两相闭式热虹吸管传热机理及其换热机组工作特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在总的能源消耗中,建筑用能和通信耗能所占比重不容忽视。通信机房作为特殊的建筑,全年均需要制冷,而电子设备舱中密集的电子元件的散热负荷也很巨大,但上述环境对温度、湿度、洁净度等方面的要求比较苛刻。作为一种高效的传热元件,两相闭式热虹吸管能够充分利用室外的自然冷源,降低空调能耗,避免室外空气中的湿气、灰尘和腐蚀性气体等的进入,是节能降温的最佳选择。但在0-60℃温度区间内两相闭式热虹吸管的传热效率、工质选配以及与环境的匹配特性等关键问题还有待进一步的研究。针对上述情况,本文在室温范围内着重进行了以下几方面的研究工作:
     (1)对不同工质及不同配比混合物的热物性、工质准则数、携带传热极限和沸腾传热极限等进行了理论计算和试验研究,提出了热虹吸管工质选取和多元混合物配制的指导原则和方法。结果表明,优先选取工质准则数M?较大的工质,15种优选工质中R152a、R290、R32和R410A性能较佳;出于毒性、可燃性等考虑,可配置二元或三元混合工质,基于R32的混合物在允许范围内尽量提高其比重,二元混合物以90/10配比为宜,三元混合物R32/R134a/R245fa以40/30/30为宜,R32/R290/R245fa以30/40/30为宜,R32比重为最小比重。建议在单一工质中加入一定比例其他成分,以满足实际要求,也可以在不同温区内不同管排中充注不同配比的工质。
     (2)建立两相闭式热虹吸管及其换热器的理论模型,从理论和试验两方面研究其传热过程、流动特性、压力变化等。结果表明,为获得较好的传热性能,对热虹吸管,冷热段温差不宜超过10℃;蒸发段长度与总管长之比应避免在0.2-0.5区间;长径比不宜超过35;热流密度不宜超过5 kW/m2。对热虹吸管换热器,冷热段温差对其传热性能的影响大于工作温度的影响,建议选择较低的室外环境温度、较高的冷热段温差和较低的迎面风速。理论和试验结果的变化趋势一致,误差在15%以内。
     (3)在两相闭式热虹吸管工质中添加不同浓度的单壁碳纳米管(SWNTs)和分散剂聚乙二醇(PEG)400,研究其传热性能。分析得到,PEG 400对其传热性能影响在3%以内,可以忽略;SWNTs能够改善传热性能40%以上,浓度以不超过0.005 wt%为宜,工作温度在30℃以下效果更佳,且压力增幅也较小。因此,建议工作温度在30℃以下时在基准工质中添加不超过0.005 wt%浓度的SWNTs,以获得较优的热工性能。
     (4)对传统的分离式热虹吸管换热器进行改进,提出一种带气泵的分离式热虹吸管换热系统,并研制出了样机。结果表明,其效率、换热量和能效比(EER)分别提高了47.8%、130%和29%,表明气泵能够有效改善系统性能。
     (5)将通信机房统筹为一个整体,对全国五个气候区内典型城市的通信机房进行模拟,从理论和试验方面系统量化地探讨了不同地区围护结构散热、空调及热虹吸管换热器能耗负荷特性,提出了联动运行机制。结果表明,在通行的6种围护结构中,全年空调总能耗最低的围护结构,哈尔滨地区为砖混370 mm墙体,北京地区为砖混240 mm墙体,上海、昆明和广州三个地区为砖混180 mm墙体;围护结构传热量约占通信设备总散热量的19.5%;空调每24小时耗能为3-4 kW h,室内设定温度平均提高1℃,空调能耗降低约3.6%,建议将室内温度上限提至27℃;联动机制以热虹吸管换热机组为主,空调为辅,优先考虑热虹吸管换热机组工作。使用热虹吸管换热器后能耗仅为原空调能耗的41%,全年最高节能率达到56%。
     (6)研究了电子设备舱中不同工质热虹吸管均热器的热工匹配特性。结果表明,舱内外温差低于20℃时,舱内气流最高温度不超过65℃;不同工况下,舱内外温差均在11-17℃范围内,表明热虹吸管均热器非常适合舱内外温差为15℃左右的散热场合。R152a和R22性能优于R12和R134a,且R152a的工质准则数随温度的变化斜率较小,平均水平较高,具有更为宽泛的适用温区。
     本文的研究工作为提高两相闭式热虹吸管的传热性能提供了参考,尤其是在工质选配以及单壁碳纳米管强化传热等方面提供了重要的理论依据。同时,在自然冷源利用新领域——通信机房和电子设备舱的空调用能方面作了相应的匹配研究。另外,对传统分离式热虹吸管进行了改进,提出了新的结构形式,解决了实际运行中出现的问题。在满足散热需求、节能降耗的同时,也考虑到了工质替代的环保安全性,为通信行业节能减排提供了坚实的技术支持。从目前的工程应用来看,节能效果显著。
In the total energy consumption, the energy consumption of buildings and telecommunication centers is considerable. As a special building, a telecommunication center needs to be cooled for a whole year. And the heat dissipation for a sealed electric cabin with dense electronic components is huge. But the required environmental conditions, such as temperature, humidity and cleanliness, are very strict to make sure the devices work well. As an effective heat transfer unit and a good cooling technique, a two-phase closed thermosyphon is able to make full use of outdoor ambient energy, reduces the air conditioning energy consumption, and isolates the outdoor humidity, dust or acid gas. However, the key points of a two-phase closed thermosyphon, like heat transfer efficiency, working fluid match and environmental characteristic, still need to be studied further in the room temperature from 0 to 60 degrees. According to the above situations, the following jobs were done:
     (1) The numerical simulation and experimental investigation of the thermal property, Merit Number, entrainment heat transfer limit and boiling heat transfer limit were carried out for different working fluids and its compositions with different mass fractions. It is pointed that, the working fluids with bigger Merit Number values are priorities. The working fluids, R152a, R290, R32 and R410A, show better performances among the fifteen working fluids. Due to the toxicity and flammability of the working fluid, compositions with two or three ingredients are feasible. For R32-base compositions, the mass fraction of R32 should be higher, and is 90% for compositions with two ingredients. For the R32/R134a/R245fa composition, the mass fractions should be 40%, 30% and 30%, respectively. For the R32/R290/R245fa composition, the mass fractions should be 30%, 40% and 30%, respectively. It is suggested that some other ingredient should be added into the base working fluid to meet the actual needs. And some working fluids with different proportions can be charged for different pipe rows and different temperature zones.
