黄河下游河道冰动力行为二维数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水在地球表面的分布范围非常广,江河、湖泊和海洋等水体约占地球表面积的3/4,而高纬度地区的表面水体在冬季温度下降时经常会发生结冰现象。全球冰问题总体来说可分为海冰问题和河冰问题,由于河流沿岸区域居住着大量居民,使河冰问题显得尤为突出。
     冬季河流封冻后,水体表面出现固体冰盖,使得过水断面的湿周增大,水力半径减小,从而导致了水流形态的变化,带来的影响包括水力发电产量的损失,航运线路阻塞、航期缩短,河流中的水利结构破坏,严重时形成冰塞、冰坝并导致凌洪灾害,淹没农田房屋,危害人民生命和财产安全。我国北方多数河流都存在不同程度的冰情问题,尤其是黄河下游河道是举世闻名的地上悬河,河道上宽下窄,流向由低纬度向高纬度,南北纬度相差3°,冰情现象十分复杂,河冰灾害发生频繁且破坏力巨大。因此,对黄河下游河冰的形成、演变和输移过程进行系统、深入的研究对提前制定防灾措施具有重大意义。
     本文分析了冬季河冰结冰期、封冻期和解冻期的演变过程及河冰类型。进一步探究黄河下游冰塞和冰坝现象的特点、形成条件和变化过程,并总结了黄河下游开河时容易形成冰坝的原因。推导了河流无冰盖、部分被冰盖覆盖和完全被冰盖覆盖情况下的水深公式。通过对冰盖上游漂浮冰块和潜入冰盖下的冰块进行受力分析,得到了冰盖前冰块下潜的临界流速和下潜冰块在冰盖下继续向下游输移的临界流速。
     开展物理模型试验对不同流速、水深、冰盖类型和冰盖糙率等条件下冰盖流垂线流速进行观测和分析,得到的主要结论包括:
     (1)冰盖下的垂线流速呈现两头小中间大的U字形态,光滑冰盖模型的水深大于同流量明流水深。床面区光滑冰盖流的流速比同位置的明流流速稍大,但随着水深增加两者越来越接近。流量相等时光滑冰盖流的最大流速大于相同位置的明流流速。
     (2)粗糙冰盖流垂线最大流速值随冰盖糙率的增大而增大,最大流速点更靠近光滑的床面一侧。在不同水深情况下,最大流速点与床面之间的距离随着冰盖与床面糙率比的增大而减小,基本呈现出线性变化规律。
     (3)岸冰河流中心开敞区水深大于明流,垂线流速分布形式与明流相同,但相同深度上的流速比明流大,并且流速随着岸冰冰盖宽度的增加而增大。岸冰冰盖流在两岸冰盖处的水深小于相同情况的明流水深,垂线流速分布形态呈现出中间小两端大的形式。
     对用于模拟复杂河道地形中冰运动和阻塞过程的二维冰动力学数值方法进行改进,使用欧拉有限元法进行水动力模拟,冰运动模拟使用基于光滑粒子流体动力学(SPH)的拉格朗日离散元法(DPM),建立计算黄河下游河冰输移过程的二维数值模型。
     通过开展物理模型试验以验证二维冰动力学改进模型的准确性。也就是控制入口处的输入条件与数学模型相同,对比河道内冰密集度和典型断面水深的数模结果和实测结果,分析表明:模型能较好地模拟出了河道内的冰输移过程,且两者水深值比较吻合。
     首先将收集的地形、水深和气象等数据输入模型,模拟了黄河下游济南市徐庄处1970年1月发生的冰坝现象。通过对比模拟河段内冰坝长度、厚度和水深的实测值与模拟值,表明该模型较准确地模拟了冰坝形成和发展的过程。其次,以河道狭窄弯曲、易发生冰塞、冰坝的黄河下游北店子水文站至泺口水文站河段为模拟区域,通过冰岛的设定模拟了2010年冬季岸冰存在情况下该河段冰厚度变化。结果表明水流量较小时较强的风力作用对冰的拖曳力起到主导作用,且岸冰的存在缩小了开敞河道宽度,阻碍大块表面冰顺利通过;而在岸冰后平铺形成冰盖并向上游延伸。模拟了2013年1月该河段的流凌情况,可以发现流冰下泄比较顺畅,未发生冰阻塞,且泺口水文站冰密集度的数模值与实测值比较一致。由于模拟河段S型弯的地形易发生冰堆积,为促进河道内稳定冰盖的生成,并延长泺口浮桥的使用时间,提出在泺口水文站前河道内设置拦冰栅,使用2013年1月的输入条件,模拟该河段增加拦冰栅后的冰运动情况,结果显示表面冰在拦冰栅后平铺并逐渐形成稳定冰盖,并不断向上游延伸。
     为便于操作,本文建立了黄河下游冰动力模拟系统,使用户在界面上可得到清晰直观的输出结果。
Water spreads very widely on the surface of the earth, the area of rivers, lakesand seas accounts for about three-quarters of the earth's surface, when thethe temperature drops in winter, the surface water in high latitudes always freezes. Ingeneral, global ice problems can be divided into sea ice and river ice, a large numberof residents living along rivers makes the river ice problems even more prominent.
