烟草靶斑病菌(Rhizoctonia solani AG-3)遗传多样性、定量检测技术及转录组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草靶斑病(Rhizoctonia solani Kuhn)是一种严重影响烟草产量和品质的叶部病害,在许多国家造成了巨大的经济损失,国内2006年首次报道了该病害在丹东等地发生,迄今,国内外对烟草靶斑病菌相关研究较少,仅见本研究室对烟草靶斑病菌的生物学特性、遗传分化和致病机制等开展了基础性研究。为进一步探明烟草靶斑病菌的分子致病机制及病害流行规律,以期为该病害的防治提供理论依据,本文针对烟草靶斑病菌的致病类型、遗传多样性、定量检测和转录组学进行了系统深入研究,研究成果报道如下:
     1.明确了辽宁省烟草靶斑病菌存在着明显的生理分化现象,可划分为三个致病类型,即致病类型Ⅰ(强致病类型)、Ⅱ(中等致病类型)及Ⅲ(弱致病类型),以致病类型Ⅱ为优势种群,分析认为致病类型与菌株地区来源间没有明显相关性。
     对来源于不同地区的烟草靶斑病菌基因组ITS序列区进行了聚类分析,结果表各菌株间存在一定的差异,可将测试菌株分为两个ITS类群,进一步分析表明该类群划分与致病类型无明显相关性。
     2.建立并优化了适用于烟草靶斑病菌遗传多样性分析的SRAP反应体系,并对SRAP分组与菌株地区来源及致病类型间的关系进行了研究。选取多态性良好的初筛引物及优化后的反应体系对辽宁省烟草靶斑病菌进行PCR扩增,获得多态性条带743条,多态性百分比为98.4%,可将烟草靶斑病菌株划分为3个SGs类群;经分析SGs类群所表现出来的菌株基因组之间的多态性与菌株致病力相关,其中强致病类型菌株YC-9、YMC-2、LJT-8和DB-3都被聚合在SG I类群中,占SGI类群总数的66.7%;而弱致病力菌株LF-2、QYS-5和QYS-7都被聚合在SG Ⅱ类群。这表明SRAP分组与致病类型划分存在明显相关性,而与地区来源没有相关性;与不同融合群标准菌株分析比较表明,SRAP分组与融合群划分无明显相关性。国内外文献无此方面报道,本文为首次采用SRAP技术对烟草靶斑病菌致病类型及遗传多样性进行的研究。
     3.建立了烟草靶斑病菌的Real-time PCR定量检测体系,并应用该体系对烟草靶斑病进行早期定量检测,在接种侵染6h后便可检出YC-9菌株DNA,该体系也可以实时监测烟草靶斑病原菌在土壤中动态变化情况。参考NCBI数据库中R. solani不同融合群的ITS序列,设计了对R. solani AG-3特异的引物Rs TqF1/R4和探针QTqF1,并分别建立了适于检测烟草组织和土壤样品的Real-time PCR反应体系。应用该体系对接种烟草靶斑病菌的烟草叶片进行检测结果表明:在接种后6h后即可检测到烟草靶斑病菌,远早于接种36h后观察到可见病原菌子实体结构;采用该体系对各月发病烟田土壤样品定量结果表明:烟草靶斑病菌的群体随不同月份呈现动态变化趋势。自5月中下旬土壤中烟草靶斑病菌拷贝数逐渐升高,到6月28日达到最高,此后开始下降,到8月9日降到最低,8月末烟草靶斑病菌在土壤中拷贝数开始增加,直到1月21日达到最高,此后烟草靶斑病菌下降至4月份达到最低水平。本文为国内外首次建立并应用Real-time PCR技术对烟草靶斑病菌进行的定量检测研究。
     4.首次建立了烟草靶斑病菌转录组数据库,为分析烟草靶斑病菌的基因结构及其功能奠定了基础。采用转录组测序以及短序列组装,与烟草互作的T1靶斑病菌样品和未互作的T2对照样品经组装分别获得630125和562259个Contigs,N50值分别为96nt和104nt;经Transcripts组装后,T1和T2分别获得21206和20400条转录本序列,N50分别为1213bp和1247bp;最终共获得21779条Unigenes,平均长度为873nt,N50值为1339nt,较全面的获得了烟草靶斑病菌转录组数据库。
     5.通过对上述获得的烟草靶斑病菌转录组数据库的分析,首次对其Unigenes和差异表达基因进行了功能信息注释及代谢途径分析,进而从转录组水平阐明了烟草靶斑病菌的分子致病机理。
     采用Blastx软件比对全部Unigenes,其中14389条Unigenes被注释,与担子菌同源最高,其中包含植物病原担子菌T. cucumeris和R. solani等;经GO功能分类分析,共有5976条Unigenes被归类到48个功能类别中,其中生物代谢过程及催化活性和结合作用的分子功能最多;通过COG功能分类,共有5458条Unigenes被归类到25个功能类别中,其中预测功能,复制、重组和修复功能,碳水化合物运输和代谢功能的基因最多;经过KEGG代谢通路的分析,共有3820条基因被注释到158个信号通路中,其中注释到染色体通路、DNA修复和重组蛋白通路、剪接体通路、肽酶通路、泛素系统代谢通路和DNA复制蛋白中的基因较多。
     采用RPKM法进行差异表达基因分析,共获得827条差异表达基因,得到注释的有730条。通过GO和COG功能分类以及KEGG通路富集分析,差异表达基因多是参与蛋白质合成过程的相关基因,其中包括核糖体蛋白、转录因子、翻译因子、延伸因子等相关功能基因。
Tobacco target spot caused by Rhizoctonia solani AG-3was one of the most economically important diseases of tobacco leaf and occurs in many countries. It was first reported at Dandong city of China in2006. There was a little report about the biological characteristics, genetic differentiation and pathogen mechanism of the pathogen. In this dissertation, the genetic diversity, quantitative detection technique and transcriptome analysis of R. solani AG-3were systematically and intensively studied, the results were as follows:
     1. There were an obvious physiological differentiation among R. solani AG-3from Liaoning province, and three pathotypes, which contain pathotype I, II and III with strong, medium and weak pathogenicity respectively, were determined.
     Some differences of ITS region of R. solani AG-3are founded. There was no correlation between the difference group and pathotypes of R. solani AG-3from tobacco.