     (2) The simulation heat transfer models of a two-phase closed thermosyphon and a heat exchanger were built up. The heat transfer process, flow characteristics and pressure variations were studied theoretically and experimentally. It is found that, for a thermosyphon, the temperature difference of indoor and outdoor should be less than 10 degrees for a better heat transfer performance. And the length ratio between evaporation section and a thermosyphon should be under 0.2 or over 0.5. The ratio between evaporation section length and inner diameter should be not more than 35, and the heat flux should be less than 5 W/m2. For a thermosyphon heat exchanger, the effect of indoor and outdoor temperature difference is over that of working temperature. It is recommended that lower outdoor ambient temperature, lower facing air velocity and higher temperature difference will be better. The changing rules of theoretical and experimental results keep the same, and the error is not over 15%.
     (3) The single wall carbon nano tubes (SWNTs) were applied in a thermosyphon base working fluid to enhance the heat transfer with some surfactant polyethylene glycol (PEG) with molar mass 400 and the heat transfer characteristics were studied. It is found that, the improvement of PEG 400 for a thermosyphon is less than 3%, which can be ignored. The improvement of SWNTs is over 40%, which is higher with lower pressure when under the 30 degrees working temperature. And the suitable mass fraction is not more than 0.005%. So the SWNTs with not over 0.005% mass fraction are suggested to be added into a base fluid for a better thermal performance under the 30 degrees working temperature.
     (4) A new separated thermosyphon heat exchanging system with a gas pump was proposed to improve a conventional separated thermosyphon heat exchanger and a prototype was developed. It is found that, the efficiency, heat transfer rate and energy efficiency ratio (EER) increase by 47.8%, 130% and 29%, respectively. It shows that the gas pump can improve the system performance effectively.
     (5) The simulations of a telecommunication center for national typical cities in five climatic zones were carried out. The numerical and experimental researches of the building envelope heat dissipation, the heat load and energy consumption of an air conditioner and a thermosyphon heat exchanger were completed under different working conditions and different building envelopes. The quantitive results were obtained. And a union operation mode was presented for an air conditioner-thermosyphon heat exchanger system. It is found that, the building envelope with the lowest yearly air conditioning energy consumption among the six type building envelopes is 370 mm brick wall in Harbin, 240 mm brick wall in Beijing, 180 mm brick wall in Shanghai, Kunming and Guangzhou. The heat dissipation through the building envelope takes about 19.5% of the total communication equipment heat load. And the air conditioner energy consumption is 3 to 4 kW h for 24 hours. The air conditioning energy consumption dereases by about 3.6% as the indoor set temperature increases by 1 degree. And the indoor set temperature is recommended to be 27 degrees. In the union operation mode, the thermosyphon heat exchanger is prior to the air conditioner. The energy consumption decreases to 41% of the air conditioning energy consumption when a thermosyphon heat exchanger works. And the whole year energy saving ratio reaches to 56%.
     (6) The thermal performances of a thermosyphon spreader with different working fluids in a sealed electric cabin were studied experimentally. It is found that, the highest temperature in the electic cabin is not more than 65 degrees when the indoor and outdoor temperature difference is less than 20 degrees. The indoor and outdoor temperature difference remains in the range of 11 to 17 degrees, which indicates that it is very suitable to the situation with 15 degrees temperature difference. The working fluids, R152a and R22, show better performance than the other fluids, R12 and R134a. Further, the Merit Number variation of the working fluid R152a is smooth, the average is higher, and the optimum temperature zone is wider.
