CPU重力热管使用不同天然工质时的传热特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电子集成器件运行发热及其冷却问题是未来微电子学的重要内容之一。计算机运行速度越高其芯片CPU发热量越大,如果这些热量得不到有效散逸,会制约芯片速度的进一步提高。针对热流密度高达100—1000W/cm2的高速CPU芯片,开发有效的冷却技术,是当今世界正在研究的重要课题。将具有高效传热特性的热管用于集成电路的冷却,是一项具有发展前途的技术。在重庆大学制冷实验室已有研究工作及新型的铝质CPU重力热管散热器基础上,本文着重研究此种重力热管使用天然工质甲醇、乙醇和丙酮时的工作特性。
    本文通过实验研究和理论分析,认为在热流量小于携带极限时,影响工质传热能力的是CPU重力热管的充液量和其干涸极限,此次所实验的三种工质,最佳充液量应当在8g~14g;传输因素主要决定普通热管的毛细极限,而不是重力热管传热能力的决定因素;三种工质中的最佳工质是丙酮;小风速时风速的变化对CPU重力热管的传热有明显的作用,但在风速大于1m/s以后,风速增加对于CPU重力热管的传热能力的增加效果减缓。通过本次实验测出所使用的CPU重力热管散热器在使用丙酮为工质,风速1m/s,CPU芯片发热量为60W时,其体积散热率达到1.3×104W/(m3K), 能保证芯片温度与环境温度之差小于40℃,能很好的适应Pentium-Ⅳ计算机长期运行的要求。由此可知此种CPU重力热管散热器是一种结构简单、加工制造方便、成本低廉、工作可靠且传热性能优良的换热设备。
The heat dissipation and cooling in the running integrate micro-electronic parts is an important research theme of micro-electronics. The higher the processing speed of computer, the more heat generating from CPU chip. If the heat can't be dissipatied effectively, the processing stability and speed will be decreased dramatically. In order to fit the demand for future high speed CPU chip whose running heat flux reaches to 100-1000W/cm2, the development of an efficient cooling technology has become the update key projects all over the world. Since its intensive heat transfer characteristics, heat pipe behaves a profound advantage in the cooling of integrated circuits. On the basis of the manufactured new aluminium heat pipe sets and research work done in the Refrigeration Lab of Chongqing University, a new thermal syphon cooling machine made of aluminium has been designed. This text is to study this kind of thermal syphon to use working fluid Methanol, Ethanol and Acetone.
    With experiments and theoretical analyzing, we find when the heat discharge is smaller than the entrainment limited , what influences the ability of heat-transmitting of work quality is the quantity of injection and dry limit fluid inventory, the optimum quantity of injection of the three working fluid is 8~14g ; And the delivering factor that transmission coefficient is determined by capillary limit, not the heat transmission ability of the thermal syphon. Therefore, among the three working fluid, Acetone is the best. Low wind-speed has the obvious function in heat transmission of the thermal syphon. But when the wind-speed becomes above 1m/s hereafter, wind-speed increase for the CPU thermal siphon of transmit heat the ability's gain result the deceleration. So it is considered perfect when the wind-speed is 1m/s. Through this experimentation we found that when the CPU thermal syphon cooling machine used Acetone as working fluid, wind-speed 1m/s, CPU chip caloricty 60w, its volumetric heat release rate came to 1.3×104W/(m3K). We can see than this kind of CPU thermal syphon cooling machine is the one with simple texture, easy working, low costs, reliable work and good performance.
    From the textual research we can know that, CPU thermal syphon cooling machine using Acetone as working fluid, wind-speed is 1m/s, CPU chip caloricty is 60w, can guarantee chip temperature does not exceeding the environment temperature above 40℃, namely can guaranteeing chip temperature generally not exceeding 80℃. It can suffice the require of the long-term movement of Pentium-Ⅳ.
