两相闭式热虹吸传热过程及其非线性特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在对能源和环保高度重视的今天,和许多发达国家相比,我国能源利用的现状还存在许多问题。例如,能源的利用水平低,可再生能源的利用比例低,对能源的投入和产出比远远低于国际先进水平。具体主要表现为,大量的热工设备热效率相对较低,许多价值极高的各种工业余热被白白浪费。因此,对能源高效回收技术和强化传热技术的研究,以及各种高效传热元件的开发研究一直是科技人员致力的重要领域。
     热管及热虹吸传热是同时存在蒸发和冷凝、流动和传热的复杂过程,表现出显著的非线性动力系统不稳定性,具有混沌的特征。由于对其机理和特征研究的欠缺,使得热虹吸传热在实际应用中,如控制、预测和设计放大等仍存在一定困难。
     非线性科学是当今世界科学发展的前沿和热点,其研究和应用几乎涉及自然科学和社会科学的所有领域,是目前倍受关注的交叉学科和重要的理论方法。特别是随着非线性科学和计算机技术的发展,在各学科研究中,混沌理论的观点越来越被人们所接受,并得到了越来越广泛的应用。
     本文的主要目标是以热虹吸传热过程的振荡现象为切入点,以温度波动信号的频谱分析为基础,以人工神经网络模型预测和非线性理论等为研究工具,以热虹吸传热过程的不稳定特征—混沌现象为基本研究对象,在前人研究工作的基础上,探讨热虹吸传热过程不稳定现象和基本机理,利用非线性的理论和方法描述热虹吸传热过程的混沌特征,揭示其振荡传热的本质。
     本文研究工作主要分为两部分内容。第一部分通过传热实验,研究热管的不稳定传热过程及其温度波动信号的基本特征,描述实验条件下热管传热波动现象和不稳定现象,研究了热虹吸管内部强化传热的方法和机理以及对传热波动的影响。在实验研究内容中,重点对热虹吸管传热性能具有较大影响的参数进行了分析。完成了对充装率、倾角、热流密度、传热极限等因素的研究,得到了实验条件下的相关准则方程。采用螺旋内置物、添加第三相等方法进行强化传热和抑制气泡的实验研究,给出实验条件下相关传热性能和强化传热准则方程。
     第二部分以热虹吸传热过程的非线性特征分析为主线,采用频谱分析,人工神经网络,ARIMA模型等工具,对热虹吸传热振荡过程进行预测和动态建模。进一步采用不变变换的相似约化方法等数学工具,将表述热虹吸传热过程的偏微分方程组演化为具有和Lorenz方程组形式一致的常微分方程组。通过在Maple(V9.0)平台上建立符号运算过程,从数学的角度严格证明了热虹吸传热过程是具有和Lorenz方程完全相同混沌特征的系统。在此基础上,分析了热虹吸传热的稳定性、分岔特征、稳定临界值等问题。应用G-P算法
The 21st century is the epoch when people attach importance to the energy and environmental protection. Compared with many other developed countries, there are still large number of problems of energy actuality in our country, for example, low energy utilization level and renewable energy proportion, and the ratio of investment to output falls far behind international advanced level. The main specific performance is the massive hot working device thermal efficiency is comparatively low, much industry valuable afterheat wasted. Therefore, the research on both highly effective energy recycling and heat transfer enhancement technologies, as well as the research and development on all kinds of highly effective heat transfer elements, is always the important domain to which researchers devote themselves.Evaporation, condensation, flow and heat transfers co-exist in the complicated work process, which presents marked non-linear dynamic system instability and chaos characteristics, of heal pipes and thermosyphons. The lack of research on its mechanism and characteristics leads to difficulty in the practical application of heat pipe or thermosyphon, for instance, in the application of control, prediction and design enlargement.Nowadays, the non-linear science has developed rapidly into foreland and hot spot, the research and application of which involve nearly all domains of both natural and social sciences. So far it has become a highly concerned interdisciplinary and important theoretical method. Moreover, with the development of non-linear science and computer technology, more and more people are ready to accept chaos theory and apply it in various research areas.Taking the oscillatory occurrences in thermosyphon process as breakthrough point, the frequency spectrum analysis of temperature fluctuation signal as base, the artificial neural network (ANN) forecast model and non-linear theory as study tool and the unstable phenomenon of heat transfer process, identified as chaos phenomenon, in thermosyphon as basic research objective, this dissertation focuses on the instability and basic mechanism in heat transfer process and disclosing its essence of oscillatory heat transfer with non-linear theory and method describing the chaos phenomenon in the thermosyphon heat transfer.The research work is mainly divided into two parts.The first research part is on unsteady thermosyphon heat transfer process and its temperature fluctuation signal via heat-transfer performance experiment, describing the thermosyphon heat transfer oscillatory and unstable phenomena and studying method and mechanism of ther-