     The above investigations supply a theoretical reference for improving the heat transfer of a two-phase closed thermosyphon, especially for the working fluid and its compositions matching and single wall carbon nano tubes (SWNTs) heat transfer enhancement. A thermosyphon heat exchanger is matched in a new ambient energy utilization field, the air conditioning energy consumption of a telecommunication center and a sealed electric cabin. In addition, the proposal of a new separated thermosyphon heat exchanger with a gas pump solves the problems of a conventional separated thermosyphon heat exchanger in engeering applications. In generally, the reseaching jobs consider the environmental protection of working fluid alternatives while meeting the heat dissipation and reduction of energy consumption. And it also supports the energy saving and emission reduction of the telecommunication industry. The energy saving is remarkable in present engineering projects.
引文
1钱伯章.世界能源消费现状和和可再生能源发展趋势[J].节能与环保, 2006, 3(4): 8-11.
    2李明.国资委:中央通信企业应在节能减排方面起领头羊作用[EB/OL]. [2011-03-16] http://www.donews.com/tele/201103/393829.shtm.
    3李嘉华,杨小平,何俊霖. FHP-VC符合硅酸盐板保温隔热技术[M].四川:四川科技出版社, 2009.
    4宋得萱.节能建筑设计与技术[M].上海:同济大学出版社, 2003.
    5韩启德.我国建筑能耗占全社会总能耗约28%[J].建筑与发展, 2009, (11): 3.
    6《通信行业能源管理体系及审计方法》研究[EB/OL]. [2010-05-04] http://www.comjn.cn/news/display/article/86.
    7赵宇新.“十二五”节能减排开始节电或成运营商关注重点[EB/OL]. [2010-11-25]. http://www.donews.com/tele/201011/283965.shtm.
    8王金沿. 3G网络拒绝重复建设[N].通讯产业报, 2006-04-20.
    9任伟峰.不同气候区建筑维护结构及材料的研究[D].北京工业大学硕士学位论文, 2007: 25-28.
    10 Jonathan G. Koomey. Estimating total power consumption by servers in the U. S. and the world [R]. 2007, http://www.koomey.com.
    11 Vincent Minerva. Preventing a data center power crisis. [EB/OL]. [2009-03-09]. http://searchdatacenter.techtarget.com/tip/0,289483,sid80_gci1350324_mem1,00.html.
    12 Mark Fontecchio. Data center energy a concern, but metrics lacking. [EB/OL]. [2008-09-10]. http://searchdatacenter.techtarget.com/news/article/0,289142,sid80_gci1329440,00.html.
    13 Krishna Kant, Prasant Mobapatra. Guest editors’introduction: internet data centers[J]. Computer, 2004, 37(11): 35-37.
    14 Krishna Kant. Data center evolution a tutorial on state of the art, issues, and challenges[J]. Computer Networks, 2009, (53): 2939-2965.
    15 Jinkyun Cho, Taisub Lim, Byungseon Sean Kim. Cooling systems for IT environment heat removal in (internet) data centers [J]. Journal of Asian Architecture and Building Engineering, 2008.9, 7(2): 387-394.
    16 Chandrakant D. Patel, Cullen E.Bash, Christian Belady, et al. Computational fluid dynamic modeling of high compute density data centers to assure system inlet air specifications[C]. Proceedings of the Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition, Kauai, Hawaii, USA, July, 2001. IPACK2001-15622.
    17陈沂,吴基,王飞,等.广州地区通信基站通风冷却节能技术研究[J].建筑科学, 2008, 24(12): 27-31.
    18王景刚,康利改,刘杰,等. IDC机房用室外冷源降温的可行性分析[J].暖通空调, 2009, 39(2): 128-132.
    19鲍玲玲,王景刚,张明杰,等.通信机房用空气换热器的性能测试与分析[J].制冷空调与电力机械, 2008, 29(120): 70-73.
    20王景刚,康利改,刘杰.廊坊IDC机房空调节能改造可行性分析[J].制冷与空调, 2009, 9(1): 78-82.
    21 Shehabi, Arman. Energy Implications of Economizer Use in California Data Centers[R]. Lawrence Berkeley National Laboratory, 2008, http://escholarship.org/uc/item/4px2n6jn.
    22 Data processing and electronic office areas [R], ASHRAE Handbook-HVAC Applications, 2007.
    23 Opportunities for additional energy-efficiency savings [R], Report to Congress on Server and Data Center Energy Efficiency Public Law 109-431, U. S. Environmental Protection Agency ENERGY STAR Program, 2007.
    24马瑜瑾.冷却装置在电气控制柜中的应用[J].机电工程技术, 2004, 22(12): 61-62.
    25顾忠仁.电气控制柜散热方法的比较分析[J].电气制造, 2006, (2): 29-30.
    26余莉,韩玉,曹业玲,蒋彦龙.电子设备散热用平板式热管的实验研究[J].南京航空航天大学学报, 2008.10, 40(5): 627-631.
    27姚寿广,马哲树,陈如冰.一种新型结构的热管式散热冷板性能的数值模拟试验与分析[J].中国电机工程学报, 2005.4, 25(7): 41-45.
    28 Phil E. Tuma, Hamid R. Mortazavi. Indirect Thermosyphons for Cooling Electronic Devices[J]. Electronics Cooling, 2006, (1): 26-29.
    29张良华,余小玲,杨旭,周恩民,冯全科,王兆安.电力电子集成模块用平板热管的传热研究[J].电子学报, 2009, 37(8): 1848-1853.