     2. SRAP reaction system of R. solani AG-3from tobacco was firstly established, and genetic diversity of the R. solani AG-3from Liaoning province is analyzed by SRAP reaction system, and the relationships between SRAP groups (SGs) and the locality source of R. solani AG-3were elaborated. Using optimum reaction system and primarily screened SRAP primers which have a good polymorphism, a PCR amplication is performed, and743polymorphism DNA fragements were acquired, percentage of polymorphic loci was98.4%. R. solani AG-3strains from tobacco were divided into three SGs according to SRAP polymorphism between R. solani strains genom from tobacco. All strains with strong pathogenicity containing YC-9, YMC-2, LJT-8and DB-3strains were clusted in SG I, accouting for66.7%of the SG I; and all strains with weak pathogenicity clusted in SG II. The results showed that it is an obvious correlation between SGs and pathotype of strains but not between SGs and the locality source. Further more, there was no correlation between SGs and the anastomosis group. At present, the paper was firstly report relationship between pathotype and genetic diversity of R. solani AG-3from tobacco in the literature at home and abroad.
     3. Quantitative detection systems of R. solani AG-3from tobacco firstly established could be applied to early detect in tobacco tissue and determin dynamic changes in soil, and can fastly detect YC-9strain DNA post inoculation6h, and could also be used to montoring dynamic change of R. solani AG-3from tobacco in soil. Basing on ITS sequence of different anamosis group from NCBI, the specific primer Rs TqF1/R4and probe QTqFl were designed; Real-time PCR systems were respectively established to detece the pathogen from tobacco tissue and soil. The detection resulted show that DNA of R. solani YC-9strain from tobacco tissue was deteced post inoculation6h, and it was far earlier than post inoculation48h by observing the lesions. It was suggested the system was fit to early detect R. solani AG-3from tobacco. The quantitative results showed that R. solani AG-3from tobacco in soil has a dynamic change trend according to different monthly. The copies of R. solani AG-3from tobacco in soil had begun to increase since the mid to late May, and reach to the highest on June28; then it was decline until August9reach to the lowest. It reached the highest on January21, since then R. solani AG-3from tobacco began to decrease and reach to the lowest level in April.
     4. The firstly established transcriptome database of R. solani AG-3from tobacco could be as a foundation for analyzing its genes structure and function. Using the transcriptome sequencing and short sequence assembly, a total of630125and562259Contigs were respectively obtained from T1and T2samples, and N50is96and104nt, respectively. There were21206transcript sequences from T1with N501213bp and20400transcript sequences from T2with N501247bp, the average fragment length to836bp.21779Unigenes were received, and the average length was873nt with N50value1339nt. a comprehensive transcriptome database of R. solani AG-3from tobacco was established.