    mosyphon heat transfer intrinsic enhancement and the influence on heat transfer oscillation. The experimental research contents present the analysis of parameter, which greatly influences thermosyphon heat transfer properties. On completion of the research on filling factor, inclination angle, heat flux density and heat transfer limit, it acquired dependent dimensionless criterion equations under experimental condition. The heat transfer enhancement and bubble suppress experiment are conducted by means of adding third phase to work fluid and helical inserts, drawing the correlation heat-transfer property and the heat transfer criterion equation under experimental condition.Having non-linear characteristic analysis of thermosyphon heat transfer process as a master line, the second part adopts frequency spectrum analysis, artificial neural network, and ARIMA model as tools to try thermosyphon heat transfer vibration process forecast and the dynamic modeling prediction. Furthermore, it adopts mathematical method named invariant transformation similar reduce to change the Partial Differential Equation (PDE), which presents thermosyphon heat transfer process, into the Ordinary Differential Equation (ODE) identical to the Lorenz system in form. By means of symbolic operation process on the platform of Maple (V9.0), it strictly proves by mathematics that thermosyphon process is identical to the Lorenz equation with the same chaos characteristic. Thermosyphon stability, bifurcation, stable critical value and so on are analyzed based on it. The G-P algorithm and the Wolf method are adopted for computer program writing to process the time series data obtained from thermosyphon heat transfer experiment. Obtained by experimental data extraction, the correlation dimension (D2) and the maximum Lyapuonv exponent (λ1) concerning essential chaos characteristics may be used for quantitative description of complexity and the non-linear characteristics in thermosyphon process. They are also the essential criterion to identify thermosyphon heat transfer in chaos and the necessary index to predict and control over the thermosyphon heat transfer chaos. Taking the heat pipe with obvious characteristic of temperature fluctuation, the quantitative research, which is on the relationship between chaos characteristic and operating condition in thermosyphon heat transfer process, compares the inherent conformance in the maximum Lyapuonv exponent distribution and frequency and spectral analysis. As an important index that presents a quantitative description of chaos in thermosyphon heat process, the maximum Lyapuonv exponent may demonstrate more objectively the internal systematic non-linear attributes. The research result indicates that thermosyphon process is characteristic of chaos essence and of intrinsic difference from the stochastic process.Moreover, as an important complement to the non-linear research, the dissertation, based on irreversible thermodynamics theory, analyzes thermodynamics properties of thermosyphon heat
    transfer process and; trying minimum entropy production theory analysis and optimization from second law of thermodynamics; puts forward a new reasoning of heat pipe operating conditions and design optimization.
引文
[1] 庄骏,张红.热管技术及其工程应用.化学工业出版社,北京,2000.
    [2] 张红.热管式氨合成塔的研究—回路热管蒸发段管内两相流和最适宜反应温度控制的研究.[Ph.D.thesis],南京工业大学,1999.
    [3] 张光玉.高温热管蒸汽发生器若干基础闯题研究.[Ph.D.thesis],南京工业大学,1999.
    [4] 陈伟.高温热管翅的研究.[Ph.D.thesis],南京工业大学,2001.
    [5] 陈丹.高温热管换热器的模拟优化研究.[Master's thesis],南京工业大学,2002.
    [6] 李亭寒,李劲东,曹黎明,项立成.微型热管的稳态模化分析及其试验研究.中国空间科学技术,1997.17(6):22-27.
    [7] 李劲东,李亭寒.热管内部流动与传热问题的模化分析.中国空间科学技术,1997.17(3):9-13.
    [8] 杨蔚原.脉动热管的运行与传热研究.[Master's thesis],中科院工程热物理所,2001.
    [9] 赵安林.R600a在重力热管散热器中的工作实验研究.[Master's thesis],重庆大学,2002.
    [10] 吴治娟.CPU重力热管使用不同天然工质时的传热特性实验研究.[Master's thesis],重庆大学,2002.
    [11] 万长军.异丙苯在几种高效传热管中相交传热与流动特性的研究.[Master's thesis],西安交通大学,2001.
    [12] 郭雪华.热管式真空蒸发器的设计和试验研究.[Master's thesis],大连理工大学,2000.
    [13] 李廷寒,华诚生。热管设计与应用.化学工业出版社,北京,1987.
    [14] 洪宇平.小型热板传热机理研究.[Master's thesis],南京理工大学,2000.
    [15] 池田义雄,伊藤谨司,槌田昭.实用热管技术.化学工业出版社,北京,1988.
    [16] H. F. Smirnov and B. V. Kosoy. Refrigerating heat pipes. Applied Thermal Engineering, 2001. 21(6):631-641.
    [17] S. B. Riffat and A. Holt. A novel heat pipe╱ejector cooler. Applied Thermal Engineering, 1998. 18(3-4):98-101.