    30 Wang Y, Vafai K. Transient Characterization of Flat Plate Heat Pipe During Startup and Shutdown Operation[J]. International Journal of Heat and Mass Transfer, 2000, 43(15):2641-2655.
    31 Wang Y, Vafai K. Experimental Investigation of the Thermal Performance of An Asymmetrical Flat Plate Heat Pipe[J]. International Journal of Heat and Mass Transfer, 2000, 43(15):2655-2668.
    32王雪峰,孙志坚,吴存真,靳静,王立新.电子器件冷却用重力型热管散热器的实验研究[J].电子器件, 2004.9, 27(3): 393-396.
    33 Mircoslao Zelko, Frantisek PLASEK Petrstulc. Cooling of power electronics by heat pipes[J]. Heat pipe technology, theory applications and prospects. 1997. 199-207.
    34庄骏,张红.热管技术及其工程应用[M].北京:化学工业出版社, 2000: 357-358.
    35黄梦彬.一种强迫风冷机柜的热设计[J].电子机械工程, 2006, 22(2): 12-13.
    36高鹏,涂淑平.工业机柜热管散热器及其试验研究[J].制冷与空调, 2006, 6(6): 73-75.
    37郭钰锋,秦华,于达仁,赵晓敏.冷却空气迎面风速和温度对直接空冷系统动态特性的影响[J].中国电机工程学报, 2008, 28(29): 22-27.
    38马国远,刘思光,彭珑.独立翅片式液体自循环CPU散热器[J].北京工业大学学报, 2007, 33(11): 1203-1206.
    39史保新,张鑫,马国远.电子器件用复合热管散热器的试验研究[J].流体机械, 2009, 37(7): 61-64.
    40唐志伟,马重芳,蒋章焰.关于工业热管的回顾与展望[J].北京工业大学学报, 2002, 28(4): 466-471.
    41 P. D. Dunn, D. A. Reay. Heat Pipes[M], third edition. Pergamon Press, 1994.
    42陈彦泽.两相闭式热虹吸传热过程及其非线性特征研究[D].大连理工大学博士学位论文, 2005.
    43罗清海,汤广发,龚光彩,付峥嵘.热虹吸管散热器的传热分析[J].煤气与热力, 2004, 24(5): 249.
    44 Imura H, Sasaguchi K, Kozai H, et al. Critical heat flux in a two-phase thermosyphon. [J] Internationl Journal of Heat and Mass Transfer, 1983, 26(8): 1181-1188.
    45 S. H. Noie. Heat transfer characteristics of a two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2005, 25: 495-506.
    46 Negishi K, Sawada T. Heat transfer performance of an inclined two-phase closed thermosyphon[J]. International Journal of Heat and Mass Transfer, 1983, 26(28): 1207-1213.
    47 Feldman Jr. K. T., Sreinivasan R. Investigation of heat transfer limits in two-phase closed thermosyphon[C]. Proceedings of the 5th International Heat Pipe Conference, 1984.
    48 Quan Liao, Tien-Chen Jen, Qinghua Chen, Longjian Li, Wenzhi Cui. Heat transfer performance in 3D internally finned heat pipe[J]. International Journal of Heat and Mass Transfer, 2007, 50: 1231-1237.
    49 Salem A. Said, Bilal A. Akash. Experimental performance of a heat pipe[J]. International Communications in Heat and Mass Transfer, 1999, 26(5): 679-68.
    50于涛.重力热管的制造及传热性能测试[D].山东大学硕士学位论文. 2008.
    51 S. H. Noie-Baghban, G. R. Majideian. Waste heat recovery using heat pipe heat exchanger (HPHE) for surgery rooms in hospitals[J]. Applied Thermal Engineering, 2000, 20: 1271-1282.
    52李英娜.应用于空调系统热管换热器的研究[D].东华大学硕士学位论文, 2005.
    53赵安林. R600a在重力热管散热器中的工作实验研究[D].重庆大学硕士学位论文, 2002.
    54 R. Sindhuja, A. R. Balakrishnan, S. Srinivasa Murthy. Critical heat flux of R407C in upflow boiling in a vertical pipe[J]. Applied Thermal Engineering, 2008, 28: 1058-1065.
    55 H. Hagens, F. L. A. Ganzevles, C. W. M. van der Geld, M. H. M. Grooten. Air heat exchangers with long heat pipes: Experiments and predictions[J]. Applied Thermal Engineering, 2007, 27: 2426-2434.
    56 S. V. Konev, J. L. Wang, C. J. Tu. Characteristics of A Heat Exchanger Based On A Collector Heat Pipe[J]. Heat Recovery Systems & CHP, 1995, 15(5): 493-502.
    57吴治娟. CPU重力热管使用不同天然工质时的传热特性实验研究[D].重庆大学硕士学位论文, 2002.
    58 Mehmet Esen. Thermal performance of a solar cooker integrated vacuum-tube collector withheat pipes containing different refrigerants[J]. Solar Energy, 2004, 76: 751-757.
    59 Peter Rohlin. Heat transfer coefficients of zeotropic refrigerant mixtures and their pure components in horizontal flow boiling-an experimental study[C]. Proceedings of the ASME Advanced Energy System Division, 1997, 37: 383-394.