     When rivers freeze in winter, the solid ice cover on the water surface canincrease the wetted perimeter of cross section, reduce the hydraulic radius and changethe flow pattern, which have some impacts, including loss of hydroelectric powerproduction, congestion of shipping lines, reduction of navigation period, damage ofhydraulic structures in the river, or even form the ice jam, the ice dam and result invarious ice disasters, flood farms and houses, bring serious damage to the safety ofpeople‘s life and property. There are different levels of ice problems in most rivers innorthern China, especially the lower reach of Yellow River which is a world-famous "suspend river", the channel is wide in top and narrow in bottom, flows fromlow latitude to high latitude, the difference between north and south latitude is3°, theriver ice in winter is very complicated and frequently causes serious disasters.Therefore, it‘s very important to do research on the formation, evolution and transportof river ice in the lower Yellow River for disaster prevention.
     This paper analyses the evolution process and types of river ice in winter, furtherexplores the characters, reasons, formation conditions and changing process of icejams and ice dams in lower Yellow River. The water depth formulas are set up whenthe river with whole ice cover, partial ice cover and without ice cover. Based on theforce analysis of the floating ice before and under the ice cover, the paper derives thecritical velocities of the ice go down to the beneath of the ice cover and keep moveingbelow the ice cover respectively.
     Physical experiments for velocity profiles of ice covered flow were carried outunder various conditions such as different velocities, water depth, ice cover types androughness. The results by analysing the measurements are as follows:
     (1) The velocity distribution along vertical direction blow the ice cover lookslike letter U‘which is smaller at both ends and bigger in the middle, the depth ofwater in the model with smooth ice cover is greater than which in free flow at thesame discharge.The velocity near the bed in the model with smooth ice cover isslightly larger than which in free flow at the position, and they will get closer with theincreasing experiment depth.The maximum velocity in the model with smooth icecover is greater than the velocity at the same position in free flow when the dischargeis the same.
     (2) The maximum velocity in the model with rough ice cover increases with theice cover roughness, and it‘s closer to the bed which is smoother. At different water depthes conditions, the distance between the maximum velocity point and beddecreases with the increasing ice cover-bed roughness ratio, and present linearrelationship between them.
     (3) The water depth of open area in the boder ice model is larger than which infree flow. The velocity in the former condition is greater than the latter one, andincreases with the width of the border ice. The water depth under the boder ice issmaller than which in free flow at the same condition.
     The two dimensional ice dynamic numerical method used to simulate the processof ice movement and jamming in complicated channels is improved, the Eulerianfinite element method is used for the hydrodynamic simulations, a Lagrangiandiscrete parcel method based on the smoothed particle hydrodynamics is applied tosimulate the transport of surface ice, and this paper develops a two dimensionalnumerical model to calculate the river ice movement in the lower Yellow River.
     To verify the accuracy of the improved two dimensional ice dynamic numericalmodel by carrying out experiments in the lab, made the input conditions the same aswhich in the numerical model, the comparison between observations and simulationsof the ice concenreation in the study region and the water depths at the typicalsections indicates the model simulated the process of ice movement successfully.Setting up the user interface, and its aim is for the convenience of users.