    [18] 刘震炎,卢允庄.冷管型太阳能制冷系统.热能动力工程2000.15(6):587-589.
    [19] T. Nguyen, P. Johanson, and A. Akbarzadeh. Design, manufacture and testing of a closed cycle ther- mosyphon Rankine engine. Heat Recovery System and CHP, 1995. 15(4): 333-346.
    [20] A. Akbarzadeh, P. Johanson, and T. Nguyen. Formulation and analysis of the heat pipe turbine for pro- duetion of power from renewable sources. Applied Thermal Engineering, 2001. 21(5): 1551-1563.
    [21] 居怀明,徐元辉,钟大辛.化学热管系统在高温堆上的应用.清华大学学报(自然科学版),1995.35(6):59-63.
    [22] A. Steinfeld and M. Epstein. Light years ahead. Chemistry in Britain, 2001. 37(5): 30-32.
    [23] D. Liepmann. Design and fabrication ofa micro-CPL for chip-level cooling. 2001 ASME International Mechanical Engineering Congress and Exposition. New York, 2001.
    [24] J. Kirshberg, K. L. Yerkes, and D. Liepmann. Demonstration of a micro-CPL based on MEMS fabrication technologies. 35th Intersociety Energy Conversion Engineering Conference. Las Vegas, USA, 2000 pp. 1198-1204.
    [25] J. B. Keller. Periodic oscillations in a model of thermal convection. Journal of Fluid Mechanics, 1966. 26(3): 599-606.
    [26] P. Welander. On the oscillatory instability of a differentially heated fluid loop. Journal of Fluid Mechanics, 1967. 29(1):17-30.
    [27] H. F. Creveling, J. F. DePaz, J. Y. Baladi, and R. J. Schoenhals. Stability characteristics of a single-phase free convection loop. Journal of Fluid Mechanics, 1975. 67: 65-84.
    [28] R. Greif, Y. Zvirin, and A. Mertol. The transient and stability behavior of a natural convection loop. Transactions of the ASME, 1979. 101: 684-688.
    [29] E. Waeholder, S. Kaizerman, and E. Elias. Numerical analysis of the stability and transient behavior of natural convection loops. International Journal of Engineering Science, 1982. 20:1235-1254.
    [30] A. Mertol, R. Creif, and A. Giz. The transient, steady-state, and stability behavior of a toroidal ther- mosyphon with a parallel flow heat exchanger. Journal of Solar Energy Engineering, 1983. 105: 58-65.
    [31] A. S. Lavine. A three-dimensional analysis of natural convection in a toroidal loop. [Ph.D. thesis], University of California, 1984.
    [32] A. Mertol, A. Lavine, and R. Greif. A study of the variation of the pressure in a natural circulation loop. International Journal of Heat and Mass Transfer, 1984. 27: 630-633.
    [33] J. E. Hart. A new analysis of the closed loop thermosyphon. International Journal of Heat and Mass Transfer, 1984. 27: 125-136.
    [34] J. E. Hart. A note on the loop thermosyphon with mixed boundary conditions. International Journal of Heat and Mass Transfer, 1985. 28(5): 939-947.
    [35] A. S. Lavine, R. Greif, and L Humphrey. Three dimensional analysis of natural convection in a toroidal loop: Effect of tilt angle. Journal of Heat Transfer, 1986. 108: 796-805.
    [36] A. S. Lavine, R. Greif, and J. A. Humphrey. A three-dimensional analysis of natural convection in a toroidal loop—the effect of grashof number. International Journal of Heat and Mass Transfer, 1987.30(2): 251-262.
    [37] C. H. Stem, R. Greif, and J. A. Humphrey. An experimental study of natural convection in a toroidal loop. Journal of Heat Transfer, 1988. 110: 877-884.
    [38] O. Sano. Cellular structure in a natural convection loop and its chaotic behaviour, i. experiment. Fluid Dynamics Research, 1991. 8: 189-204.
    [39] O. Sano. Cellular structure in a natural convection loop and its chaotic behaviour, ii. theory. Fluid Dynamics Research, 1991. 8: 205-220.
    [40] Y. Wang and J. Singerand H. H. Bau. Controlling chaos in a thermal convection loop. Journal of Fluid Mechanics, 1992. 237: 479-498.
    [41] J. J. L. Velazquez. On the dynamics of a closed thermosyphon. SIAM Journal on Applied Mathematics, 1994. 54(6): 1561-1593.
    [42] P. K. Yuen and H. H. Bau. Rendering a subcritieal Hopf bifurcation supererifieal. Journal of Fluid Mechanics, 1996. 317: 91-109.
    [43] W. Ambrosini and J. Ferreri. The effect of truncation error on the numerical prediction of linear stability boundaries in a natural circulation single-phase loop. Nuclear Engineering and Design, 1998. 183(1): 53-76.
