, 2006.
    [99] Hill G C, Melamud R, Declercq F E, et al. SU-8 MEMS Fabry-Perot pressure sensor[J]. Sensors and Actuators, A: Physical. 2007, 138(1): 52~62.
    [100]张存满,赵洋,李达成.采用法布里-珀罗腔的绝对距离干涉系统的方案分析[J].光电工程. 2000, 27(6): 55~58.
    [101]晁志霞,许婕,徐毅.用于大范围纳米测量的法布里-珀罗干涉仪[J].计量学报. 1999, 20(4): 241~246.
    [102]吴宇,曾旭,刘晓,等.可调腔长全光纤F-P腔纳米位移传感器的实验研究[J].光电子激光. 2008, 19(9): 1196~1199.
    [103] Lawall J R. Fabry-Perot metrology for displacements up to 50 mm[J]. Journal of the Optical Society of America A: Optics and Image Science, and Vision. 2005, 22(12): 2786~2798.
    [104]吕涛.敏感型Fabry-Perot腔高精度光纤角位移传感器研究[D].成都:西南师范大学, 2005.
    [105] Lin S, Yeh S, Lin Z. Angular probe based on using Fabry-Perot etalon and scanning technique[J]. Optics Express. 2010, 18(3): 1794~1800.
    [106]李坤.一种基于光纤法布里-珀罗结构的微型应变传感器的研制[D].武汉:武汉理工大学, 2009.
    [107]杨杞.光纤法布里-珀罗应变传感器的研究[D].大连:大连理工大学, 2006.
    [108]孙吉勇,陈伟民,朱永, et al.光源光谱对光纤法布里-珀罗应变传感器系统的影响[J].光学学报. 2002, 22(5): 596~600.
    [109]杜文斌.干涉条纹计数法F-P腔液位传感器研究[D].广州:暨南大学, 2010.
    [110]王玉田,郭增军,王莉田.调制式光纤甲烷气体传感器的研究[J].光电工程. 2002, 29(2): 35~38.
    [111]张毅,庄志,黎启胜,等.光纤法布里珀罗氢气检测技术[J].传感技术学报. 2010, 23(4): 1386~1389.
    [112]单胜军.基于法布里-珀罗腔的光纤气体传感器的研究[D].武汉:武汉理工大学, 2009.
    [113] Zeakes J S, Murphy K A, Elshabini-Riad A, et al. Modified extrinsic Fabry-Perot interferometric Hydrogen gas sensor[C]//. Boston, MA, USA: 1994,2: 235~236.
    [114]陈宪锋,方云团,沈小明,等.全介质双腔法布里-珀罗结构的共振模研究[J].光学学报. 2010, 30(2): 546~550.
    [115]陈明睿,毕思文,豆西博.双腔法布里-珀罗腔透射特性[J].强激光与粒子束. 2010, 22(8): 1870~1874.
    [116]李金,李富宁,唐广.新型法布里-珀罗腔传感结构[J].生命科学仪器. 2009, 7(1): 21~25.
    [117] Ahmadi S, Zaghloul M. A Fabry-Perot optical sensor system-on-chip[J]. Canadian Journal of Electrical and Computer Engineering. 2001, 26(3-4): 159~162.
    [118] Jiang S, Liang Y, Zhu X, et al. Asymmetric Fabry-Perot interferometric cavity for fiber optical sensors[J]. Chinese Optics Letters. 2006, 4(10): 563~565.
    [119] Chin K K, Sun Y, Feng G, et al. Fabry-Perot diaphragm fiber-optic sensor[J]. Applied Optics. 2007, 46(31): 7614~7619.
    [120]饶云江,曾祥楷,朱永,等.非本征型法布里-珀罗干涉仪光纤布拉格光栅应变温度传感器及其应用[J].光学学报. 2002, 22(1): 85~88.
    [121]王婷婷,王鸣,李明,等.光纤法布里-珀罗腔传感器双波长解调法及波长优化设计[J].光学学报. 2005, 25(10): 1297~1301.