     Firstly, input the collected meteorological and channel data to the model and theice dam occurred in Xu Zhuang of the lower Yellow River on January1970. Thecomparision between the observations and simulations of the dam length, thicknessand water depth shows that the model simulated the process of ice dam formation anddevelopment successfully.Secondly, taking the reach between Bei Dianzi and LuoKou hydrologic station of Yellow River as study region which is narrow and winding,the changes of ice thickness in the study region in winter of2010is simulated bysetting ice island as border ice. The results indicate that the strong wind acting on iceplayed a major role in ice moving, and the border ice narrowed the width of open areawhich stimulated the formation of ice cover behind it.Then the ice movoment in thestudy region on January2013is simulated, it turned out that ice jamming didn‘thappen and the observations and simulations of ice concentration at the Luo Kouhydrologic station are relatively consistent. Installing an ice boom in front of the LuoKou hydrologic station in the river is proposed to promote the formation of stable icecover and prolong the service time of the Luo Kou floating bridge. Use the same inputdata as the former case to simulate the ice movement after setting up the ice boom, itshows that the ice parcels tiled behind the boom and formed an ice cover gradually,and extended to upstream of the river.
     For ease of operation, an ice dynamic simulation system of the lower YellowRiver is developed, and the users can get the clear and direct output results from theinterface.
引文
[1] Bates, R.E. and Bilello, M.A.1966. Defining the cold regions of the northern hemisphere.Hanover, NH: CRREL, TR178.
    [2]孙肇初,隋觉义.江河冰塞的研究及其意义[J].地球科学进展,1990,(03):51-54.
    [3]马喜祥,白世录,袁学安,冯德光.中国河流冰情[M].郑州:黄河水利出版社,2009.12.
    [4] Prowse, T.D., Bonsal, B., Duguay, C.R., Hessen, D.O. and Vuglinsky, V.S.,2007. Chapter8:River and Lake Ice. In: Global Outlook for Ice&Snow. ISBN:978-92-807-2799-9. Divisionof Early Warning and Assessment (DEWA), UN Environment Programme, Nairobi, Kenya.
    [5] Gerard, R.L. and Davar, K.S.,1995. Chapter1. Introduction. In: Beltaos, S.(editor). River IceJams. Water Resources Publications, Highlands Ranch, CO.
    [6]上帝之眼网页. http://www.godeyes.cn/html/2010/01/26/download_9222.html
    [7]张志忠.乌鲁木齐河流域河冰的基本特征[J].冰川冻土,1992,14(3):267-270.
    [8]李旭阳,徐剑峰,李纪人.伊敏河冰情数值预报方法[J].水文,1992,92(5):4-11.
    [9]肖迪芳,朱文生,王春雷.嫩江上游冰坝成因及预报方法[J].东北水利水电,1997,(01):22-25.
    [10]周文盛,孟古力别克·俄布拉依汗.阿勒泰地区河流冰情特征[J].干旱区地理,1998,21(3):66-72.
    [11]李辑,胡春丽,李菲,张黎黎.1981-2009年辽宁省河流封冻期特征及对气候变暖的响应[J].气候变化研究进展,2011,7(6):418-422.
    [12] Parkinson, F. E.. Water temperature observations during breakup on the Liard-MackenzieRiver system[C]. Proceedings of the+Workshop on Hydraulics of Ice-Covered Rivers.Edmonton, Canada, National Research Council of Canada.Subcommittee on Hydraulics ofIce-Covered Rivers,1982:261-295.
    [13] Marsh, P., Prowse, T. D.. Water temperature and heat flux at the base of river ice covers [J].Cold Regions Science and Technology,1987,14(1):33-50.
    [14] Jasek, M.. Ice jam release surges, ice runs, and breaking fronts: field measurements, physicaldescriptions, and research needs [J]. Canadian Journal of Civil Engineering,2003,30(1):113-127.
    [15] Morse, B., Hessami, M., Bourel, C.. Characteristics of ice in the St. Lawrence River [J].Canadian Journal of Civil Engineering,2003,30(4):766-774.