    [44] A. Rodriguez-Bernal and E. S. Van Vleck. Diffusion induced chaos in a closed loop thermosyphon. SIAM Journal on Applied Mathematics, 1998. 58(4): 1072-1093.
    [45] L. Lin and A. Faghri. An analysis of two-phase flow stability in a thermosyphon with tube separator. Applied Thermal Engineering, 1998. 18(6): 441-455.
    [46] T. R. Bewley. Linear control and estimation of nonlinear chaotic convection: Harnessing the butterfly effect. Physics of Fluids, 1999. 11: 1169-1186.
    [47] Agela Jimenez-Casas. Finite-dimensional asymptotic behavior in a thermosyphon including the soret effect. Mathematical Methods in the Applied Sciences, 1999. 22:117-137.
    [48] W. Ambrosini and J. C. Ferreri. Stability analysis of single-phase thermosyphon loops by finite-difference numerical methods. Nuclear Engineering and Design, 2000. 201: 11-23.
    [49] Angela Jimenez-Casas and Alfonso Matias Lozano Ovejero. Numerical analysis of a closed-loop ther- mosyphon including the Sorer effect. Applied Matematics and Computation, 2001. 124(3): 289-318.
    [50] Angela Jimenez-Casas. A coupled ODE/PDE system governing a thermosyphon model Nonlinear Analy- sis, 2001. 47(1): 687-692.
    [51] J. C. Ferreri and W. Ambrosini. On the analysis of thermal-fluid-dynamic instabilities via numerical diseretization of conservation equations. Nuclear Engineering and Design, 2002. 215(1-2): 153-170.
    [52] W. Ambrosini and J. C. Ferreri. Prediction of stability of one-dimensional natural circulation with a low diffusion numerical scheme. Annals of Nuclear Energy, 2003. 30(15): 1505-1537.
    [53] M. Malani, W. J. M. de Kruijf, and W. Ambrosini. An analytical model for the determination of stability boundaries in a natural circulation single-phase thermosyphon loop. International Journal of Heat and Fluid Flow, 2003. 24(6): 853-863.
    [54] H. Farsi, J. Joly, M. Miscevic, V. P., and N. Mazet. An experimental and theoretical investigation of the transient behavior of a two-phase closed thermosyphon. Applied Thermal Engineering, 2003. 23(15):1895-1912.
    [55] M. Maiani and B. Montagnini. A Galerkin approach to the boundary element-response matrix method for the multigroup neutron diffusion equations. Annals of Nuclear Energy, 2004. 31(13): 1447-1475.
    [56] 尹晔东,王运东,费维扬.激光多普勒测速仪在化学工程中的应用.现代化工,2000.20(2):15—18.
    [57] Y. Y. Jiang, M. Shoji, and M. Naruse. Boundary condition effects on the flow stability in a toroidal thermosyphon. International Journal of Heat and Fluid Flow, 2002. 23(1): 81-91.
    [58] M. A. Islam, M. Monde, and M. Z. Hasan. Experimental study of critical heat flux in concentric-tube open thermosyphon. International Journal of Heat and Fluid Flow, 1998. 41(23): 3691-3704.
    [59] M. K. K. Shiralshi and T. Yamanishi. Investigation of heat transfer characteristics of a two-phase closed thermosyphon. Proceedings of the 4th International Heat Pipe Conference. London, 1981.
    [60] Z. Ventsislav. Extended performance evaluation criteria for enhanced heat transfer surfaces: heat transfer through duets constant heat flux. International Journal of Heat and Mass Transfer, 2001. 44: 169-180.
    [61] Y. C. Kweon and M. H. Kim. Experimental study on nucleate boiling enhancement and bubble dynamic behavior in saturated pool boiling using a nonuniform de electric field. International Journal of Multiphase Flow, 2000. 26(8): 1351-1368.
    [62] M. A. Zampino. Embedded heat pipes in cofired ceramic substrates for enhanced thermal management of electronics. [Ph. D. thesis], Florida International University, 2001.
    [63] 唐志伟.工业热管关键技术及蒸发段多相流过程的研究.[Ph.D.thesis],北京科技大学,2000.
    [64] S. Basu. Experimental study and thermal modeling vapor bubble heat pipe operation in a convection-free environment. [Ph. D. thesis], Rensselare Polytechnic Institute, 2002.
    [65] M. Shiotsu and K. Hama. Film boiling heat transfer from a vertical cylinder in forced flow of liquids under saturated and subcooled conditions at pressures. Nuclear Engineering andDesign, 2000. 200(1-2): 23-38.
    [66] S. Mihara and M. Monde. Characteristics of critical heat flux in two phase thermosyphon-relationship between maximum falling liquid rate and instability on interface of falling liquid film. Heat and Mass Transfer, 1998. 34(2): 135-142.