    [122]黄春宁,李岩,张书练.全光型激光微片高灵敏度压强传感器[J].中国激光. 2003, 30(06): 501~504.
    [123]赵东洋,石顺祥,李家立.一种控制环形激光器光学腔长的新方法[J].光子学报. 2006, 35(10): 1445~1448.
    [124]吕百达.激光光学[M].北京:高等教育出版社, 2003.
    [125]龙兴武,肖光宗,张斌.一种新型的高精度激光加速度计[J].光学学报. 2010, 30(11): 3227~3232.
    [126]刘广玉,庄肇康.仪表弹性元件[M].北京:国防工业出版社, 1981.
    [127]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社, 2002.
    [128]朱德忠.热物理激光测试技术[M].北京:科学出版社, 1990: 4~5.
    [129]国家质量监督检验检疫总局计量司.测量仪器特性评定指南[G].北京:中国计量出版社, 2003.
    [130]张向宇.实用化学手册[G].北京:国防工业出版社, 1986: 475~476.
    [131]马养武,陈钰清.激光器件[M].杭州:浙江大学出版社, 1994: 9~39.
    [132]徐志君,程成.遗传算法在激光器谐振腔优化设计中的应用[J].光子学报. 2003, 32(12): 1413~1417.
    [133] Goldberg D E. Genetic algorithms in search, optimization, and machine learning[M]. New York: Addison Wesley, 1989: 1~145.
    [134]王雪.测试智能信息处理[M].北京:清华大学出版社, 2008: 78~91.
    [135]肖光宗,龙兴武,张斌.基于人工神经网络和遗传算法的激光器参数全局优化方法[J].中国激光. 2010, 37(05): 1203~1208.
    [136] Haupt R L. An introduction to genetic algorithm for electromagnetic[J]. IEEE Antenna and Propagation Magazine. 1995, 37(2): 7~15.
    [137] Cheng C, Zhuang F. Plasma kinetics mechanisms of an optimized copper vapor laser[J]. J Physics D Appl Physics. 2000, 33(10): 339~341.
    [138] Cheng C, He S L. Optical design for a copper laser system with a maximum power by using a genetic algorithm[J]. Optical and Quant Electron. 2001, 33(1): 83~85.
    [139]王赟松,许洪国.快速收敛的BP神经网络算法[J].吉林大学学报(工学版). 2003, 33(4): 79~84.
    [140]刘君,郭秋东,王银辉.利用改进的人工神经网络优选激光切割工艺参数[J].激光杂志. 2007, 28(6): 80~81.
    [141]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社, 2003: 55~87.
    [142]周炳琨,高以智,陈徟嵘,等.激光原理[M].北京:国防工业出版社, 2000.
    [143]程愿应,王又青,胡进.一种新颖的用于光腔模式及光束传输模拟的特征向量法[J].物理学报. 2004, 53(8): 2576~2582.
    [144] Chao J, Li B, Cheng Y. Simulation of optical field in laser resonators cavity by eigenvector method[J]. Optics & Laser Technology. 2007, 39(3): 490~499.
    [145] Cheng Y, Wang Y, Hu J. An eigenvector method for optical field simulation[J]. Opt. Commun. 2004, 234(1): 1~6.
    [146] Polychronopoulos S J, Athanasoulias G B, Uzunoglu N K. Advanced mode solver using an integral equation technique and entire domain plane wave basis functions[J]. Optical and Quantum Electronics. 1997, 29: 27~37.
    [147] Selleri S, Vincetti L, Cucinotta A. Complex FEM modal solver of optical waveguides with PML boundary conditions. Optical and Quantum Electronics[J]. 2001. 2001, 33(1): 35~71.
    [148] Manenkov A B, Rozhnev A G. Optical dielectric waveguide analysis based on the modified finite element and integral equation methods[J]. Optical and Quantum Electronics. 1998, 30(1): 31~70.
    [149]凌东雄,伏云昌,樊则宾.高斯型变反射率圆镜平凹腔本征模场的矩阵分析[J].中国激光. 2003, 30(1): 25~28.