    [16] Shen, H. T., Liu, L.W.. Shokotsu River ice jam formation[J]. Cold Regions Science andTechnology,2003,37(1):35-49.
    [17] Beltaos, S., Burrell, B. C.. Field measurements of ice-jam-release surges [J]. CanadianJournal of Civil Engineering,2005,32(4):699-711.
    [18] Beltaos, S., Burrell, B. C..Water temperature decay under breakup ice jams [J]. Cold RegionsScience and Technology,2006,45(3):123-136.
    [19] Beltaos, S., Burrell, B. C.. Ice-jam model testing: Matapedia River case studies,1994and1995[J]. Cold Regions Science and Technology,2010,60(1):29-39.
    [20] Beltaos, S., Carter, T..Field studies of ice breakup and jamming in lower Peace River, Canada[J]. Cold Regions Science and Technology,2009,56(2-3):102–114.
    [21]隋觉义,方达宪,周亚飞,刘玉恒.冰盖前缘处冰块下潜临界条件研究[J].水利学报,1993,(10):46-51.
    [22]王军,孙连进,周智慧.冰塞下冰块起动分析[J].水利水运科学研究,1999,(2):165-171.
    [23]茅泽育,赵雪峰,王爱民,肖汉.武开河的边壁阻力判别准则[J].冰川冻土,2008,30(3):508-513.
    [24]茅泽育,赵雪峰,王爱民,刘颖,胡应均.武开河的边界约束判别准则[J].水利水电科学进展,2009,29(2):1-4.
    [25] Teal, M.J., Ettema, R., Walker, J.F.. Estimation of mean flow velocity in ice-coveredchannels[J]. Journal of Hydraulic Engineering,1994,120(12):1385-1400.
    [26] Beltaos, S.. Onset of river ice breakup[J]. Cold Regions Science and Technology,1997,25(3):183-196.
    [27] Beltaos, S.. Collapse of floating ice covers under vertical loads:test data vs. theory[J]. ColdRegions Science and Technology,2002,34(3):191–207.
    [28] Beltaos, S.. Threshold between mechanical and thermal breakup of river ice cover [J].ColdRegions Science and Technology,2003,37(1):1-13.
    [29] Beltaos, S.. Internal strength properties of river ice jams[J].Cold Regions Science andTechnology,2010,62(2-3):83-91.
    [30]陈建国,曾庆华,王兆印.冰盖流的输沙特性[J].泥沙研究,1992(1):61-69.
    [31]陈建国,曾庆华,王兆印.冰盖流的水流结构[J].水利学报,1993(2):75-81.
    [32]王军,孙连进.冰盖下散粒体泥沙起动流速的试验研究[J].水利水运科学研究,1998,(2):164-169.
    [33]王军.初始冰塞厚度与水流条件及冰流量关系的试验研究[J].水利水运科学研究,1999,(4):385-389.
    [34]王军.平衡冰塞厚度与水流条件和冰流量关系的试验研究[J].兰州大学学报(自然科学版),2002,38(1):117-121.
    [35]王军.平衡冰塞输冰的试验研究[J].水力发电学报,2002,(1):61-67.
    [36]魏良琰,黄继忠.冰盖流阻力与综合Manning糙率[J].武汉大学学报(工学版),2002,35(4):1-8.
    [37]尹运基.弯道冰塞水位试验研究[D].合肥:合肥工业大学土木建筑工程学院,2005.
    [38]史杰.冰盖流水流结构的试验研究[D].石河子:石河子大学水利建筑工程学院,2008.
    [39]徐国宾,李大冉,黄焱,赵新.南水北调中线输水工程若干冰力学问题试验研究[J].水科学进展,2010,21(6):808-815.
    [40]赵新,练继建,黄焱.基于真冰模型试验的冰盖稳定性研究[J].水利水电技术,2011,42(10):132-136.
    [41] Wang, J., Chen, P.P., Sui, J.Y.. Progress in studies on ice accumulation in river bends [J].Journal of Hydrodynamics,2011,23(6):737-744.
    [42] Urroz, G.E., Ettama, R.. Bend ice jams: laboratory observations [J]. Canadian Journal of CivilEngineering,1992,19(5):855-864.