    [67] K. Takeuchi, M. E. Nissley, and M. Y. Young. Analyses of subcooled CCFL tests for evaluation of WCO- BRA╱TRAC applicability. Nuclear Engineering andDesign, 1998. 185(2-3): 127-140.
    [68] M. S. E1-Genk and H. H. Saber. Determination of operation envelopes for closed, two- phase ther- mosyphons. International Journal of Heat and Mass Transfer, 1999. 42(5): 889-903.
    [69] M. Monde, Y. Mitsutake, and T. Hataya. Critical heat flux in a two-phase thermosyphon: relationship between maximum falling liquid rate and instability on interface of falling liquid film. Heat Transfer- Japanese Research, 1997. 26(6):372-384.
    [70] 安鸿志,陈敏.非线性时间序列分析.上海科学技术出版社,上海,1st ed.,1998.
    [71] 杨叔子,吴雅.时间序列分析的工程应用.上册.华中理工大学出版社,武汉,1996.
    [72] Y. Tsuji, S. Matsueda, M. Oda, and et al. Visualization and correlation analysis of counter- current two- phase flow in a thermosyphon by neutron radiography. Nuclear Instruments and Method in physics Re- search, 1996. 377(1): 148-152.
    [73] Y. Mi, M. Ishii, and L. H. Tsoukalas. Investigation of vertical slug flow with advanced two-phase flow instrumentation. Nuclear Engineering and Design, 2001. 204(1-3):69-85.
    [74] 潘祖梁,陈仲慈。工程技术中的偏微分方程。浙江大学出版社,杭州,1995。
    [75] B. Abdel-Hamid. Exact solutions of some nonlinear evolution equations using symbolic computations. Computers and Mathematics with Applications, 2000. 40(2-3):291-302.
    [76] W. X. Ma and B. Fuehssteiner. Explicit and exact solutions to a kolmogorov-petrovskii-piskunov equation. International Journal of Non-Linear Mechanics, 1996. 31(3): 329-338.
    [77] E. G. Fan. Traveling wave solutions for nonlinear equations using symbolic computation. Computers and Mathematics with Applications, 2002. 43(6-7): 671-680.
    [78] F. D. Xie and X. S. Gao. Exact travelling wave solutions for a class of nonlinear partial differential equa- tions. Chaos, Solitons and Fractals, 2004. 19(5): 1113-1117.
    [79] 王树禾.微分方程模型与混沌.中国科学技术出版社,合肥,1999.
    [80] R. T. LAHEY. Modem developments in multiphase flow and heat transfer—engineering applications of fraetal and chaos theory. [teeh. rep.], Center for Multiphase Researeh(CMR), Rensselaer Polytechnic Institute, USA, 2002.
    [81] T. J. Lin, R. C. Juang, and C. C. Chen. Characterizations of flow regime transitions in a high-pressure bub- ble column by chaotic time series analysis ofpressure fuctuation signals. Chemical Engineering Science, 2001. 56(6): 6241- 6247.
    [82] 张冀宁.混沌分析方法及其在气-固流化床压力波动中的应用.[Master's thesis],四川大学,2000.
    [83] 段文锋.混沌分析方法及其在气-固流化床中的应用.[Ph. D. thesis],四川大学,2001.
    [84] 马丽萍.循环流化床波动信号的非线性分析.[Ph. D. thesis],四川大学,2002.
    [85] 袁竹林,沈湘林,徐益谦.流化床内壁温度时间序列吸引子的研究.东南大学学报,1995.25(2):12-18.
    [86] 唐晓军,刘勇,杨宏旻,顾璠,徐益谦.燃煤流化床燃烧声波混沌特性研究.燃烧科学与技术,1997.3(1):63-69.
    [87] 程易,魏飞,林仟,金涌,俞芷青.垂直气固并流上行/下行系统完全发展段的混沌研究。化工学报,1998.49(2):63-69.
    [88] 白博峰,郭烈锦,陈学俊.空气水两相流压力波动现象非线性分析.工程熟物理学报,2001.22(3):359-262.
    [89] 顾丽莉,杨劲,王力红,石炎福.多相反应器中压力波动信号的非线性分析.昆明理工大学学报(理工版),2003.28(2):69-76.
    [90] 马丽萍,石炎福,黄卫星,余华瑞,祝京旭(加拿大).循环流化床压力波动信号的间歇性分析.化工学报,2003.54(5):619-624.
    [91] 赵明,杨沫,李娟.横掠管束周期性充分发展对流换热的混沌分析.工程热物理学报,2004.25(2):289-270.
    [92] 周玉文,刘兴坡.污水流量序列关联维数的计算.北京工业大学学报,2004.30(2):190-194.
    [93] T. Lemenand and H. Pcerhossaini. A thermal model for prediction of the nusselt nurnber in a pipe with chaotic flow. Applied Thermal Engineering, 2002. 22(2): 1717-1730.