引文
[1]
    谢德仁,电子设备热设计工作点评,电子机械工程,Vol.77, No.2:26-28
    [2]
    Hong Xie, Wendy Li and Kevin Huley. Thermal Solutions to Pentium Processors in TCP Notebooks. IEEE TRANSACTION ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY-PARA A. 1996. BOL 19, 1-11
    [3]
    姜培学,王补宣,任泽霈,微尺度换热器的研究及相关问题的探讨,工程热物理学报,1996.8(3): 328~332
    [4]
    周德俭,吴兆华,覃匡宇,MCM热分析和热设计技术,电子工艺技术,1997,Vol.18,No.1,11-13
    [5]
    Nelson L. A.Sekhon K. S. and Ruttener L.E. Application of Heat Pipe in Computer Modules, Proc. 3th Int. Heat Pipe Conference, 1978
    [6]
    Scott G.W, Tanzer H. J. Evaluation of Heat Pipes for Conduction-Coolde Level Ⅱ Avionic Packages. ASME HTD. 1986.Vol, 57, 67-69
    [7]
    Sean Cian, Thierry Fromont and Walter Koschnick. Test Chips, Test Systems, and Thermal Test Data for Multichip Modules in the ESPRIT-APACHIP Project. IEER TRANSACTION ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY -PARA A. 1996. Vol 17. 1-11
    [8]
    Staio Y, Mochizuki M, goto K, Nauyen T et al. The application for personal computer using heat pipe technology. 10thIHPC Preprints of Sessions e6 Stuttgart Sep. 21~25, 1997
    [9]
    Gaugler R S. Heat transfer device. U.S.Patent 2350348. Dec. 21, 1942,June 6,1944
    [10]
    Trefethen L. On the surface tension pumping of liquids or a possible role of the candlewick in space exploration. G.E Tech. Info. Serial No.615D115
    [11]
    Grover G M, Cotter T P And Erikson G F, Structure of very high thermal conductance. J.Appl. Phys. 1996, 35(6)
    [12]
    Cotter T P. Theory of heat pipes. Los Alamos Scientific Lab: Report No. LA-3246-MS,1965
    [13]
    Tien C L, Sun K H. Minimum meniscus radius of heat ppipe wicking materials. Int.J.Heat Mass Transfer. 1971, 14(11)
    [14]
    Chi, S W. Heat pipe theory and practice.. Mc Graw-Hill, 1976
    [15]
    庄骏,张红,热管技术及其工程应用,化学工业出版社,2000.06,4-13
    [16]
    Nguyen-ChiH,Groll M.The Influence of Wall Roughness on the Maximum Performance of Clise Two-Phase Thermosiphons.AIAA 15th Thermophysics Conf.Colorado.1980.1-3
    [17]
    Cohen H, Bayley F J.Heat transfer problem of liquid cooled gas turbine blacles.Proc.Inst.Mech.Eng.(London).1955,169: 1063~1080
    [18]
    Shiraishi M K Kiiuchi, Yamanishi T. Investigationof heat transfer characteristics if a two-phase closed thermosyphon. Proc.4th IHPC. 1981
    [19]
    扬世铭,传热学,第三版,北京高等教育出版社,1998,205-218
    [20]
    陈焕倬, 马同泽, 张舒飞, .热虹吸管内蒸汽切应力作用下的凝结换热, 工程热物理学报.1990.Vol 11.79-82
    [21]
    Faghri A. Heat pipe science and technology. Taylor & Francis Press, 1995
    
    
    
    [22]
    ESDU. Heat pipe-performance of two-phase closed thermosyphon. London, UK: Engineering Sciences Data Unit 81038, 1981
    [23]
    林瑞泰. 沸腾换热. 第一版. 北京科学出版社 1988, 5-6
    [24]
    Imura H, et al. Heat Transfer-Jap. Res. 1979, (2): 42
    [25]
    Rohsenow, W.M. Trans. ASME. Vol.74. p. 969, 1952
    [26]
    王义方, 扬光武 关于池内核态沸腾Rohsenow 整理式的进一步探讨 传热传质学文集 武汉 1984.11 北京中国工程热物理学会 1986.4 170-175
    [27]
    郭烈锦, 陈学俊, 周芳德 闭式重力热虹管工作极限的理论研究 第三届全国热管会议讨论文集 四川都江堰市 1981.8 中国工程热物理学会热管专业组 1991.7 62-70
    [28]
    辛明道 沸腾传热及其强化 第一版, 重庆, 重庆大学出版社 1987, 116-126
    [29]
    廖光亚、辛明道,低液位沸腾转化点的理论分析与实验,高校第一届工程热物理学术会议论文集,北京,1983,北京,清华大学出版社
    [30]
    M. D. Xin(辛道明),M. W. Tong(童明伟):Critical Liquid Level and Heat Transfer of Boiling in Liquid Film, Two-phase Flow and Heat Transfer, Hemisphere Publishing Corporation, 1984; 重庆大学学报,Vol. 6, No. 2, 1984
    [31]
    Kaneyasu Nishikawa: Nucleate Boiling at Low Liquid Levels, Bulletin of JSME. Vol. 10, No. 38, 1967, pp. 328-338
    [32]
    Mesler, R,: Nucleate Boiling in Thin Liquid Film, J. AICHE, Vol.23, No.6, pp.954-957(1977)
    [33]
    Streltsov A I. Theoretical and experimental investigation of optimum filling for heat pipes. Heat Transfer-Soviet Research.1975, 7(1)
    [34]
    Imura H, Sasaguchi K, Kozai H. Critical heat flux in a closed two-phase thermosyphon. Int. J. Heat Mass Transfer. 1983, 26(8): 1181-1188
    [35]
    Harada K, Inoue S, Fujita J, Suematsu H, Wakiyama Y. Heat transfer characteristics of large heat pipe (in Japanese). Hitachi Zosen Tech. Rev. 41. 1980.167
    [36]
    Feldman Jr K T, Srinivasan R. Investigation of heat transfer limits in two-phase closed thermosyphon.Proc. 5th Int. Heat Pipe Conf. 1984
    [37]
    赵安林,R600a在重力热管散热器中的工作实验研究,重庆大学,重庆大学动力工程学院,2002,39-41
    [38]
    P.D.邓恩,D.A.雷伊,周海云,热管,第一版,北京,国防工业出版社,1982,100-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700