    [43] Urroz, G.E., Ettama, R.. Application of2-layer hypothesis to fully-developed flow inice-covered curved channel[J].Canadian Journal of Civil Engineering,1994,21(1):101-110.
    [44] Urroz, G.E., Ettama, R.. Small-scale experiments on ice-jam initiation in a curved channel [J].Canadian Journal of Civil Engineering,1994,21(5):719-727.
    [45] Shen, H.T., Wang. D.S.. Under cover transport and accumulation of frazil granules [J].Journal of Hydraulic Engineering,1995,121(2):184-195.
    [46] Muste, M., Braileanu, F., Ettema, R.. Flow and sediment transport measurements in asimulated ice-covered channel [J].Water Resources Research,2000,36(9):2711-2720.
    [47] Kerr, D. J., Shen, H.T., Daly, S.F.. Evolution and hydraulic resistance of anchor ice on gravelbed [J]. Cold Regions Science and Technology,2002,35(2):101–114.
    [48] Shen, H.T., Yapa, P.D.. A unified degree-day method for river ice cover thicknesssimulation[J]. Canadian Journal of Civil Engineering,1985,12(1):54-62.
    [49] Greene, G. M., Outcalt, S.I.. A simulation model of river ice cover thermodynamics [J]. ColdRegions Science and Technology,1985,10(3):251-262.
    [50] Yapa, P.D., Shen, H.T.. Unsteady flow simulation for an ice-covered river[J]. Journal ofHydraulic Engineering,1986,112(11):1036-1049.
    [51] Foltyn, E.P., Shen, H.T.. St. Lawrence River freeze-up forecast[J]. Journal of Waterway, Port,Coastal, and Ocean Engineering,1986,112(4):467-481.
    [52] Lal, A.M.W., Shen, H.T.. Mathematical Model for River Ice Processes[J]. Journal ofHydraulic Engineering,1991,117(7):851-867.
    [53] Hicks, F.E., Steffler, P.M., Gerard, R.. Finite element modeling of surge propagation and anapplication to the Hay River, N.W.T.[J]. Canadian Journal of Civil Engineering,1992,19(3):454-462.
    [54] Beltaos, S.. Numerical computation of river ice jam[J]. Canadian Journal of CivilEngineering,1993,20(1):88-99.
    [55] Shen, H.T., Wang, D.S..Under cover transport and accumulation of frazil granules[J]. Journalof Hydraulic Engineering,1995,121(2):184-195.
    [56] Wang, D.S., Shen, H.T., Crissman, R.D.. Simulation and analysis of upper Niagara Riverice-jam conditions[J]. Journal of Cold Regions Engineering,1995,9(3):119-134.
    [57] Healy, D., Hicks, F.. Comparison of ICEJAM and RIVJAM ice jam profile models[J].Journal of Cold Regions Engineering,1999,13(4):180-198.
    [58] Zufelt, J.E., Ettema, R.. Fully coupled model of ice-jam dynamics[J]. Journal of ColdRegions Engineering,2000,14(1):24-41.
    [59] Jasek, M., Muste, M., Ettema, R.. Estimation of Yukon River discharge during an ice jamnear Dawson City[J]. Canadian Journal of Civil Engineering,2001,28(5):856-864.
    [60] She, Y., Hicks, F.. Modeling ice jam release waves with consideration for ice effects[J]. ColdRegions Science and Technology,2006,45(3):137-147.
    [61] Shen, H.T., Chen, Y.C., Wake, A., Crissman, R.D.. Lagrangian discrete parcel simulation ofriver ice dynamics[J]. International Journal of Offshore and Polar Engineering,1993,3(4):328-332.
    [62] Yoon, J.Y., Patel, V.C., Ettema, R.. Numerical model of flow in ice-covered channel[J].Journal of Hydraulic Engineering,1996,122(1):19-26.
    [63] Shen, H.T., Lu, S.A., Crissman, R.D.. Numerical simulation of ice transport over the LakeErie-Niagara River ice boom[J]. Cold Regions Science and Technology,1997,26(1):17-33.