    [94] R. T. Dobson. Theoretical and experimental modelling of an open oscillatory heat pipe including gravity. International Journal of Thermal Sciences, 2004. 43(1): 113- 119.
    [95] A. Pacheco-Vega, W. Franco, H. C. Chang, and M. Sen. Nonlinear analysis of tilted toroidal thermosyphon models. International Journal of Heat and Mass Transfer, 2002. 45(7): 1379-1391.
    [96] 胡德文,董国华.混沌控制:回顾与展望.国防科技大学学报,2000.22(1):77-80.
    [97] 张琪昌,王洪礼,周致文等.分岔与混沌理论及应用.天津大学出版社,天津,2005.
    [98] H. Kantz and T. Schreiber. Nonlinear time series analysis. Cambridge Unversity Press, Cambridge, 2000.
    [99] M. Ham Fredric and Ivica Kostanic. Priciples of Neurocomputing for Science and Engineering. 机械工业出版社,北京,2003。
    [100] 韩力群编著.人工神经网络理论、设计及应用.化学工业出版社,北京,2002.
    [101] 魏诺.非线性科学基础与应用.科学出版社,北京,1st ed.,2004.
    [102] 靳蕃.神经计算智能基础—原理.方法.西南交通大学出版社,成都,2000.
    [103] 王伟.人工神经网络原理—入门与应用.北京航空航天大学出版社,北京,1st ed.,1995.
    [104] 闻新,周露,王丹力,熊晓英.Matlab神经网络应用设计.科学出版社,北京,2001.
    [105] 尚智.小波分析和人工神经网络方法在气液两相流动热工分析中的应用研究.[Ph. D. thesis],西安交通大学,2000.
    [106] S. A. Kalogirou. Applications of artificial neural networks for energy systems. Application Energy, 2000. 67(1-2): 17-35.
    [107] 尚智,刘瑞兰,苏光辉.基于神经网络的小波分析在两相流不稳定性中的应用.核动力工程2000.21(5):407-410.
    [108] 吴建锋,何小荣,陈丙珍.动态系统前馈神经网络模型及其应用.化工学报,2000.51(3):378-382.
    [109] 张传斌,王学孝,邓正隆.线性时间序列的RBF神经网络预测方法及其应用.热能动力工程,2001.16(3):311-312,342.
    [110] 滕虎,王永胜,姚平经.时间序列神经网络动态建模研究.大连理工学报,2002.42(2):163-167.
    [111] 邓超,史鹏飞.基于径向基函数网络的MH/Ni电池建模及容量预测.化工学报,2004.55(3):673-677.
    [112] 安娜,潘立登.基于RBF神经网络的流向变换催化燃烧反应器的温度预测.化工学报,2004。55(3):360-365.
    [113] 崔晓钰,翁建华,M.Groll.基于神经网络的振荡热管传热性能建模.化工学报,2003.54(9):1319-1322
    [114] A. Fichera and A. Pagano. Neural network-based prediction of the oscillating behaviour of a closed loop thermosyphon. International Journal of Heat and Mass Transfer, 2002. 45(18): 3875-3884.
    [115] 童均耕.管内流动传热传质的熵产分析.高校化学工程学报,1991.5(1):33-37.
    [116] Z. M. Xu, S. R. Yang, and Z. Q. Chen. A modified entropy generation number for heat exchangers. Journal of Thermal Science, 1996. 5(4): 257-263.
    [117] 熊大曦,李志信,过增元.换热器的效能与熵产分析.工程热物理学报,1997.20(1):90-94。
    [118] 吴双应,李友荣.关于换热器热力学性能评价指标的分析与讨论.重庆大学学报(自然科学版),1997.20(4):54-59.
    [119] 高翔,骆仲泱,周劲松,倪明江,岑可法.单位熵产分析法在强化传热研究中的应用.化工学报,1998.49(5):639-643.
    [120] 吴双应,李友荣,曾丹苓.换热管传热过程的熵产分析.重庆大学学报(自然科学版),2001.24(2):92-95.
    [121] 徐百平,江楠,雷鸣.强化传热效能的比墒产数工况评价方法.石油炼制与化工,2000.31(6):46-50.
    [122] 李大鹏,孙丰瑞,焦增庚.传热与流动系统熵产生的研究与进展.能源研究与信息,2000.16(3):40-46.
    [123] S. J. Hyder and B. S. Yilbas. Entropy analysis of conjugate heating in a pipe flow. International Journal of Energy Research, 2002. 26(3): 253-262.
    [124] H. Khalkhali, A. Faghri, and Z. J. Zuo. Entropy generation in a heat pipe system. Applied Thermal Engineering, 1999. 19(10): 1027-1043.
    [125] L. C. Lin and A. Faghri. Heat transfer in micro region of a rotating miniature heat pipe. International Journal of Heat and Mass Transfer, 1999. 42(8): 1363-1369.