    60 Mehmet Esen, Hikmet Esen. Experimental investigation of a two-phase closed thermosyphon solar water heater[J]. Solar Energy, 2005, 79: 459-46.
    61方书起,赵凌,史启辉,路慧霞.螺旋槽重力热管强化传热实验研究[J].化学工程, 2008, 36(6): 19-21.
    62陈彦泽,周一卉,丁信伟.重力热管传热波动特性研究及抑制方法探讨[J].热能动力工程, 2003, 18(4): 334-336.
    63朱威力.热虹吸管传热性能试验研究与理论分析[D].河北工业大学硕士学位论文, 2006.
    64童明伟,石程名,辛明道.两相闭式热虹吸管的强化传热试验[J].工程热物理学报, 1984, 5(4): 371-373.
    65 Khalid A. Joudi, A. M. Witwit. Improvements of gravity assisted wickless heat pipes[J]. Energy Conversion and Management, 2000, 41: 2041-2061.
    66童明伟,童庆明,陈礼,张洪济. N-甲基吡咯烷酮两相闭式热虹吸管传热特性的实验研究[J].工程热物理学报, 1994, 15(2): 185-189.
    67 S. U. S. Choi. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows[J], ASME Fluids Engineering Division, 1995, 231: 99-105.
    68 X. Wang, X. Xu, S. U. S. Choi. Thermal conductivity of nanoparticle–fluid mixture[J], Journal of Thermophysics and Heat Transfer, 1999, 13 (4): 474-480.
    69 P. Keblienski, S. R. Phillpot, S. U. S. Choi, J. A. Eastman. Mechanisms of heat flow in suspensions of nanosized particles (nanofluids) [J], International Journal of Heat and Mass Transfer, 2002, 45: 855-863.
    70 J. A. Eastman, S. R. Phillpot, S. U. S. Choi, P. Keblinski. Thermal transport in nanofluids[J], Annual Review of Material Research, 2004, 34: 219-246.
    71 S. P. Jang, S. U. S. Choi. Role of Brownian motion in the enhanced thermal conductivity of nanofluids[J], Applied Physics Letters, 2004, 84: 4316-4318.
    72 S. Lee, S. U. S. Choi, S. Li, J.A. Eastman. Measuring thermal conductivity of fluids containing oxide nanoparticles[J], Journal of Heat Transfer, 1999, 121: 280-289.
    73 Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids[J], International Journal of Heat Fluid Transfer, 2000, 21: 58-64.
    74 J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, L. J. Thompson. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J], Applied Physics Letters, 2001, 78(6): 718-720.
    75 T. K. Hong, H. S. Yang, C. J. Choi. Study of the enhanced thermal conductivity of Fenanofluids[J], Journal of Applied Physics, 2005, 97(6): 1-4.
    76 S. K. Das, N. Putra, P. Thiesen, W. Roetzel. Temperature dependence of thermal conductivity enhancement for nanofluids[J], ASME Journal of Heat Transfer, 2003, 125: 567-574.
    77 B. Pak, Y. Cho. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, [J] Experimental Heat Transfer, 1998, 11(2): 151-170.
    78 Y. Yang, Z. G. Zhang, E. A. Grulke, W. B. Anderson, G. Wu. Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow[J], International Jouranl of Heat and Mass Transfer 2005, 48(6): 1107-1116.
    79 X. Wang, A. S. Mujumdar. Heat transfer characteristics of nanofluids: a review[J]. International Journal of Thermal Science, 2007, 46: 1-19.
    80 C. H. Li, B. X. Wang, X. F. Peng. Experimental investigations on boiling of nano-particle suspensions[C], Proceedings of 2003 Boiling Heat Transfer Conference, Jamaica, U.S.A, 2003.
    81 S. K. Das, N. Putra,W. Roetzel. Pool boiling characteristics of nano-fluids[J], International Journal of Heat and Mass Transfer, 2003, 46(5): 851-862.
    82 S. M. You, J. H. Kim, K. H. Kim. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer[J], Applied Physics Letters, 2003, 83: 3374-3376.
    83 I. C. Bang. Boiling heat transfer performance and phenomenon of Al2O3–water nanofluids from a plain surface in a pool[J], International Journal of Heat and Mass Transfer, 2005, 48: 2407-2419.
    84 J. P. Tu, N. Dinh, T. Theofanous. An experimental study of nanofluid boiling heat transfer[C], Proceedings of 6th International Symposium on Heat Transfer, Beijing, China, 2004.
    85 P. Vassallo, R. Kumar, S. D. Amico. Pool boiling heat transfer experiments in silica–water nanofluids[J], International Journal of Heat and Mass Transfer, 2004, 47: 407-411.
    86 D. Milanova, R. Kumar. Role of Ions in pool boiling heat transfer of pure and silica nanofluids[J], Applied Physics Letters, 2005: 87.
    87 S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids[J], Applied Physics Letters, 2006, 89(15).
    88 H. Kim, J. Kim, M. Kim. Experimental study on CHF characteristics of water–TiO2 nanofluids[J]. Nuclear Engineering and Technology, 2006, 38(1): 61-68.
    89 K. Sefiane. On the role of structural disjoining pressure and contact line pinning in critical heat flux enhancement during boiling of nanofluids[J], Applied Physics Letters, 2006, 89(4).