    [150]凌东雄.圆形镜共焦腔模式分布的有限元数值计算[J].应用激光. 1999, 19(2): 69~72.
    [151]许志广,张书练,梁栋.猫眼激光谐振腔横模选择特性研究[J].光学学报. 2006, 26(1): 86~90.
    [152]秦应雄,唐霞辉,钟如涛.基于传输矩阵的激光谐振腔模式计算[J].中国激光. 2008, 35(10): 1463~1468.
    [153]肖光宗,龙兴武,陈凯,等.多元件谐振腔模式的有限元传输矩阵分析方法[J].强激光与粒子束. 2010, 22(11): 2517~2520.
    [154] Stuart A, Jr Collins. Lens-system diffraction integral written in term of matrix optics[J]. J.Opt.Soc.Am. 1970, 60(9): 1168~1177.
    [155]凌东雄.高功率CO2激光器光学谐振腔的改进及数值分析[D].昆明:昆明理工大学, 2004.
    [156] Maiman T H. Stimulated optical radiation in ruby[J]. Nature. 1960, 187(493).
    [157] Maiman T H. Optical and microwave-optical experiments in ruby[J]. Phy. Rev. Letters. 1960, 4(11): 564~566.
    [158]迟桂纯.激光在计量测试技术中的应用[M].成都:成都科技大学出版社, 1994.
    [159]蓝信钜.激光技术[M].北京:科学出版社, 2009.
    [160]所睿,范志军,李岩,等.双频激光干涉仪技术现状与发展[J].激光与红外. 2004(04): 251~253.
    [161]张书练,谈宜东.正交线偏振激光器及其在精密测量中的新应用[J].光电工程. 2009(03): 1~11.
    [162]张浩.磁致旋光-塞曼双频激光器的理论及实验研究[D].西安:西北工业大学, 2007.
    [163]焦明星,邢俊红,刘芸,等.双腔大频差双频全固态激光器设计与实验研究[J].中国激光. 2010, 37(11): 2784~2789.
    [164]朱目成,周肇飞,张涛. He-Ne拍波激光干涉仪的研究[J].激光技术. 2004(05): 531~533.
    [165] Der-Chin S, Ming-Hong C, Chen-Der C. Simple two-frequency laser[J]. Precision Engineering. 1996, 18: 161~163.
    [166] Lamb W E. Theory of an optical maser[J]. Physical Review. 1964, 134(6): A1429~A1450.
    [167] Sargent M, Lamb W E, Fork R L. Theory of a Zeeman Laser. I[J]. Phys. Rev. 1967, 164(2): 436~449.
    [168] Sargent M, Lamb W E, Fork R L. Theory of a Zeeman Laser. II[J]. Phys. Rev. 1967, 164(2): 450~465.
    [169]巴恩旭,杨性愉,沈寿春.横向塞曼激光器理论[J].物理学报. 1984, 33(4): 496~507.
    [170]杨福家.原子物理学[M].北京:高等教育出版社, 2008.
    [171] Niebauer T M, Faller J E, Godwin H M. Frequency Stability Measurements on Polarization-Stabilized He-Ne Lasers[J]. Applied Optics. 1988, 27(7): 1285~1289.
    [172]李文杰,周肇飞,晋崇九.双纵模激光热稳频光源[J].光电工程. 1998(06).
    [173]朱目成,张涛,尹伯彪,等.双纵模激光器的热稳频控制系统的研究[J].仪器仪表学报. 2003(S2): 581~582.
    [174]周肇飞,张涛,朱目成,等.双纵模激光拍频干涉仪的研究[J].中国激光. 2005(01): 101~104.
    [175]蔡鹏,周肇飞,张涛,等.双纵模热稳频激光源的模糊PID控制研究[J].四川大学学报(工程科学版). 2006(01): 154~158.
    [176]王佳,赵洋,张书练,等.纳米计量学与纳米计量测试技术(一)[J].航空计测技术. 1995(05): 3~5.
    [177]王佳,赵洋,张书练,等.纳米计量学与纳米计量测试技术(二)[J].航空计测技术. 1995(06): 3~6.
