R600a在重力热管散热器中的工作实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着随着超大规模集成电路(VLSI)和高速大型电子计算机的发展,集成电路和计算机内的热流密度很快地增加。CPU从较早期的Intel 386SL、Intel 486SL、Intel DX2、Intel DX4发展到Pentium时代,速度越来越快。特别是PentiumⅣ中央处理器的推出,CPU的发展迈进了一个崭新的时代。处理速度达到G数量级,功率消耗更达几十瓦。如何解决CPU散热问题,成为关注的焦点。
     本实验首次研究了绿色环保工质R600a在一种铝质重力热管中的工作特性。对其充灌量、散热量、电子元件(CPU模拟芯片)表面与环境温度之差及通风、流速的影响进行了系统的测试,发现充液量与温差的关系在负荷不变时呈抛物线分布,其极小值点对应的充液量是最佳充液量G。在充液量为G时,对风速V、散热量Q进行的研究表明,当风速超过1.5m/s后,奔腾Ⅳ芯片在60w发热条件下芯片温度小于40℃,能满足长期正常工作。另外,本文还采用了不同的方法计算了CPU重力热管液阻极限。
With the developments of very large scale integration (VLSI) and high-speed large computers,the specific rate of heat flow increases rapidly. As the performance and power of each generation have increased,CPU developed from 386SL and 486SL,to DX2,to DX4. Especially the detrusion of Pentium IV,CPU strides forward to a spick-and-span times .And the power dissipation of CPU is higher than ever before and the process speed of CPU reaches as fast as billion. Thus maintaining CPU surface temperature at acceptable levels has been a challenging task in the realm of heat dissipation.
    This experiment focuses on the characteristic of green refrigerant R600a in a small parallel flow aluminum closed two-phase thermosiphon and measures all the quantity of injected mass and heat dissipation,the speed of air and the difference of temperature of the electronic element (CPU simulate chip) surface and environment. It shows that the injection quantity and the difference of temperature distribute as a parabola which is at the same load,and the minimum of the parabola corresponds to the optimum quantity of injection(G).Under the condition that the quantity of injected mass,the air speed and the heat quantity is respectively G,V and Q,the research demonstrates that the Pentium IV chip's temperature variation can be controlled under 40C and work normally when the wind speed overpass 1.5m/s and the power dissipation of the chip is 60w.Otherwise this paper calculates the flooding limit of thermosiphon with several different methods.
引文
[1]幸明道,高明聪.微热管极其在集成线路散热中的应用.第三界全国热管会议论文集.四川都将堰市.1991.重庆.重庆大学出版社.25
    [2]Washington DOD.丁年芬等.电子设备可靠性热设计手册.第一版.北京.电子工业出版社.1989.23
    [3]马同泽,侯增祺,吴光铣.热管.第一版.北京.科学出版社.1983.354-356
    [4]Scott G.W,Tanzer H.J.Evaluation of Heat Pipes for Conduction-Cooled Level ⅡAvionic Packages. ASME HTD. 1986. Vol 57.67-69
    [5]Hong Xie, Wendy Li and Kevin Huley.Thermal Solutions to Pentium Processors in TCP Notebooks and Sub-Notebooks.IEEE TRANSACTION ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY-PARA A. 1996. Vol 19.1-11
    [6]Sean Cian, Thierry Fromont and Walter Koschnick.Test Chips,Test Systems, and Thermal Test Data for Multichip Modules in the ESPRIT-APACHIP Project. IEEE TRANSACTION ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY-PARA A. 1996. Vol 17. 1-11
    [7]Staio Y, Mochizuki M.The Application for Personal Computer Using Heat Pipe Technology. 10th IHPC Preprints of Sessions. Stuttgart.1997