    90 Sameer Khandeka, Yogesh M. Joshi, Balkrishna Mehta. Thermal performance of closed two-phase thermosyphon using nanofluids[J], International Journal of Thermal Science, 2008, 47: 659-667.
    91 Paisarn Naphon, Dithapong Thongkum, Pichai Assadamongkol. Heat pipe efficiency enhancement with refrigerant–nanoparticles mixtures[J]. Energy Conversion andManagement, 2009, 50(3): 772-776.
    92 M. A. Kedzierski. Effect of Cuo nanoparticle concentration on R134a/lubricant pool-boiling heat transfer[J]. ASME Journal of Heat Transfer, 2009, 131: 043205-1-7.
    93 Yurong He, Yi Jin, Haisheng Chen, Yulong Ding, Daqiang Cang, Huilin Lu. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2007, 50: 2272-2281.
    94李中洲.纳米技术在热虹吸管中的应用[D].华中科技大学硕士学位论文, 2006.
    95欧育湘,许冬梅,赵毅.聚合物理想的增强剂和改性剂—碳纳米管[J].塑料助剂, 2010, (1): 1-4.
    96 Y. Gogotsi. Carbon nanomaterials[M]. New York: CRC Press, 2008: 255-273.
    97张树龙,高树理,李长注,等.纳米改性剂[M].北京:国防工业出版社, 2004: 224-225.
    98 Iijima, S.. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(56): 56-58.
    99 S. Fioritc. Carbon nanotubes[M]. Rome: Panstanford Publishing, 2009: 86-90.
    100 H. Hosono, Y. Mishima, H. Takezoe, et al.. Nanomaterials: from research to applications[M]. New York: Elsevier Publishers, 2009.
    101 H. Yamashita, Y. Nakano. Polyester: properties, preparation and applications[M]. New York; Nava Science Publishers, Inc., 2008: 34-107.
    102 Kumara, S., Alam, M. A., Murthy, J. Y.. Effect of percolation on thermal transport in nanotube composites[J]. Applied Physics Letters, 2007, 90: 104-105.
    103 Shaikh, S., Lafdi, K., Hallinan, K.. Carbon nanoadditives to enhance latent energy storage of phase change materials[J]. Journal of Applied Physics, 2008, 103: 094302.
    104 M. Fujii, X. Zhang, H. Xie, K. Takahashi, H. Abe, T. Shimizu. Measuring the thermal conductivity of a single carbon nanotube[J]. Physical Review Letters, 2005, 95: 065502-1-4.
    105 Berber, S., Kwon Y. K., Tomanek, D.. Unusually high thermal condictivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20): 4613-4616.
    106 Hepplestone, S. P., Ciavarella, A. Janke, M., C., Srivastava, G. P.. Size and temperature dependence of the specific heat capacity of carbon nanotubes[J]. Surface Science, 2006, 600(18): 3633-3636.
    107 Maruyama, S.. A molecular dynamics simulation of heat conduction in finite length SWNTs[J]. Physica B Condensed Matter, 2002, 323(1-4): 193-195.
    108 Osman, M. A., Srivastava, D.. Temperature dependence of the thermal conductivity of carbon nanotubes[J]. Nanotechnology, 2001, 12(1): 21-22.
    109 Mizel, A. Benedict, L. X., Cohen, M. L., Louie, S. G., Zettl, A., Budraa, N. K., Beyerman, W. P.. Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes[J]. Physical Review B, 1999, 60(5): 3264-3270.
    110 Hone, J., Laguno, M. C., Nemes, N. M., Johnson, A. T., Fischer, J. E., Walters, D. A., Casavant, M. J., Schmidt, J., Smalley, R. E.. Electrical and thermal transport properties ofmagnetically aligned single wall carbon nanotube films[J]. Applied Physics Letters, 2000, 77(5): 666-668.
    111 Satish Kumar, Jayathi Y. Murthy. Interfacial thermal transport in carbon nanotubes[C]. Proceedings of the ASME 2009 Heat Transfer Summer Conference, San Francisco, California, USA, 2009.7, HT2009-88554.
    112 Brian K. Ryglowski, Randall D. Plollak, Young W. Kwon. Characterizing the stability of carbon nantube enhanced water as a heat transfer nanofluid[C]. Proceedings of the ASME 2010 Pressure Vessels & Piping Division/K-PVP Conference, Bellevue, Washington, USA, 2010.7, PVP2010-25709.
    113 John Shelton, Frank PyrtleШ. Thermal conductivity and specific heat capacity of carbon nanotube bundles[C]. Proceedings of 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, British Columbia, Canada, 2007.6, HT2007-32487.
    114 Elgafy A., Lafdi, K.. Effect of carbon nanofiber additives on thermal behavior of phase change materials[J]. Carbon, 2005, 43: 3067-3074.
    115 Wang, J., Xie, H., Xin, Z.. Theraml properties of heat storage composites containing multiwalled carbon nanotubes[J]. Journal of Applied Physics, 2008, 104: 113537.
    116 Bonnet, P., Sireude, D., Garnier, B., Chauvet, O.. Thermal properties and percolation in carbon nanotube-polymer composites[J]. Applied Physics Letters, 2007, 91: 201910.