    [64] Lu, S.N., Shen, H.T., Crissman, R.D.. Numerical study of ice jam dynamics in upper NiagaraRiver[J]. Journal of Cold Regions Engineering,1999,13(2):78-102.
    [65] Shen, H.T., Su, J.S., Liu, L.W.. SPH Simulation of River Ice Dynamics[J]. Journal ofComputational Physics,2000,165(2):752-770.
    [66] Shen, H. T.. Development of a comprehensive river ice simulation system[C].16thInternational Symposium on Ice, Dunedin, New Zealand,2002, Vol.1:142-148.
    [67] Hopkins, M.A., Tuthill, A.M.. Ice Boom Simulations and Experiments[J]. Journal of ColdRegions Engineering,2002,16(3):138-155.
    [68] Massie, D.D., White, K.D., Daly, S.F.. Application of neural networks to predict ice jamoccurrence[J]. Cold Regions Science and Technology,2002,35(2):115–122.
    [69] Mahabir, C., Hicks, F., Fayek, A.R.. Neuro-fuzzy river ice breakup forecasting system[J].Cold Regions Science and Technology,2006,46(2):100–112.
    [70] Mahabir, C., Hicks, F.E., Fayek, A.R.. Transferability of a neuro-fuzzy river ice jam floodforecasting model[J]. Cold Regions Science and Technology,2007,48(3):188–201.
    [71]杨开林,刘之平,李桂芬,陈储军,刘翠杰,胡宏达.河道冰塞的模拟[J].水利水电技术,2002,33(10):40-47.
    [72]茅泽育,吴剑疆,张磊,张瑞廷.天然河道冰塞演变发展的数值模拟[J].水科学进展,2003,14(6):700-705.
    [73]吴剑疆,茅泽育,王爱民,张磊.河道中水内冰演变的数值计算[J].清华大学学报(自然科学版),2003,43(5):702-705.
    [74]茅泽育,张磊,王永填,吴剑疆.采用适体坐标变换方法数值模拟天然河道河冰过程[J].冰川冻土,2003,25(增刊2):214-219.
    [75]茅泽育,罗昇,赵升伟,相鹏,岳光溪.冰盖下水流垂线流速分布规律研究[J].水科学进展,2006,17(2):209-215.
    [76]伊明昆.神经网络在冰塞水位预测中的应用研究[D].合肥:合肥工业大学,2006.
    [77]卢海.基于人工神经网络的冰情预测研究[D].天津:天津大学建筑工程学院,2007.
    [78]王世杰.基于遗传算法的人工神经网络河流冰情预测研究[D].天津:天津大学建筑工程学院,2008.
    [79]李清刚.冰盖形成及厚度变化的数值模拟[D].合肥:合肥工业大学,2007.
    [80]石磊.基于FLUENT的冰塞数值模拟[D].合肥:合肥工业大学,2009.
    [81]王军,张潮,倪晋,郭力文,赵慧敏.三维贴体坐标变换在河冰数值模拟中的应用[J].水力发电学报,2008,27(3):120-124.
    [82]卜松.基于群智能算法的BP神经网络模型在冰塞水位及厚度预测中的应用[D].合肥:合肥工业大学,2009.
    [83]徐国宾.河冰演变过程分析的一维数学模型研究[J].水资源与水工程学报,2011,22(5):78-83.
    [84]李良年,李振喜.黄河内蒙河段1993年冬冰情灾害成因分析及对策研究[J].治黄科技信息,1996,(1):2-4.
    [85]可素娟,王玲,杨向辉.1997~1998年度黄河内蒙古河段凌汛特点及成因分析[J].人民黄河,1998,20(12):24-26.
    [86]可素娟,钱云平,杨向辉,兰华英.1999~2000年度黄河宁蒙河段及万家寨水库凌情分析[J].人民黄河,2000,22(5):11-12.
    [87]王瑞君,郭德成,路秉慧,沈北平,王兆祯.2003~2004年度黄河宁蒙河段凌情特点分析[J].内蒙古水利,2004,(4):9-11.
    [88]谢学东,李万义,赵惠聪,王文海,易其海,路秉惠.黄河内蒙古段封冻期垂线流速分布规律分析[J].人民黄河,2005,27(1):30-32.