    [126] K. A. R. Ismail and M. A. Zanardi. A steady-state model for heat pipe circular or rectangular cross-sections. Applied Thermal Engineering, 1996. 16(8-9): 753-767.
    [127] K. A. R. Ismail and M. A. Zanardi. Two-dimensional axisymmetrical model for rotating porous wicked heat pipe. Applied Thermal Engineering, 1997. 17(2): 135-155.
    [128] H. Y. Kim, S. Koyama, and W. Matsumoto. Flow pattern and flow characteristics for counter-current two-phase flow in a vertical tube with wire-coil inserts. International Journal of Multiphase Flow, 2001. 27(12): 2063-2081.
    [129] J. S. Lee and C. J. Kin. Heat transfer and internal flow characteristics of a coil-inserted rotating heat pipe. international Journal of Heat and Mass Transfer, 2001. 44(18): 3543-3551.
    [130] W. R. McGillis, L S. Fitch, W. R. Hamburgen, and V. P. Carey. Pool boiling enhancement techniques for water at low pressure. [Tech. Rep.] 90╱9, WRL(Westem Research Laboratory, USA) Research Report, 1990.
    [131] 陈骁,李俊明,戴闻亭,王补宣.细圆管内纳米悬浮液强化对流换热的探讨.工程热物理学会传热传质会议论文集.北京,2003.
    [132] 刘国维,单岩昆,黄鸿鼎.两相闭式热虹吸管的强化传热.华东工业大学学报,1991.42(1):66-72.
    [133] 黄定寅,辛明道,石程名.两相闭式热虹吸管的强化传热实验研究.节能技术,1993.11(4):6-10.
    [134] 张红,庄骏.热管内部强化传热安全及寿命的研究.南京化工大学学报,2001.21(1):68-73.
    [135] 童明伟,童庆明,陈礼,张洪济.N-甲基吡咯烷酮两相闭式热虹吸管传热特性的实验研究.工程熟物理学报,1995.15(2):185-189.
    [136] M. Wettermann and D. Steiner. Flow boiling heat transfer characteristics of wide-boihng mixtures. Inter- naional Journal of Thermal Science, 2000. 39(2): 225-235.
    [137] T. Kiatsiriroat, A. Nuntaphan, and J. Tiansuwan. Thermal performance enhancement of thermosyphon heat pipe with binary working fluids. Experimental Heat Transfer, 2000. 13(3): 137-152.
    [138] J. K. Barbosa and G. F. Hewitt. Forced convective boiling of binary mixtures in annular flow. Part I: liquid phase mass. transport. International Journal of Heat and Mass Transfer, 2001. 44(8): 1465-1474.
    [139] A. Nuntaphan, J. Tiansuwan, and T. Kiatsiriroat. Enhancement of heat transport in thermosyphon air preheater at high temperature with binary working fluid: A case study of teg-water. Applied Thermal Engineering, 2002. 22(3): 251-266.
    [140] 马虎根,蔡祖恢.非共混合工质微翅管内强制对流蒸发换热计算.工程热物理学会传热传质会议论文集.北京,2003.
    [141] 李瑞阳,陈赉宝,陈之航,袁益超.EHD强化传热机理分析.华东工业大学学报,1996.18(4):5-12.
    [142] W. Ambrosini and J. C. Ferreri. Stability analysis of single-phase thermosyphon loops by finite-difference numerical methods. Nuclear Engineering andDesign, 2000. 201(1): 11-23.
    [143] GB/T14812-93.重力热管传热性能试验方法,1993.中华人民共和国国家标准.
    [144] 南照东,谭志成,孙立贤.高效热管传热工质的热力学研究.物理化学学报,2003.19(9):883-885.
    [145] 昂雪野,董钧昌,潘巨林.热虹吸管内脉冲沸腾频率的研究.齐齐哈尔轻工学院学报,1994.10(1):11-16.
    [146] 昂雪野,董钧昌,潘巨林.热虹吸管内脉冲沸腾强度的研究.齐齐哈尔轻工学院学报,1995.11(1):16-19.
    [147] T. F. Lin, W. T. Lin, Y. L. Tsay, and J. C. Wu. Experimental investigation of geyser boiling in an annular two-phase dosed thermosyphon. International Journal of Heat and mass transfer, 1995. 38(2): 295-307.
    [148] H. Kuncor, Y. F. Rao, and K. Fukuda. An experimental study on the mechanism of geysering in a closed two-phase thermosyphon. International Journal of Multiphase Flow, 1995. 21(6): 1243-1252.
    [149] 林春花,舒水明.内螺纹重力热管冷凝段的特性研究.华中科技大学学报(自然科学版),2002.30(8):68-70.
    [150] 龙恩深,辛明道,陈远国.抑泡孔管沸腾传热的实验研究.工程热物理学报,1989.10(1):59-61.