     5. Information of function of Unigenes is annotated and differentially expressed gene and these pathways related to pathogenicity of R. solani AG-3from tobacco were analyzed, and pathogenesis were illuminated in level of transcriptom. Through Blastx comparation, a total of14389unigenes were annotated its function. All annoated Unigenes were homology with basidiomycete's fungi containing the pathogens T. cucumeris and R. solani. Unigenes in the category of48kinds of Gene Ontology (GO) function, the most function is metabolic process in the biological process and the catalytic activity in molecular function and cell precess and binding functional genes. Unigenes were classified in the25clusters of orthologous groups (COGs), including prediction, replication, recombination and repair function, carbohydrate transport and metabolism. Through KEGG metabolic pathway analysis, a total of3820genes were annotated in158pathways. Among them, there were more genes annotated to the chromosomes, recombinant proteins and DNA repair pathways, splicing pathway, peptides, enzymes, metabolic pathway and DNA replication proteins of ubiquitin system.
     Through the analysis on transcriptomes of R. solani AG-3from tobacco by the RPKM method, the results showed that827differentially expressed genes (DEGs) were acquired and730genes were annoated. The GO and COG functional entaintment and KEGG pathway enrichment analysis of the expression pattern were performed, most of differentially expressed genes were involved in protein synthesis process, including ribosomal proteins, transcription factors, translation factor and elongtation factor, etc. These genes played important roles in pathogensis process of R. solani AG-3.
引文
1.曾莉,徐小万,李颖,等.2011.辣椒疫病抗病性状的SRAP标记.园艺学报38(增刊):2575.
    2.陈碧云,胡琼,Dixelius C,等.2010.利用SRAP分析核盘菌遗传多样性.生物多样性,18(5):509-515.
    3.陈长军,李俊,赵伟,等.2011.利用实时荧光定量PCR技术检测油菜菌核病菌.植物病理学报,41(5):516-525.
    4.丁翠珍,赵文军,寸东义,等.2010.兰花褐斑病菌实时荧光PCR检测.植物病理学报,40(3):235-241.
    5.伏颖,吴元华,穆凌霄,等.2011.烟草靶斑病菌基因组DNA提取及RAPD反应体系的优化.烟草科技,11:71-75,78.
    6.伏颖,赵秀香,赵艳琴,等.2012.烟草靶斑病侵染特性研究.中国烟草学报,18(5):56-59.
    7.伏颖.2011.烟草靶斑病菌遗传分化、侵染特性及致病机理研究.沈阳农业大学硕士论文.
    8.郝大程,马培,穆军,等.2012.中药植物虎杖根的高通量转录组测序及转录组特性分析.中国科学:生命科学,42(5):398-412.
    9.霍纳新.1999.小麦纹枯病病原菌遗传多样性分析和小麦品种资源抗病性鉴定.中国农业科学院硕士学位论文.
    10.金梅松,Korpradiskul V.1998. Isozyme analysis of genetic diversity among isolates of Rhizoctonia solani anastomosis group 1-IA (AG-1-I A).菌物系统,17(4):331-338.
    11.康振辉,黄俊丽.2010.土壤中烟草根黑腐病菌的实时定量PCR检测技术研究.植物病理学报,40(2):210-213.
    12.李琼,孔宝华,范静华,等.2011.应用TaqMan探针实时荧光定量PCR技术早期检测稻瘟病.植物病理学报,41(2):118-123.
    13.李宏图.2012.重编程诱导大鼠骨髓间充质干细胞向胰岛素分泌细胞分化的研究.中国医科大学博士学位论文.
    14.李园.2006.土壤消毒及土传病原真菌的分子生物学鉴定.中国农业科学院硕士学位论文.
    15.刘力,葛起新.1988.立枯丝核菌蛋白质电泳图谱研究Ⅰ.融合群与图谱的相关性.真菌学报,7(3):175-182.
    16.刘朋虎.2012.草菇同核、异核菌株间差异基因表达的研究.福建农林大学博士学位论文.
    17.柳李旺,龚义勤,黄浩,等.2004.新型分子标记-SRAP与TRAP及其应用.遗传,26(5):777-781.
    18.任小巍,王瑜,袁庆华.2012.正交设计优化草地早熟禾SRAP-PCR反应体系及引物筛选.草业科学,3:411-416.
    19.陶萌.2008.土壤中粉红粘帚霉67-1荧光定量PCR检测体系的建立及应用.中国农业科学院硕士论文.
    20.王斌.2010.基于RNA-Seq技术的米曲RIB40转录组学研究.华南理工大学博士学位论文.
    21.王辉,刘长远,赵奎华,等.2012.辽宁省辣椒疫病菌多态性及致病力分化研究初探.微生物学通报,39(2):180-190.
    22.王丽鸳.2011.基于EST数据库和转录组测序的茶树DNA分子标记开发与应用研究.中国农业科学院博士学位论文.
    23.王源超,丁国云,马志超,等.2000.棉花疫病菌和辣椒疫病菌核糖体基因ITS区域的克隆和序列分析.南京农业大学学报,23(3):33-36.
    24.吴元华,赵艳琴,赵秀香,等.2012.烟草靶斑病原鉴定及生物学特性研究.沈阳农业大学学报,43(5):521-527.