    [89]冯国华,朝伦巴根,闫新光.黄河内蒙古段冰凌形成机理及凌汛成因分析研究[J].水文,2008,28(3):74-76.
    [90]可素娟,吕光圻,任志远.黄河巴彦高勒河段冰塞机理研究[J].水利学报,2000,(7):66-69.
    [91]张泽中,徐建新,彭少明,齐青青,薛小杰.黄河宁蒙河段冰塞增多冰坝减少的成因分析[J].人民黄河,2010,32(10):31-33.
    [92]高瑞忠,冯国华,朝伦巴根,李凤玲.黄河内蒙古段冰情变化特性的统计分析[J].人民黄河,2010,32(4):53-54.
    [93]张遂业.黄河上游河段冰凌预报模型[J].甘肃水利水电技术,1997,(4):18-22.
    [94]可素娟,张学成,王玉明.封河预报数学模型研究[J].冰川冻土,2001,23(3):328-332.
    [95]张学成,可素娟,潘启民,赵安林.黄河冰盖厚度演变数学模型[J].冰川冻土,2002,24(2):203-205.
    [96]顾明林,王静.黄河内蒙古河段冰凌研究与冰凌预报数据库系统的设计[J].甘肃农业大学学报,1999,34(3):287-290.
    [97]郭永鑫,王涛,杨开林,霍世青,饶素秋.黄河宁蒙河段冰情预报决策支持系统的设计与开发[J].水利水电技术,2005,36(10):67-73.
    [98]王涛,杨开林,郭永鑫,霍世青.神经网络理论在黄河宁蒙河段冰情预报中的应用[J].水利学报,2005,36(10):1204-1208.
    [99]冀鸿兰,朝伦巴根,陈守煜,张道军.冰凌预报模糊优选神经网络组合预测方法[J].人民黄河,2008,30(12):47-49.
    [100]孙肇初,姚昆中.黄河河曲段1982年1月凌灾成因分析[J].人民黄河,1990,(1):19-22.
    [101]汪德胜,沈洪道,孙肇初.黄河河曲段输冰水力学机理分析[J].泥沙研究,1993,(4):1-10.
    [102]隋觉义.黄河中游龙口-天桥段封冻期的河床演变[J].地理学报,1992,47(3):208-218.
    [103]隋觉义,方达宪,周亚飞.黄河河曲段冰塞水位的分析计算[J].水文,1994(2):18-24.
    [104]隋觉义,方达宪,汪德胜.水内冰冰塞堆积演变的研究[J].水利学报,1994,(8):42-47.
    [105]杨升全,张玉初.90年代黄河下游凌情特点分析[J].防汛与抗旱,2000,(2):17-22.
    [106]王华,时连全.黄河山东段冰情变化的主要影响因素分析[J].西北水资源与水工程,2000,11(4):62-64.
    [107]郭立新,曹烨,王明虎,殷福臣,殷复忠.黄河山东段冰情印象因素、机制及观测[J].水利规划与设计,2010,(6):19-22.
    [108]杨小庆,张伯中,沈洪道.黄河下游冬季河床冲淤过程的模拟[J].泥沙研究,1993,(3):36-43.
    [109]陈赞廷,可素娟.建立黄河下游冰情数学模型优化三门峡水库防凌调度的研究[J].冰川冻土,1994,16(3):211-217.
    [110]孙保沭.黄河下游淌凌预报模型研究[J].华北水利水电学院学报,1993,(2):81-85.
    [111]孙保沭.黄河下游封河预报模型的研制[J].华北水利水电学院学报,1995,16(1):21-27.
    [112]黄河水利委员会工务处、清华大学水利工程系编著.黄河下游凌汛[M].北京:科学出版社,1979:63-64.
    [113]任汝信,杨俊,杜丙照.2005-2006年度黄河下游冰塞成因及对策分析[J].江河治理,2007,(3):38-39.
    [114]山东黄河河务局.小浪底水库运用后黄河下游南北展宽工程防凌运用综合研究报告,2004.10:12-13.