    [178] Doyle W M, White M B. Properties of an Anisotropic Fabry-Perot Resonator[J]. Journal of the Optical Society of America. 1965, 55(10): 1221~1225.
    [179] Greenstein H. Some properties of a zeeman laser with anisotropic mirrors[J]. Phys. Rev. 1969, 178(2): 585~589.
    [180] Floch A L, Naour R L. Polarization effects in zeeman laser with x-y-type loss anisotropies[J]. Physical Review A. 1971, 4(1): 290~295.
    [181] Van Haeringen W. Polarization Properties of a Single-Mode Gas Laser in small axial Magnetic Fields[J]. Physical Review. 1967, 158(2): 256~272.
    [182] Gubin M A, Popov A I, Protsenko E D. Investigation of the competition between two axial modes in a laser with a homogeneously broadened line[J]. Soviet Journal of Quantum Electronics. 1972, 1(4): 336~340.
    [183] Gudelev V G, Zhirik Y. A two-frequency He?Ne laser at the 3S2-3P4 transition in mutually orthogonal transverse magnetic fields[J]. Journal of Applied Spectroscopy. 1999, 66: 640~645.
    [184]张书练,徐亭,李岩,等.正交线偏振激光器原理与应用(Ⅰ)——正交线偏振激光的产生机理和器件研究[J].自然科学进展. 2004(02).
    [185]张书练,刘刚,朱钧,等.正交线偏振激光器原理与应用(Ⅱ)——物理现象研究[J].自然科学进展. 2004(03).
    [186]张书练,杜文华,李岩,等.正交线偏振激光器原理与应用(Ⅲ)——精密测量应用原理及技术基础研究[J].自然科学进展. 2004(04).
    [187] Zhang S, Guo H, Li K, et al. 1995-Laser Longitudinal Mode Splitting Phenomenon and Its Applications in Laser Physics and Active Metrology Sensors[J]. Optics and Lasers in Engineering. 1995, 23(1995): 1~28.
    [188]卢葱葱,赵长明,吴克瑛.利用微失调扭转模腔产生双频激光器[J].北京理工大学学报. 1999, 19(3): 343~347.
    [189] Zhang S, Wu M, Jin G. Birefringent tuning double frequency He-Ne laser[J]. Applied Optics. 1990, 29(9): 1265~1267.
    [190] Wolfgang H, Walter S. Precise Force Measurement over 6 Decades Applying the Resonator-Internal Photoelastic Effect[J]. Applied Physics. 1989, B 49: 169~172.
    [191] Wolfgang H, Walter S. Force to frequency conversion by intracavity photoelastic modulation[J]. Applied Optics. 1989, 28(21): 4585~4594.
    [192] Wolfgang H, Martin F. High-resolution force sensing by a diode-pumped NdYAG laser[J]. Optics Letters. 1993, 18(23): 2062~2064.
    [193]李岩,李璐,张书练,等.用电磁力获得应力双折射及双频激光[J].激光技术. 1999(04): 235~237.
    [194] Han Y, Zhang Y, Li Y, et al. Two kinds of novel birefringent dual-frequency lasers[J]. Optics and Lasers in Engineering. 1999, 31(1999): 207~212.
    [195]李岩,张书练,韩艳梅.新型应力双折射双频激光器[J].光电子·激光. 2001(03): 275~277.
    [196]田云辉.基于双纵模双频激光干涉测量的位移传感器自动检定系统的研究[D].成都:四川大学, 2003.
    [197]许祖彦,潘少华,邓道群,等.脉冲染料激光的复合腔调频[J].物理学报. 1981, 30(6): 820~826.
    [198]刘维新.弱复合腔结构正交偏振激光器调谐及其在波片测量中应用[D].北京:清华大学, 2009.
    [199]韩全生,厚美英,余永柏,等.振放交叠独立调谐的双波长染料激光器[J].激光杂志. 1987, 8(3): 172~175.
    [200] Wei L, Lit J. Compound ring resonator with an external reflector for lasers[J]. Optics Communications. 2001, 193(1-6): 105~112.