    25.吴元华,王左斌,刘志恒,等.2006.我国烟草新病害-靶斑病.中国烟草学报,12(6):22.
    26.刑楠.2005.Real-time PCR用于监测土壤中稻纹枯病原(Rhizoctonia solani AG1-IA)群体动态变化.北京林业大学硕士论文.
    27.熊立东.2011.红花转录组测序分析及其油体蛋白基因全长的获得.吉林农业大学硕士论文.
    28.徐操,赵宝华.2009.SRAP分子标记的研究进展及其应用.生命科学仪器,7(4):24-27.
    29.闫佳会,骆勇,潘娟娟,等.2011.应用Real-time PCR定量检测田间小麦条锈菌潜伏侵染的研究植物病理学报,41(6):618-625.
    30.杨芳,许波,李俊俊,等.2012.鸡枞菌转录组分析揭示其对木质纤维素的降解功能(英文).微生物学报52(4):466-477.
    31.幺金宝.2012.梅花鹿鹿茸顶端组织转录组分析及不同生长期差异基因筛选.吉林大学博士论文.
    32.姚坚强.2011.中国糯玉米穗部发育相关基因的转录组测序与功能分析.浙江大学硕士论文.
    33.张丽,周兰英,肖千文,等.2007.正交试验设计在建立杜鹃花RAPD-PCR反应体系中的应用.北方园艺,5:124-126.
    34.张丽梅.2005.线虫生防真菌洛斯里被毛孢在土壤中的生态学研究.北京中国科学院博士学位论文.
    35.张平湖,刘冠明.2010.橄榄SRAP-PLR体系的建立和优化.中国农学通报,26(15):86-88.
    36.赵文军,陈红运,朱水芳,等.2007.杂交诱捕实时荧光PCR检测番茄环斑病毒.植物病理学报,37(6):666-669.
    37.周国梁,尚琳琳,林泓.2011.油菜茎基溃疡病菌的实时荧光PCR检测.植物病理学报,41(1):10-17.
    38. Adam G. C.1988. Thanatephorus cucumeris (Rhizoctonia solani), a species complex of wide host range. Adv. Plant Pathol.6:535-552.
    39. Al-Dous E. K., George B., Al-Mahmoud M. E., et al.2011. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol,29:521-527.
    40. Ali M., Brian. A. W., Kenneth M., et al.2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods,5(7):621-628.
    41. Ana C., Stefan G., Juan M. G., et al.2005. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics,21:3674-3676.
    42. Anderson N. A.1982. The genetics and pathology of Rhizoctonia solani. Ann. Rev. Phytopathol. 20:329-347.
    43. Bach H. J., Jessen I., Schloter M., and Munch J. C.2003. A TaqMan-PCR protocol for quantification and identification of the phytopathogenic Clavibacter michiganensis subspecies. J. Microb. Methods 52:85-91.
    44. Balaji B., Bucholtz D. B., and Anderson J. M.2003. Barley yellow dwarf virus and cereal yellow dwarf virus quantification by Real-time polymerase chain reaction in resistant and susceptible plants. Phytopathology 93:1386-1392.
    45. Bates J. B., and Taylor E. J. A.2001. Scorpion ARMS primers for SNP Real-time PCR detection and quantification of Pyrenophorateres. Mol. Plant Pathol.2:275-280.
    46. Bates J. B., Taylor E. J. A, Kenyon, D. M., et al.2001. The application of Real-time PCR to the identification, detection and quantification of Pyrenophora teres. Mol.Plant Pathol.2:49-57.
    47. Bertolini E., Olmos A., Lopez M. M., et al.2003. Multiplex nested reverse transcription-polymerase chain reaction in a single tube for sensitive and simultaneous detection of four RNA viruses and Pseudomonas savastanoi pv. Savastanoi in olive trees. Phytopathology,93:286-292.
    48. Bohm J., Hahn A., Schubert R., Bahnweg, G., et al.1999. Real-time quantitative PCR:DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophthora infestans and Phytophthora citricola in their respective host plants. J. Phytopathol. 409-416.
    49. Boysen M., Borja M. D., Moral C., et al.1996. Identification at strain level of Rhizoctonia solani AG 4 isolates by direct sequence of asymmetric PCR products of the ITS regions. Current Genetics,29: 174-181.
    50. Bridge P., Spooner B.2001. Soil fungi:diversity and detection. Plant and Soil,232 (1-2):147-154.
    51. Brouwerl M., Lievens B, Hemelrijckl W. V., et al.2003. Quantification of disease progression of several microbial pathogens on Arabidopsis thaliana using real-time fluorescence. FEMS Microbiology Letters,228(2):241-248.