    [115] Uzuner, M.S.. The composite roughness of ice covered streams[J]. Journal of HydraulicsResearch, IARH,1975,13(1):79-102.
    [116]孙肇初.试论浮冰水力模型的相似律[J].人民黄河,1985,(01):3-7.
    [117]黄伦超,许光祥.水工与河工模型试验[M].郑州:黄河水利出版社,2008.12:30-31.
    [118] Strickler, A.. Beitraege zur Frage der Geschwindigheits formel und der Rauhikeitszahlenfuer Stroeme Kanaele und geschlossene Leitungen. Mitteilungen des EidgenoessischerAmtes fuer Wasser-wirtschaft, Bern, Switzerland,1923,16(in German).
    [119] Larsen, P. Hydraulic roughness of ice covers[J]. Journal of the Hydraulics Division, ASCE,1973,99(1):111-119.
    [120] Shen, H.T., Yapa, P.D.. Flow resistance of river ice cover[J]. Journal of HydraulicEngineering, ASCE,1986,112(2):142-156.
    [121] Pariset, E., Hausser, R. and Gagnon, A.. Formation of ice cover and ice jams in rivers[J].ournal of the Hydraulics Division, ASCE,1966,92(6):1-24.
    [122] Uzuner, M.S. and Kennedy, J.F.. Theoretical model of river ice jam[J]. Journal of theHydraulics Division, ASCE,1976,102(9):1365-1383.
    [123] Tatinclaux, J.. Equilibrium thickness of ice jams[J]. ournal of the Hydraulics Division,ASCE,1977,103(9):959-974.
    [124] Beltaos, S.. River ice jam: theory, case studies, and applications[J]. Journal of HydraulicEngineering, ASCE,1983,109(10):1338-1359.
    [125] Beltaos, S. and Wong, J.. Downstream transition of river ice jams[J]. Journal of HydraulicEngineering, ASCE,1986,112(2):91-110.
    [126] Flato, G. and Gerard, R.. Calculation of ice jam thickness profile[J]. Journal of HydraulicResearch,1986,28(6):737-752.
    [127] Shen, H. T., Shen, H. H., and Tsai, S. M.. Dynamic transport of river ice[J]. Journal ofHydraulic Research,1990,28(9):659-671.
    [128] Lal, A.M.W., Shen, H.T.. Mathematical model for river ice processes[J]. Journal ofHydraulic Engineering,1991,117(7):851-867.
    [129] Hibler, W. D.. A dynamic thermodynamic sea ice model[J]. J. Phys. Oceanography,1979,9(4):815-846.
    [130] Wake, A. and Rumer, R. R.. Great Lakes ice dynamics simulation[J]. Journal of Waterways,Port, Coastal and Ocean Engeering,1983,109(1):86-102.
    [131] Lucy, L. B.. A numerical approach to the testing of the fission hypothesis[J]. The Astron. J.,1977,82(12):1013-1024.
    [132] Gingold, R. A. and Monaghan, J. J.. Smoothed particle hydrodynamics: Theory andapplication to non-spherical stars[J]. Mon. Not. R. Astron. Soc.,1977,181:375-389.
    [133] Shen, H. T., Chen, Y. C., Wake, A., and Crissman, R. D.. Lagrangian discrete parcelsimulation of two-dimensional river ice dynamics[J]. International Journal of Offshore andPolar Engineering,1993,3(4):328-332.
    [134] Lu, S.. Two-dimensional numerical modeling of river ice dynamics[D]. Ph.D. dissertation,1988, Civil and Environmental Engineering, Clarkson University.
    [135]朱玉龙,徐宗学,王国强,于伟东,田术存.缺资料地区河道水动力模拟—以卫河为例[J].北京师范大学学报(自然科学版),2010,46(3):378-382.
    [136] Calkins D.J., Deck D.S. and Sodhi D.S.. Hydraulic model study of Port Huron Ice ControlStructure. CRREL Report82-34, U.S.Army Cold Regions Research and Engineering Lab.,Hanover, N.H..
    [137]何萌,柴军瑞. VB与FORTRAN混合编程的两种方法及其比较[J].水电能源科学,2005,23(1):60-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700