    117 Xie Huaqing, Chen Lifei. An approach for optimizing thermal conductivity in nanofluids[C]. ASME Proceedings of the Inaugural US-EU-China Thermophysics Conference, Beijing, China, 2009.5, UECTC2009-120.
    118 Zeng, J. L., Liu, Y. Y., Cao, Z. X., Zhang, J., Zhang, Z. H., Sun, L, X., Xu, F.. Thermal conductivity enhancement of MWNTs on the PANI/tetradecanol form-stable PCM[J]. Journal of Thermal Analysis and Calorimetry, 2008, 91: 443-446.
    119 Berber, S., et al.. Synthesis of carbon nanotubes by microwave plasma chemical vapor deposition[J]. Physical Review Letters, 2000, 84: 4613.
    120 Wang Jifen, Xie Huaqing, Zhong Xin, Yang Li, Chen Lifen, Xu Na. Experimental study of thermal property of alkali treated CNT-based composite as phase change materials[C]. Proceedings of the ASME 2009 International Mechanical Engineering Congress & Expositon, Lake Buena Vista, Florida, USA, 2009.11, IMECE2009-10183.
    121 Sebastine O. Ujereh Jr., Issam Mudawar, Placidus B. Amama, Timothy S. Fisher, Weilin Qu. Enhanced pool boiling using carbon nanotube arrays on a slicon surface[C]. Proceedings of 2005 ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida USA, 2005.11, IMECE2005-80065.
    122薛怀生.多壁碳纳米管悬浮液沸腾换热性能研究[D].浙江大学博士学位论文, 2007.
    123 T. Y. Choi, D. Poulikakos, J. Tharian, U. Sennhauser. Measurement of thermal conductivity of individual multi-walled carbon nanotubes by the 3-ωmethod[J]. Applied Physics Letters, 2005, 87: 013108.
    124 L. Lu, W. Yi, D. L. Zhang. 3ωmethod for specific heat and thermal conductivity measurements[J]. Review of Scientific Instruments, 2001, 72: 2996-3003.
    125 Tae Y. Choi, Mohammad H. Maneshian, Boseon Kang. Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3-ωmethod[C]. Proceedings of the ASME 2009 Heat Transfer Summer Conferenc, San Francisco, California, USA, 2009.7, HT2009-88095.
    126 N. Putra, W. Roetzel, S. K. Das. Natural convection of nano-fluids[J]. Heat and Mass Transfer, 2003, 39: 775-784.
    127 A. G. A. Nnanna, T. Fistrovich, K. Malinski, S. U. S. Choi. Thermal transport phenomena in buoyancy-driven nanofluids[C]. Anaheim, CA, United States, 2004: 571-578.
    128 D. S. Wen, Y. L. Ding. Formulation of nanofluids for natural convective heat transfer applications[J]. International Journal of Heat and Fluid Flow, 2005, 26: 855-864.
    129 D. S. Wen, Y. L. Ding. Natural convective heat transfer of suspensions of titanium dioxide nanoparticles(Nanofluids)[J]. IEEE Transactions on Nanotechnology, 2006, 5: 220-227.
    130 A. G. A. Nnanna. Experimental model of temperature-driven nanofluids[J]. Journal of Heat Transfer, 2007, 129.
    131 K. Khanafer, K. Vafai, M. Lightstone. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J]. International Journal of Heat and Mass Transfer, 2003, 46: 3639-3653.
    132 J. Kim, Y. T. Kang, C. K. Choi. Analysis of convective instability and heat transfer characteristics of nanofluids[J]. Physics of Fluids, 2004, 16: 2395-2401.
    133 K. S. Hwang, J. H. Lee, S. P. Jang. Buoyancy-driven heat transfer of water-based Al2O3 nanofluids[J]. International Journal of Heat and Mass Transfer, 2007, 50: 4003-4010.
    134 R.–Y. Jou, S.–C. Tzeng. Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures[J]. International Communications in Heat and Mass Transfer, 2006, 33: 727-736.
    135 Sanjeeva Witharana, Haisheng Chen, Yulong Ding. Enhanced natural convective heat transfer of CNT-ethylene glycol-water suspensions[C]. Proceedings of Micro/Nanoscale Heat Transfer International Conference, Tainan, Taiwan, 2008.1, MNHT2008-52372.
    136 Zenghu Han, Bao Yang, S. H. Kim, M. R. Zachariah. Nanofluids containing hybrid sphere/carbon nanotube particles[C]. Proceedings of MicroNanoChina 07, Sanya, Hainan, China, 2007.1, MNC2007-21331.
    137陈远国.分离式热管换热器的研究、应用与评价[C].全国第三届热管会议论文集,重庆:重庆大学出版社, 1991: 17-24.
    138时晓燕,唐志伟等.具有短管束的小型分离式热管的工作特性[J].中国农业大学学报, 2003, 8(6): 51-53.
    139 W. H. Lee, K. W. Lee, K. H. Park, K. J. Lee, Study on working characteristics of loop heat pipe using a sintered metal wick[C]. 13th IHPC, Shanghai, 2004: 265-269.
    140 J. I. Rodriguez, M. Pauken, Performance characterization and model verification of a loop heat pipe[C]. International Conference on Environmental Systems. Toulouse, 2000: 2317-2324.