    [151] 张恒运,葛新石.两相闭式热虹吸管的集总参数模型研究.中国科学技术大学学报,1997.27(2):174-180.
    [152] Z. J. Zou and A. Faghri. A network thermodynamie analysis of the heat pipe. International Journal of Heat Mass Transfer, 1998. 41(11): 1473-1484.
    [153] 曹玉璋.实验传热学.国防工业出版社,北京,2000.
    [154] 孙丹.临界压力区光管和内螺纹管不同加热方式的传热特性研究.[Ph.D.thesis],西安交通大学,2002.
    [155] X. L. Li, J. P. Wen, and Y. K. Shah. Condensing heat transfer in an advanced two-phase closed ther- mosyphon. Chinese Journal of Chemical Engineering, 1996. 4(1): 85-89.
    [156] 滕素珍,姜炳蔚,任玉杰,李浩.数理统计.大连理工大学出版社,大连,2nd ed.,1996.
    [157] 洪楠主编,洪楠,侯军,李志辉编著.Statistica for Windows统计与图表分析教程.清华大学出版社,北方交通大学出版社,北京,2002.
    [158] 曾庆衿.热管三相复合介质传热实验研究.太阳能学报,1994.15(4):406-408.
    [159] H. T. Chien, C. W. Chang, P. H. Chen, and P. P. Ding. Improvement on thermal performance of circular heat pipe with nanofluid. 13th Intemational Heat Pipe Conference. Shanghai, 2004.
    [160] S. H. Rhi, K. Cha, K. W. Lee, and Y. Lee. A two-phase loop thermosyphons with nanofluids. 13th International Heat Pipe Conference. Shanghai, 2004.
    [161] 戴闻亭,李俊明,陈骁,王补宣.细圆管内纳米悬浮液对流换热的实验研究.工程热物理学报,2003.24(4):406-408.
    [162] 马庆芳,方荣生,项立成,离舜.实用热物理性质手册.中国农业机械出版社,北京,1986.
    [163] A. Sakurai. Mechanisms of transitions to film boiling at CHFs in subcooled and pressurized liquids due to steady and increasing heat inputs. Nuclear Engineering and Design, 2000. 197(3): 301-356.
    [164] W. R. McGillis, J. S. Fitch, W. R. Hamburgen, and V. P. Carey. Pool boiling on small heat dissipating ele- ments in water at subatrnospheric pressure. [Tech. Rep.] 91╱7, WRL(Westrn Research Laboratory, USA) Research Report, 1990.
    [165] W. R. McGillis, J. S. Fitch, W. R. Hamburgen, and V. P. Carey. Pool boiling enhancement techniques for water at low pressure. [Tech. Rep.] TN23, WRL(Western Research Laboratory, USA) Research Report, 1992.
    [166] 胡广书.数字信号处理—理论、算法与实现.清华大学出版社,北京,1997.
    [167] Y. S. Lee, Y. E Lee, and Y. Lee. The effect of surfacr tension and wire diameter on the rise velocity of a bubble in a miniature two-phase closed thermosyphon. Nuclear Engineering and Design, 1996. 16(8- 9): 655-668.
    [168] 黄润生.混沌及其应用.武汉大学出版社,武汉,2000.
    [169] 龙运佳,梁以德.近代工程动力学—随机.混沌.科学出版社,北京,1998.
    [170] Y. Z. Chen and X. W. Ding. Exact travelling wave solutions of nonlinear evolution equations in (1+1) and (2+1) dimensions. Nonlinear Analysis A—Theory Methods and Applications, 2005. 61(6): 1005-1013.
    [171] G. P. Williams. Chaos Theory Tamed. Joseph Henry Press, Washington, D. C., 1997.
    [172] 高隽.人工神经网络原理及仿真实例.机械工业出版社,北京,2003.
    [173] 徐丽娜.神经网络控制.电子工业出版社,北京,2003.
    [174] S. HayKin. Neural Network: A Comprehensive Foundation. Prentice Hall, Hamilton, 2nd ed., 2001.
    [175] A. S. S. Dorvloa, J. A. Jervaseb, and A. AI-Lawatib. Solar radiation estimation using artificial neural networks. Applied Energy, 2002. 71(4): 307-319.
    [176] 陈维汉,钱壬章.换热器传热过程的熵产分析.华中理工大学学报,1989.17(6):21-27.
    [177] L. L. Vasiliev and S. V. Konev. Thermodynamic analysis of heat pipe. Proceedings of the 7th International Heat Pipe Conference. Minsk, White Russia, 1990.
    [178] R. Richter and J. M. Gottschlich. Thermodynarnie aspects of heat pipe operation. Journal of Thermo- physics and Heat Transfer, 1994. 8: 334-340.
    [179] 陈光明,侯虞均.基于最小传热熵增的混合工质最佳组成.低温物理学报,1996.18(4):316-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700