    [201] Zhang J, Yue C, Schinn G W, et al. Stable Single-Mode Compound-Ring Erbium-Doped Fiber Laser[J]. Journal of Lightwave Technology. 1996, 14(1): 104~109.
    [202]吴令安,许祖彦,邓道群,等.掠射光栅复合腔调频[J].激光. 1981, 9(11): 698~702.
    [203] Peek T H, Bolwijn P T, Alkemade T J. Axial mode number of gas lasers from moving-mirror experiments[J]. Ameriacan Jounal of Physics. 1967, 35: 820~831.
    [204] Wang W M, Grattan K T V, Palmer A W. Self-mixing interference inside a single mode diode laser for optical sensing applications[J]. IEEE J. LT. 1994, 12(1577-1587).
    [205] Smith J A. Lasers with optical feedback as displacement sensors[J]. Opt. Eng. 1995, 34: 2802~2810.
    [206]禹延光,孙晓明,强锡富.半导体激光管位移传感器的模型建立与仿真分析[J].光学技术. 1999, 3: 11~13.
    [207] Wang M. Fouier transform method for self-mixing interference signal analysis[J]. Optics and Laser Technology. 2001, 33: 409~416.
    [208]张顺怡,归振兴. CW选支双波长CO激光器[J].中国激光. 1982, 10(5): 289~290.
    [209] Liu T, Soh Y C, Wang Q. Channel wavelength selectable single/dual-wavelength erbium-doped fiber ring laser[J]. Optical Engineering. 2004, 43(1): 209~213.
    [210]李乙钢,侯国付,吕可诚,等.双光栅外腔可调谐掺Yb3+双包层光纤激光器[J].中国激光. 2003, 30(11): 969~972.
    [211] Pajarola S S, Suekos G, Kawaguchi H. Frequency tunable beat note from a dual-polarization emitting external cavity diode laser[J]. Optical and Quantum Electronics. 1997, 29: 489~499.
    [212] Hsu A, Chuang S L, Tanbun T. Tunable dual-mode operation in chirped grating distributed-feedback laser[J]. IEEE Photonic. Tech. L. 2000, 12(8): 963~965.
    [213]赵媛媛. LD泵浦内腔倍频双频固体激光技术的研究[D].西安:西安理工大学, 2006.
    [214] Xiao G, Long X, Zhang B. A novel orthogonal polarized dual-frequency laser using a Y-shaped cavity[J]. Optics & Laser Technology. 2011, 43(7): 1314~1317.
    [215]韩艳梅,张书练,李克兰.波长632.8nm的He-Ne激光器在不同频差下的功率调谐曲线[J].激光技术. 1997, 21(02): 111~114.
    [216]韩艳梅,张书练,李岩,等.功率调谐曲线的理论分析[J].激光技术. 1998, 22(04): 211~214.
    [217] Zhang S, Han Y. 1993-Tuning Curves of 70MHz Frequency Differences for HeNe Stan ding- Wave Lasers[J]. Chinese Physics Letter. 1993, 10(12): 728~730.
    [218]肖光宗,龙兴武,张斌. Y型腔正交偏振激光器的模竞争和光强调谐特性[J].中国激光. 2011, 38(03): 3020161~3020164.
    [219]卢亚雄,余学才,张晓霞.激光物理[M].北京:北京邮电大学出版社, 2005.
    [220] Grattan K T V, Sun T. Fiber optic sensor technology: an overview[J]. Sensors and Actuators A: Physical. 2000, 82(1-3): 40~61.
    [221] Ning Y N, Grattan K T V, Wang W M, et al. A systematic classification and identification of optical fibre sensors[J]. Sensors and Actuators A: Physical. 1991, 29(1): 21~36.
    [222] Kyuma K, Tai S, Nunoshita M. Development of fibre optic sensing systems--A review[J]. Optics and Lasers in Engineering. 1982, 3(3): 155~182.