    52. Budak H., Shearman R. C., Parmaksiz I., et al.2004. Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theor Appl Genet,109:280-288.
    53. Carling D. E., Leiner R. H., and Kebler K. M.1987. Characterazation of a new anastomosis group (AG-9) of Rhizoctonia solani. Phytopathology,77:1609-1612.
    54. Ceresini P. C., Shew H. D., Cubeta M. A.1999. RFLP analysis of the PCR amplified ribosomal DNA regions ITS and IGS indicated that isolates of Rhizoctonia solani from potato and tobacco represent distinct groups within the anastomosis group 3. Phytopathology,89:S12.
    55. Ceresini P. C., Shew H. D., Vilgalys R. J., et al.2002. Genetic diversity of Rhizoctonia solani AG-3 from potato and tobacco in North Carolina. Mycologia,94(3):437-449.
    56. Chen S., Yang P., Jiang F., et al.2010. De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits. PLoS ONE,5(12):e15633.
    57. Chiara R., Stefania B., Fabio D., et al.2003. IDEG6:a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiological genomics,12:159-162.
    58. Christopher R. T., Andrew C. G., Robert F., et al.2004. A one-step immunochromatographic later flow device specific to Rhizoctonia solani and certain related species, and its use to detect and quantify R. solani in soil. Phytopathology,94(3):280-288.
    59. Claire G., Ammaick M., Benedicte C.2004, Real-time PCR:what relevant to plant studies. Joural of Experimental Botany,55 (402):1445-1454.
    60. Costa A. S. Mancha aureolada erequeima do fumo causades por Corticium solani. Biologicol,1948, 14:113-114.
    61. Cubeta M. A., Echandi E., Abernethy T., et al.1991. Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology,81 (11):1395-1400.
    62. Date H., Yagi S., Okamoke Y., et al.1984. On the leaf blight of tomatoes by Thanatephorus cucumeris (Frank) Donk(Rhizoctonia solani). Ann. Phytopathol. Soc. Jpn.50:339.
    63. Deng Y., Li J., Wu S., et al.2006. Integrated nr Database in Protein Annotation System and Its Localization. Computer Engineering,32(5):71-74.
    64. Dever T. E.2002. Gene-specific regulation by general translation factors. Cell,108:545-556.
    65. Dodd S., Land H., Robert A., et al.2004. A duplex-PCR bioassay to detect a Trichoderma virens biocontrol isolate in non-sterile soil. Soil Biology & Biochemistry,36:1955-1965.
    66. Duncan S., Barton J. E., O'Brien P. A.1993. Analysis of variation in isolates of Rhizoctonia solani by random amplified polymorphic DNA assay. Mycological Research,97(9):1075-1082.
    67. Elliott, P. E., Lewis, R. S,, Shew, H. D., et al.2008. Evaluation of tobacco germplasm for seedling resistance to stem rot and target spot caused by Thanatephorus cucumeris. Plant Dis.92:425-430.
    68. Feng D. X., Zheng A. P., Wang S. Q., et al.2005. Genetic diversity and pathogenicity variation of different Rhizoctonia solani isolates in Sinchun province. Acta Phytopathologica Sinica,35(6): 520-525.
    69. Ferriol M., Pico B., Nuez F.2003. Genetic diversity of a germaplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet,107:271-282.
    70. Filion M., St.-Arnaud M., and Jabaji-Hare S. H.2003. Quantification of Fusarium solani f. sp. phaseoli in mycorrhizal ban plants and surrounding mycorrhizosphere soil using realtime polymerase chain reaction and direct isolations on selective media. Phytopathology 93:229-235.
    71. Filion M., St.-Arnaud M., and Jabaji-Hare S.H.2003. Direct quantification of fungal DNA from soil substrate using Real-time PCR. J. Microb. Methods 53:67-76.
    72. Fraaije, B. A., Butters, J. A., Coelho, J. M., et al.2003. Following the dynamics of strobilourin resistance in Blumeria graminis f. sp. tritici using quantitative allele-specific Real-time PCR measurements with the fluorescent dye SYBR Green. Plant Pathol.51:45-54.
    73. Gao X., Jackson T. A., Lambert K. N., et al.2004. Detection and quantification of Fusarium solani f. sp. glycines in soybean roots with Real-time quantitative polymerase chain reaction. Plant Dis. 88:1372-1380.
    74. Gayoso C. Harduya O. M. de, Pomar F., et al.2007. Assessment of real-time PCR as a method for determining the presence of Verticillium dahliae in different Solanaceae cultivars. Eur. J. Plant Pathol, 118:199-209.
    75. Guleria S, Aggarwal R, Thind T S, et al. Morphological and pathological variability in rice isolates of Rhizoctonia solani and molecular anlysis of their genetic variability. Journal Phytopathology,2007, 155:654-661.