    141 J. H. Boo, W. B. Chung, Thermal performance of a small-scale loop heat pipe with PP wick[C]. 13th IHPC, Shanghai, China, 2004: 259-264.
    142朱玉琴,曹子栋.分离式热管倾斜蒸发段传热特性的试验研究[J].动力工程, 2001, 21(2): 1153-1155.
    143庄正宁,张焕等.分离式热管倾斜布置蒸发段传热特性的试验研究[J].西安交通大学学报, 1998, 32(11): 36-39.
    144金育义,臧润请等.分离式热管在不同高度差下传热性能的实验研究[J].应用能源技术, 2009, 4: 45-47.
    145宣永梅.新型替代制冷剂的理论和实验研究[D].浙江大学博士学位论文, 2004.
    146曹德胜,史琳.制冷剂使用手册[M].北京:冶金工业出版社, 2003.
    147李雪,高强,孙平. R417A的应用现状与展望[J].制冷与空调, 2007, 7(4): 59-61.
    148 NIST (National Institute of Science and Technology) Standard Reference Database 23[DB], Version 6.01. 2002.
    149 David Reay, Peter Kew. Heat Pipes (Theory, Design and Applications) [M], Fifth Edition. Elsevier B H, 2006.
    150李英娜.应用于空调系统热管换热器的研究[D].东华大学,硕士学位论文, 2005: 16-17.
    151杨肖曦,邸玉静,马玉峰.热管换热器设计计算的线算图法[J].石油机械, 2005, 33(7): 35-36.
    152 Gorbis Z R, Savchenkov G A. Low temperature two-phase closed thermosyphon investigation[C]. Proceedings of 2nd International Heat Pipe Conference, Bologa, Italy: 1976, 37-45.
    153唐志伟,俞昌铭,马重芳.热管性能评价准则探讨[J].北京工业大学学报, 2003, 29(1): 55-58.
    154 P. Terdtoon, S. Ritthidej, M. Shiraishi. Effect of aspect ratio and Bond number on heat transfer characteristics of an inclined closed two-phase thermosyphon at normal operating condition[C]. Proceeding of the 5th International Heat Pipe Symposium, Melbourne, Australia, 1996.
    155 T. Payakaruk, P. Terdtoon, S. Ritthidech. Correlations to predict heat transfer characteristics of an inclined closed two-phase thermosyphon at normal operating conditions[J]. Applied Thermal Engineering, 2000, 20: 781-790.
    156李亭寒,华诚生.热管设计与应用[M].北京:化学工业出版社, 1987.
    157周峰,罗琳,马国远.近室温条件下大型热虹吸管传热性能的实验研究[C].第四届全国制冷空调新技术研讨会论文集,江苏南京, 2006.4.
    158 M. J. Assael, I. N. Metaxa, J. Arvanitidis, D. Christofilos, C. Lioutas. Themal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes inthe presence of two different dispersants[J]. International Journal of Thermophysics, 2005, 26: 647-664.
    159 Y. L. Ding, H. Alias, D. S. Wen, R. A. Williams. Heat transfer of aqueous suspensions of carbon nanotubes(CNT nanofluids)[J]. International Journal of Heat and Mass Transfer, 2006, 49(1-2): 240-250.
    160 D. S. Wen, Y. L, Ding. Effective thermal conductivity of carbon nanotube suspensions(CNT nanofluids)[J]. Journal of Thermophysics and Heat Transfer, 2004, 18(4): 481-485.
    161 S. T. Huxtable, D. G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M. S. Strano, G. Siddons, M. Shim, P. Keblinski. Interfacial heat flow in carbon nanotube suspensions[J]. Nature Materials, 2003, 2: 731-734.
    162钟勋,俞小莉,吴俊.氧化铝有机纳米流体的流动传热基础特性[J].化工学报, 2009, 60(1): 35-41.
    163郝承明.热管换热器的模拟与设计计算[C].中国工程热物理学会第一届热管会议,哈尔滨, 1983, 152-155.
    164吴双应,李友荣.关于换热器热力学性能评价指标的分析与讨论[J].重庆大学学报(自然科学版), 1997, 20(4): 54-59.
    165周峰.用于建筑物空调系统能量回收的热管换热器的应用研究[D].北京工业大学硕士学位论文, 2007.
    166周峰,马国远.热虹吸管能量回收设备夏季工作特性的实验研究[J].暖通空调, 2007, 37(12): 58-62.
    167杨世铭,陶文铨.传热学[M].第四版.北京:高等教育出版社, 2006: 260-261.
    168中华人民共和国建设部. GB50176-93民用建筑热工设计规范[S].北京:中国计划出版社, 1993: 3.
    169江亿,郑川,杨文俊,等.热管技术在移动通信基站环境控制中的应用及节能研究. [EB/OL].[2008-01-08].http://www.comcw.cn/jieneng/2007jienengzs/2008-01-08/1199771611d78941.shtml.
    170张亚杰,尹纲领,李永安.基于DeST-h软件的城市住宅基础室温分析[J].山西建筑, 2009, 35(3): 25-26.
    171秦兴红,曲云霞,魏晓真,任菲.济南办公建筑自然通风工况下自然室温的研究[J].节能, 2009, (12): 46-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700