    [223]宗晓斌,张书练.频率分裂在双频激光器和位移传感器中的两种新应用(英文)[J].纳米技术与精密工程. 2005(03): 227~231.
    [224]张书练,李岩.面向21世纪的双频激光及相关测量科学技术[J].中国机械工程. 2000, 11(03): 266~270.
    [225]张书练.激光器纳米测尺原理[J].中国工程科学. 2005(03): 27~34.
    [226] Doyle W M, White M B. Properties of an Anisotropic Fabry-Perot Resonator[J]. J. Opt. Soc. Am. 1965, 55(10): 1221~1225.
    [227] Gonchukov S A, Ermachenko V M, Lzmallov A C, et al. Gas laser with phase anisotropy in a constant magnetic field[J]. Sov. J. Quantum Electron. 1981, 11(2): 196~200.
    [228] Gudelev V G, Yasinski? V M. Two-frequency helium–neon laser in a transverse magnetic field[J]. Soviet Journal of Quantum Electronics. 1982, 12(7): 904.
    [229] Basov N G, Gubin M A, Nikitin V V, et al. Two-mode gas lasers and their applications in spectroscopy and optical frequency standards (review)[J]. Soviet Journal of Quantum Electronics. 1984, 14(6): 731.
    [230] Gudelev V G, Izma?lov A C, Yasinski? V M. Two-frequency gas laser in mutually orthogonal transverse magnetic fields[J]. Soviet Journal of Quantum Electronics. 1988, 18(2): 166.
    [231] Jin Y, Zhang S, Yan L, et al. Zeeman-Birefringence He-Ne Dual Frequency Lasers[J]. Chinese Physics Letters. 2001, 18(4): 533~535.
    [232] Xiao Y, Shulian Z, Yan L, et al. Tuning Characteristics of Frequency Difference for Zeeman-Birefringence He Ne Dual Frequency Laser[J]. Chinese Physics Letters. 2003, 20(2): 230~233.
    [233]李岩,张书练,韩艳梅.频差3~40MHz的He Ne双频激光器[J].高技术通讯. 2001(03): 41~44.
    [234]张亚,李岩,张书练.中频差Zeeman双折射双频激光干涉系统的实验研究[J].清华大学学报(自然科学版). 2007(11): 1969~1971.
    [235] Bakaev D S, Gonchukov S A, Ermachenko V M, et al. Locking of two spatially separated modes of a gas laser[J]. Sov. J. Quantum Electron. 1987, 17(12): 1544~1548.
    [236] Bretenaker F, Floch A L. Laser eigenstates in the framework of a spatially generalized Jones matrix formalism[J]. J. Opt. Soc. Am. B. 1991, 8(2): 230~238.
    [237] Jacob D, Tran N H, Floch A L. Quasi-critical coupling between spatially resolved laser eigenstates: a novel approach to the measurement of intracavity aborption[J]. J. Opt. Soc. Am. B. 1995, 12(10): 1843~1849.
    [238] Baili G, Morvan L, Alouini M, et al. Experimental demonstration of a tunabledual-frequency semiconductor laser free of relaxation oscillations[J]. Optics Letters. 2009, 34(21): 3421~3423.
    [239]乐志强,沈德芳.磁光学[M].上海:上海科学技术出版社, 2001.
    [240]王雨三,张中华.激光物理基础[M].哈尔滨:哈尔滨工业大学出版社, 2004.
    [241]姜亚南.环形激光陀螺[M].北京:清华大学出版社, 1985: 40~71.
    [242] Gudelev V G, Dziubenko G M, Klockho A I, et al. Energy and frequency characteristics of a He-Ne laser (0.63 micron) in mutually orthogonal transverse magnetic fields[J]. Zhurnal Prikladnoi Spektroskopii. 1985, 42: 364~368.
    [243]王海涛.超微力测量方案的探索实验研究[D].天津:天津大学, 2009.
    [244] Gates R S, Pratt J R. Prototype cantilevers for SI-traceable nanonewton force calibration[J]. Meas. Sci. Technol. 2006, 17: 2852~2860.