    76. Hao D. C., Ge G., Xiao P., et al.2011. The first insight into the tissue specific Taxus transcriptome via Illumina second generation sequencing. PLoS ONE,6(6):e21220.
    77. Harmon P. F., Dunkle L. D., and Latin, R.2003. A rapid PCR-based method for the detection of Magnaporthe oryzae from infected perennial ryegrass. Plant Dis.87:1072-1076.
    78. Holeva R., Phillips M. S., Neilson R., et al.2006. Real-time PCR detection and quantification of vector trichodorid nematodes and Tobacco rattle virus. Molecular and Cellular Probes,20:203-211.
    79. Homma Y., Yamachita Y, Ishii M.1983. A new anastomosis group (AG-7) of Rhizoctonia solani kuhn from Japanese radish fields. Ann. Phytopathol. Soc. Jpn.49:184-190.
    80. Jabaji H. S. H., Meller Y., Gill S.1990. Investigation of genetic relatedness among anastomosis groups of Rhizoctonia solani using cloned DNA probes. Canadian Journal of Plant pathology,12(4): 393-404.
    81. Kindermann J., El-Ayouti Y, Samuels G. J.2005. Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genet. Biol. 24:298-309.
    82. Kodama T., Horimota K. and Ogoshi A.1982. On the brown spot of eggplants caused by Thanatephorus cucumeris (Frank) Donk(Rhizoctonia solani) AG-3.
    83. Kuninaga S., Carling D. E., Takeuchi T., et al.2000. Comparison of rDNA-ITS Sequences between potato and tobacco strains in Rhizoctonia solani AG-3. Journal General Plant Pathology,66:2-11.
    84. LaMondia J. A., Vossbrinck C. R.2012. First Report of Target Spot of Broadleaf Tobacco Caused by Rhizoctonia solani (AG-3) in Connecticut. Plant Dis.,96:1378.
    85. Laroche J. P., Jabaji-Hare S. H., Charest P. M.1992. Differentiation of two anastomosis groups of Rhizoctonia solani by isozyme analysis. Phytopathology,82:1387-1393.
    86. Lees A. K., Cullen D. W., Sullivan L., et al.2002. Development of conventional and quantitative Real-time PCR assays for the detection and identification of Rhizoctonia solani AG-3 in potato and soil. Plant Pathology,51:293-302.
    87. Li G, Quiros C. F.2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor. Appl Genet,103:455-461.
    88. Li R., Fan W., Tian G-, et al.2009. The sequence and de novo assembly of the giant panda genome. Nature,463:311-317.
    89. Li R., Zhu H., Ruan J., et al.2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res,20:265-272.
    90. Li S. D. Quantitative assay of Rhizoctonia solani Kuhn AG-1 in soil. Soil Biol.Biochem,1995,27(3): 251-256.
    91. Li Shi-dong.2004. Population dynamics and survival of Rhizoctonia solani AG-1 in Field Soil under Rice-Wheat Rotation. Agriculture Sciences in China,13(6):448-455.
    92. Lilja A., Hietala A. M., Karjalainen R.1996. Identify of a uninucleate Rhizoctonia sp. By pathogenicity, hyphal anastomosis and RAPD analysis. Plant Pathology,45:997-1006.
    93. Linde C. C., Zala M., Paulraj R. S. D., et al. Population structure of the rice sheath blight pathogen Rhizoctonia solani AG-1-IA from India. European Journal Plant Pathology,2005,112:113-121.
    94. Liu Z. L. and Sinclair J. B.1991. Intraspecifi groups of Rhizoctonia solani identified by isozyme analysis. (Abstr.). Phytpathology,81:1219.
    95. Liu Z. L., Sinclair J. B.1992. Genetic diversity of Rhizoctonia solani anastomosis group 2. Phytopathology,82:778-787.
    96. Manfred G. G., Brian J. H., Moran Y., et al.2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology,29:644-652.
    97. Marioni J. C., Mason C. E., Mane S. M., et al.2008. RNA-seq:an assessment of technical reproducibility and comparison with gene expressionarrays. Genome Res.,18 (9):1509-1517.
    98. McDonald B. A.1997. The population genetics of fungi:tools and techniques. Phytopathology,87: 448-453.
    99. Mercado C. G.2012. First Report of Target Spot of Tobacco Caused by Rhizoctonia solani AG-2.1.
    100. Meyer J. C., Van W. R. J., and Phillips A. J. L.1990. Rhizoctonia leaf spot of tobacco in South Africa. Plant Pathology,39(1):206-207.
    101. Michael A., Catherine A. B., Judith A. B., et al.2000. Gene ontology:tool for the unification of biology. The Gene Ontology Consortium. Nat Genet,25:25-29.