    [8]Nguyen-Chi H, Groll M.The Influence of Wall Roughness on the Maximum Performance of Close Two-Phase Thermosiphons.AIAA 15th Thermophysics Conf. Colorado. 1980.1-3
    [9]卓庆,孙家庆.工程对流换热.第二版.北京.机械工业出版社.1991.157-165
    [10]杨强生.对流传热与传质.第一版.北京.高等教育出版社.1985.341-347
    [11]夏吉良,辛明道.两相闭式热虹吸管内的珠状凝结传热.中国工程热物理学会1984年传热传质学学术会议论文集.武汉.1984.北京.科学出版社.1986.231-234
    [12]陈焕倬,马同泽,张舒飞.热虹吸管内蒸汽切应力作用下的凝结换热.工程热物理学报.1990.Vol 11.79-82
    [13]Rohsenow.A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids.ASME Trans. 1956. Vol 78.1645-1648
    [14]高明聪.大型分离式热管中的凝结换热.重庆大学.重庆大学动力工程学院.1988.6-9
    
    
    [15]Shiraishi. M, Kikuchi. K and Yamarcishi. T.Investigation of Heat Tranfer Characteristics of a Two-Phase Closed Thermosiphon. 4th International Heat Pipe Conference.1981
    [16]Foster, Grief. Heat Transfer. Heat Transfer Vol. 1959. c81. 43
    [17]廖光亚,辛明道.低液位沸腾转化点的理论分析与实验.重庆大学学报传热传质学专辑.1984.第七卷.41-47
    [18]童明伟,辛明道.液膜沸腾的临界液位和传热.重庆大学学报传热传质学专辑.1984.第七卷.50-59
    [19]辛明道.沸腾传热及其强化.第一版.重庆.重庆大学出版社.1987.191-124
    [20]P.D.邓恩,D.A.雷伊.周海云.热管.第一版.北京.国防工业出版社.1982.5
    [21]程立新、陈听宽.沸腾传热强化技术及方法.中国学术期刊(光盘版).1999.1-5
    [22]夏吉良,辛明道,石程明.槽道内壁闭式热虹吸管的强化传热.中国工程热物理学会1984年传热传质学学术会议论文集.武汉.1984.北京.科学出版社.1986.165-168
    [23]王补宣,刘荣,彭晓峰.沿平板具有微槽结构表面的流动沸腾传热实验研究.工程热物理学报.1995.Vol 16.1-321-326
    [24]郭烈锦,陈学俊,周芳德.闭式重力热虹吸管工作极限的理论研究.第三界全国热管会议论文集.四川都将堰市.1991.重庆.重庆大学出版社.62-69
    [25]Bezrodnyi, M.K.The Upper Limit of Maximum Heat Transfer Capacity of Evaporative Thermosiphons.Teploenergetika.1978.25.63-66
    [26]Sakhuja, R.S .Flooding Constraint in Wickless Heat.ASME Paper 73-WA/HT-7.1973
    [27]Tien C.L,K.S. Chung.Entrainment Limits in Heat Pipes.3th International Heat Pipe Conf .California.1978.36-40
    [28]Kutateladze, S.S.Elements of Hydrodynamics of Gas-Liquid Systems.Fluid Mechanics-Soviet Research.1972. Vol 1.29-50
    [29]Faghri A. Heat Pipe Science and Technology. Taylor & Francis Press. 1978
    [30]Feldman, Jr.K.T and Srinivasan R.Investigation of Heat transfer Limits in Two-Phase Closed Thermosiphon.5th International Heat Pipe Conf. 1984
    [31]Negishi K.Unstable Phenomena in Two-Phase Closed.Proc.Symp.on Mechanics for Space Flight.Report S.P.No.1.1983.257-263
    
    
    [32]周继珠,朱谨,姚职中.重力热管中脉冲沸腾成因的研究.第三界全国热管会议论文集.四川都将堰市.1991.重庆.重庆大学出版社.39-44
    [33]孙曾闰.大型两相闭式热虹吸管加热段换热过程研究.中国工程热物理学会1984年传热传质学学术会议论文集.武汉.1984.北京.科学出版社.1986.250-254
    [34]Strelstov, A.I.Theoretical and Experimental Investigation of optimum Filling for Heat Pipe.Heat Transfer-Soviet.1975. Vol 7
    [35]Imura, H, Sasaguchi, K and Kozai, H.Critical Heat Flux in a Closed Two-Phase Thermosiphon.Int. J. Heat Mass Transfer.1983.26.1181
    [36]Harada, K, Inoue, S, Fujita, J, Suematsu, H and Wakiyama, Y.Heat Transfer Characteristics of Large Heat Pipe(in Japanese).Hitachi Zosen Tech. 1986. Rev 41.167
    [37]陈远国.用沸腾排汽法建立热管真空.新能源.1984.No 12.41-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700