    [245] Kim M, Choi J, Kim J, et al. SI-traceable determination of spring constants of various atomic force microscope cantilevers with a small uncertainty of 1%[J]. Meas. Sci. Technol. 2007, 18: 3351~3358.
    [246] Pratt J R, Kramar J A, Newell D B, et al. Review of SI traceable force metrology for instrumented indentation and atomic force microscopy[J]. Meas. Sci. Technol. 2005, 16: 2129~2137.
    [247] Leach R, Chetwynd D, Blunt L, et al. Recent advances in traceable nanoscale dimension and force metrology in the UK[J]. Meas. Sci. Technol. 2006, 17: 467~476.
    [248] Nesterov V, Mueller M, Frumin L L, et al. A new facility to realize a nanonewton force standard based on electrostatic methods[J]. Metrologia. 2009, 46: 277~282.
    [249] Nesterov V. A nanonewton force facility and a novel method for measurements of the air and vacuum permittivity at zero frequencies[J]. Meas. Sci. Technol. 2009, 20: 84012~84016.
    [250] Domanski K, Janus P, Grabiec P, et al. Design, fabrication and characterization of force sensors for nanorobot[J]. Microelectronic Engineering. 2005, 78: 171~177.
    [251] Liu X, Kim K, Zhang Y, et al. Nanonewton Force Sensing and Control in Microrobotic Cell Manipulation[J]. The International Journal of Robotics Research. 2009, 28(8): 1065~1076.
    [252] Kim M, Pratt J R. SI traceability: Current status and future trends for forces below 10 microNewtons[J]. Measurement. 2010, 43: 169~182.
    [253] Chang K, Shie N, Tai H, et al. A Micro Force Sensor Using Force-balancing Feedback Control System and Optic-fiber Interferometers[J]. Tamkang Journal of Science and Engineering. 2004, 7(2): 91~94.
    [254] Chen S, Pan S. Nanonewton Force Generation and Detection Based on a Sensitive Torsion Pendulum[J]. IEEE Transactions on Instrumentation and Measurement. 2009, 58(4): 897~902.
    [255] Chen S, Pan S. Development of nanonewton force standard based on a torsion pendulum[C]//. Daejeon, Korea: 2010 Conference on Precision Electromagnetic Measurements, 2010: 508~509.
    [256] Chen S, Pan S. A force measurement system based on an electrostatic sensing and actuating technique for calibrating force in a micronewton range with a resolution of nanonewton scale[J]. Meas. Sci. Technol. 2011, 22: 45104~45108.
    [257]王敏锐. ZnO薄膜压电微力传感器/执行器研究[D].大连:大连理工大学, 2006.
    [258]程晓辉,赵洋,李达成.光学纳米测量方法及发展趋势[J].光学技术. 1999(3): 73~77.
    [259]裴雅鹏.纳米测量方法及其研究进展综述[J].宇航计测技术. 2007, 27(6): 23~27.
    [260] Xiao-Qi N, Ming W, Xu-Xing C, et al. An optical fibre MEMS pressure sensor using dual-wavelength interrogation[J]. Measurement Science and Technology. 2006, 17(9): 2401.
    [261] Zhang W, Liu L, Li F, et al. Fiber Bragg grating pressure sensor with enhanced sensitivity[J]. Chinese Optics Letters. 2007, 5(9): 507~508.
    [262] Zhou J, Dasgupta S, Kobayashi H, et al. Optically interrogated MEMS pressure sensors for propulsion applications[J]. Optical Engineering. 2001, 40(4): 598~604.
    [263] Dao D V. Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2010(1): 13001.
    [264] Guangzong Xiao, Xingwu Long, Bin Zhang, Geng Li. Precise force measurement method by a Y-shaped cavity dual-frequency laser[J]. Chinese Optics Letters, 2011, 9(10): 101201~101204
    [265] Guangzong Xiao, Xingwu Long, Bin Zhang and Shilong Jin. A novel active optical approach for acceleration measurement based on a Y-shaped cavity dual-frequency laser[J]. Optics & Laser Technology,2012,44(2):344~348

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700