    102. Minoru K., Michihiro A., Susumu G, et al.2008. KEGG for linking genomes to life and the environment. Nucleic acids research,36:D480-484.
    103. Mpofu S. L., Julian A. M.1994. Characterization of Rhizoctonia solani associated with sore shin and leaf spot symptoms on tobacco in Zimbabwe. Phytopathology,140:367-374.
    104. Mu Y., Ding F., Cui P., et al.2010.Transcriptome and expression profiling analysis revealed changes of multiple signaling pathways involved in immunity in the large yellow croaker during Aeromonas hydrophila infection. BMC Genomics,11:506.
    105. Mukhlesur R., Peter B. E., McVetty G. L.2007. Development of SRAP, SNP and Multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. Theor Appl Genet, 115:1101-1107.
    106. Nagalakshmi U., Wang Z., Waern K., et al.2008. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science,320 (5881):1344-1349.
    107. Neate S. M. and Warcup J. H.1985. Anastomosis grouping of some isolates of isolates of some isolates of Thanatephorus cucumeris from agricultural soils in South Australia. Trans. Br. Mycol. Soc. 85:615-620.
    108. O'Brien P. A.1994. Molecular markers in Australia isolates of Rhizoctonia solani. Mycol. Res., 98(6):665-671.
    109. Ogoshi A.1987. Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kiihn. Ann. Rev. Phytopathol.25:125-143.
    110. Ogoshi A., Cook R. J., Bassett E. N.1990. Rhizctonia species and anastomosis groups causing root rot of wheat and barley inth Pacific Northwest. Phytopathology,80:784-788.
    111. Okubara P. A., Schroeder K.L., Paulitz T. C.2005. Real-time polymerase chain reaction:applications to studies on soilborne pathogens. Can. J. Plant Pathol,27:300-313.
    112. Oliveirira A. C., Vallim M. A., Seminghini C. P., et al.2002. Quantification of Xylella fastidiosa from citrus trees by Real-time polymerase chain reaction assay. Phytopathology 92:1048-1054.
    113.Parmete J. R., Jr., Sherwood R. T. Platt W. D.1969. Anastomosis grouping among isolates of Thanatephorus cucumeris. Phytopathology,59:1270-1278.
    114. Parmeter J. R., et al.1970. Rhizoctonia solani:Biology and Pathology. University of California Press, Berkeley.255.
    115. Parmeter J. R., Whitney H. S., et al.1967. Affinities of Rhizoctonia species that resemble mycelium of Thanatephorus cucumeris. Phytopathology,57:218-223.
    116. Parra G, Agarwal P., Abril J. F.2003. Comparative gene prediction in human and mouse. Genome Research,13(1):108-17.
    117. Qi, M., and Yang, Y.2002. Quantification of Magnaporthe grisea during infection of rice plants using Real-time polymerase chain reaction and northern blot/phosphoimaging analyses. Phytopathology 92:870-876.
    118. Richer H. and Schneider R.1953. Untersuchungen zur morphologischen und biologischen differenzierrung von Rhizoctonia solani K. Phytopathol. Z.20:167-226.
    119.Rohlf F. J.1998. Ntsyspc numerical taxonomy and multivariate analysis system, version 2.02. New York:Exeter Software.
    120. Roman L.T., Michael Y. G, Darren A.N., et al.2000. The COG database:a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res,28(1):33-36.
    121. Ruiz J. J., Garcia-Martinez S., Pico B., et al.2005. Genetic variability and relationship of closely related Spanish traditional cultivars of tomato as detected by SRAP and SSR markers. Journal of the American Society for Horticultural Science,130(1):88-94.
    122. Salazar O., Julian M. C., Hyakumachi M. et al.2000. Phylogenetic grouping of cultural types of Rhizoctonia solani AG2-2 based on ribosomal ITS sequences. Mycologia,92:505-509.
    123. Sayler R. J., Cartwright R. D., and Yang Y.2006. Genetic characterization and Real-time PCR detection of Burkholderia glumae, a newly emerging bacterial pathogen of rice in the United States. Plant Dis.90:603-610.
    124. Schaad N. W., Opgenorth D., and Gaush P.2002. Real-time polymerase chain reaction for one-hour on-site diagnosis of Pierce's disease of grape in early season asymptomatic vines. Phytopathology, 92:721-728.
    125. Schneider W. L., Sherman D. J., Stone A. L., et al.2004. Specific detection and quantification of Plum pox virus by Real-time fluorescent reverse transcription-PCR. Journal of Virological Methods, 120:97-105.
    126. Schroeder K. L., Okubara P. A., Tambong J. T., et al.2006. Identification and quantification of pathogenic Pythium spp. from soils in eastern Washington using Real-time polymerase chain reaction. Ecology and Epidemiology,96(6):637-647.
    127. Sharma R. Singh U. S.2003. Vegetative compatibility in Rhizoctonia solani using three way culture methods. J. Mycol. P1. Pathol.,33:65-68.
    128. Sherwood R. T.1969. Morphology and physiology in four anastomosis groups of Thanatephorus cucumeris. Phytopathology,59:1924-1929.
    129. Shew H. D., Main C. E.1985. Rhizoctonia leaf spot of flue-cure tobacco in North Corolina. Plant disease,69:901-903.
    130. Shew H. D., Main C. E.1990. Infection and development of target spot of flue-cure tobacco caused by Thanatephorus cucumeris. Plant disease,74:1009-1013.
    131. Shew H. D., Melton T. A.1995. Target spot of tobacco. Plant Disease,79:6-11.
    132. Shi C. Y., Yang H., Wei C. L., et al.2011. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics, 12:131.
    133. Singh V., Singh U. S., Singh K. P., et al.2002. Genetic diversity of Rhizoctonia solani isolates from rice:Differentiation by morphological characteristics, pathogenicity, anastomosis behavior and RAPD finger printing. J Mycology Plant Pathology,32:332-344.
    134. Sneh B. J., et al.1966. Methods of revaluating inoculum density of Rhizoctonia solnain naturally infested soil. Phytopathology,56:74-78.
    135. Sneh B., Burpee L., and Ogoshi A.1991. Identification of Rhizoctonia Species. The American Phytopathological Society, St. Paul, MN.133.
    136. Stephen F. A., Thomas L. M., Alejandro A. S., et al.1997. Gapped BLAST and PSI-BLAST:A New Generation of Protein Database Search Programs. Nucleic Acids Res,25(17):3389.
    137. Stevens J. J., Jones R. K., Shew H. D., et al.1993. Characterization of populations of Rhizoctonia solani AG-3 from potato and tobacco. Phytopathology,83:854-858.
    138. Sultan M., Schulz M. H., Richard H., et al.2008. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science,321 (5891):956-960.
    139. Tang L. H., Xiao Y., Li L., et al.2010. Analysis of geneticdiversity among Chinese Auricularia auricula cultivars using combined ISSR and SRAP markers. Current Microbiology,61(2):132-140.
    140. Tu C. C. and Kimbrough J. W.1978. Systematics and phylogeny of fungi in the Rhizoctonia solani complex.139(4):454-466.
    141. Vandemark, G. J., Barker, B. M., and Gritsenko, M. A.2002. Quantifying Aphanomyces euteiches in alfalfa with a fluorescent polymerase chain reaction assay. Phytopathology 92:265-272.
    142. Vargas G. E.1973. Infection by basidiospores of Thanatophorus cucumeris, causing a leaf disease in tobacco. Turrialba,23(3):357-359.
    143. Wang E. T., Sandberg R., Luo S., et al.2008. Alternative isoform regulation in human tissue transcriptomes. Nature,456 (7221):470-476.
    144. Wang L., Huang F. F., Huang S. W., et al.2010. Pathogenicity Differentiation of Rice Sheath Blight Pathogen Rhizoctonia solani AG-1 IA Isolates from Anhui and Hubei Provinces, China. China Journal Rice Science,24(6):623-629.
    145. Wang M., Lv B. L., Xing X. P., et al.2011. Composition and virulence variation of the pathogen of wheat sharp eyespot from Henan Province. Acta Phytopathologica Sinica,41(5):556-560.
    146. Wang X., Luan J., Li J., et al.2010. De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics,11:400.
    147. Wang X., Wang H., Wang J., et al.2011. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet,43:1035-1039.
    148. Wang Z., Gerstein M., Snyder M.2009. RNA-Seq:a revolutionary tool for transcriptomics. Nat Genet, 10(1):57-63.
    149. Wei W., Qi X., Wang L., et al.2011. Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics,12:451.
    150. Weinhold A. R.1977. Population of Rhizoctonia solani in agriculture soil determined by a screening procedure. Phytopathology,67:566-569.
    151. Wen S. C., Wang M. A.1993. New Method for Identifying Colletotrichum lagenarium of Watermelon. Acta University Agricultural Boreali-occidentalis,22(1):17-22.
    152. Wilhelm B. T., Marguerat S., Watt S., et al.2008. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature,453 (7199):1239-1243.
    153. Winton L. M., Stone J. K., Watrud L. S., et al.2002. Simultaneous One-Tube Quantification of Host and Pathogen DNA with Real-Time Polymerase Chain Reaction. Phytopathology,92(1):112-116.
    154. Yi R. H., Liang C. Y., Zhu X. R., et al.2002. Genetic diversity and virulence variation of rice sheath blight strains from Guangdong province. Journal of Tropical and Subtropical Botany,10(2):161-170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700