用户名: 密码: 验证码:
鸡生长发育和肌纤维生长的影响因素与相关基因表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以培育中的地方品种二郎山山地鸡为试验材料,测定了二郎山山地鸡的生长发育性状。克隆了鸡MUSTN1基因和APOBEC2基因的全编码区序列并进行了生物信息学分析。采用荧光定量试验技术分析MUSTN1、APOBEC2基因的组织表达谱;分析骨骼肌组织中MUSTN1、MyoD、MyoG、IGFl、APOBEC2、 FWMvFRM、SM基因在不同品系、性别、日龄、赖氨酸水平的时空表达模式。并以低赖氨酸水平SD02品系公母鸡的胸腿肌为试验材料,采用免疫组化技术和免疫印记实验技术探讨了MUSTN1、APOBEC2两个蛋白的在肌肉组织中的分布和定量表达。通过比较二郎山山地鸡两品系的生长发育的差异,探讨肌纤维生长相关基因之间的关系及可能的分子机制,为地方品种鸡的生长发育和肉品质营养调控以及品种选育提供科学依据。试验结果如下:
     性能测定发现,不同品系、性别、日龄和赖氨酸水平对二郎山山地鸡部分生长发育性状存在影响。SD02品系母鸡前期均重和平均增重均大于SD03,SD03品系公鸡70日龄的腹脂重均高于SD02品系,SD03品系总蛋白含量高于SD02。结果提示SD02生长速度比SD03快,产肉性能高;SD03品系脂肪沉积高于SD02品系。高赖氨酸水平的母鸡70日龄活重、胸肌肌纤维直径大于低赖氨酸水平,高赖氨酸水平胆固醇含量高于低赖氨酸水平,提示赖氨酸浓度能提高母鸡产肉性能,也有助于胆固醇的浓度的增大。
     MUSTNl基因和APOBEC2基因在不同组织的表达存在显著差异。MUSTN1基因在心肌和骨骼肌中大量表达,在其他组织中均有分布,但表达量极少。APOBEC2基因大量表达于骨骼肌和心肌中,但在鸡的性腺、肌胃和皮脂组织中也有少量表达,在其他组织不表达。结果推测MUSTN1基因和APOBEC2基因在肌肉发育系统占有重要作用。
     肌纤维生长相关基因表达量在不同品系、性别、日龄和赖氨酸水平亦存在显著差异。四个时间点,SM基因表达量在1日龄最高;胸肌组织中FWM基因的表达量1日龄最低;随着日龄的增长,SM基因表达量降低,FWM基因表达量升高。结果提示家禽出生后早期是肌纤维类型转变的重要阶段,随着日龄的增长,快白肌含量增加。高浓度赖氨酸水平能上调胸肌组织中MyoD、IGF1基因的表达量,并且也能上调公鸡腿肌组织MUSTN1、MyoD、MyoG、IGF1、APOBEC2、 FWM、FRM基因的表达量。
     基因表达量的相关性分析表明,胸肌组织中MUSTN1、 MyoD、APOBEC2基因表达量之间均存在着极显著的正相关;腿肌组织中,MUSTN1、MyoD、MyoG、 IGF1、APOBEC2、FWM基因存在极显著的正相关;MUSTN1基因表达量在胸腿肌组织中均和肌纤维直径、密度呈极显著相关。结果提示MUSTN1、APOBEC2和MyoD的表达存在一定的关系,MUSTN1基因和肌纤维的肥大密切相关。
     通过克隆获得了鸡MUSTN1、APOBEC2基因的全编码区序列,并翻译获得其氨基酸序列(78个和222个)。通过生物信息学分析,确定MUSTN1、APOBEC2蛋白都是亲水的非跨膜蛋白。MUSTN1和APOBEC2氨基酸序列磷酸化位点均为Threonine,分别为1个和12个;MUSTN1蛋白和APOBEC2蛋白糖基化位点分别为7个和2个。
     免疫组化结果表明MUSTN1蛋白和APOBEC2蛋白均分布在心肌和骨骼肌肌纤维的细胞核。免疫印记结果表明MUSTN1和APOBEC2蛋白分别具有日龄、性别和组织特异性。MUSTN1和APOBEC2表达具有相似性,推测MUSTN1和APOBEC2蛋白可能共同协调肌肉组织发育的过程,但具体机制还不清楚。MUSTN1和APOBEC2转录水平和翻译水平并不完全一致,推测两个水平可能有不同的调节机制,来影响mRNA和蛋白合成的速度。
In this study, MUSTNl and APOBEC2gene entire coding sequence were cloned, and the correlations of the bioinformatics in Erlang Mountainous (EM) Chickens were analysed. We measured the growth traits of EM chickens and evaluated the expression tissue-pattern of MUSTN1and APOBEC2by Real-time Quantitative PCR (qPCR) and evaluated the skeletal muscle expression pattern (MUSTN1, MyoD, MyoG, IGF1, APOBEC2, FWM, FRM and SM) in female and male chickens at both two lysine (Lys) levels and two Lines at four growth points. Meanwhile, we evaluated the protein abundance expression of MUSTN1and APOBEC2among muscle tissues at four days of chickens by western blotting and also evaluated protein location of among muscle tissues at70-day-old chickens by immunohistochemistry. The objective of this study was to evaluate the developmental-specific regulation of mRNA and protein abundance expression in chickens. It was good references for study on the local breed chickens growth characteristic, genetic mechanism of muscle regulation, and meat quality regulation of the two lines. The results were as follows:
     We evaluated the line-, sex-, age-and lysine level-differences in different growth traits in this study. The results indicated that, SD02Line females had greater live weight and weight gain than SD03Line in starter growth period; SD03male chickens had greater abdominal fat weight than SD02at70-day-old, SD03had greater total protein than SD02; It might be greater of muscle growth in Line SD02than SD03, and SD03had greater fat deposited than SD02. Female chickens had greater live weight and breast muscle fiber diameters feeding high lysine level (HL) than low lysine level (LL) at70-day-old. Chickens also had greater cholesterol feeding HL than LL. Thus, it's better to fed HL to have the superior growth performance and high cholesterol concertration than LL.
     There were tissue-specific differences in gene expression of different tissues that were examined in this study. MUSTN1mRNA is predominantly expressed in heart and skeletal muscle, with negligible expression in other tissues. APOBEC2mRNA is predominantly expressed in skeletal and cardiac muscle, with negligible expression in tissues such as gonad, gizzard and subcutaneous fat tissues, and not expressed in other tissues. It suggested that MUSTN1and APOBEC2mRNA might be an important role in regulating during chicken post-hatch muscle growth.
     In addition to tissue-specific differences in gene expression, we also observed line-, gender-, age-and lysine level-specific differences in the two muscle tissues that were examined in this study. The expression of SM mRNA was highest at day1; the expression of FWM mRNA was lowest at day1. It implies the possibility that muscle fiber switched in early post-growth. High lysine concentration could upregulation the expression of MyoD and IGF1mRNA in pectoralis major and upregulation the expression of MUSTN1, MyoD, MyoG, IGF1, APOBEC2, FWM and FRM mRNA in male thigh muscle.
     There was a positive correlation among MUSTN1, MyoD and APOBEC2mRNA expression in pectoralis major. There was also a positive correlation among MUSTN1, FWM, APOBEC2, MyoD, MyoG and IGF1mRNA expression in thigh muscle. MUSTN1and APOBEC2mRNA might be related with the expression of MyoD expression during chicken post-hatch muscle growth. There was a correlation among expression MUSTN1and muscle fiber traits in both pectoralis major and thigh muscle tissue, suggesting a role in muscle development.
     We successfully obtained the coding sequence of MUSTN1and APOBEC2gene. Two amino acid sequences were obtained from these two CDS sequences, their lengths were78aa and222aa. The result indicated that MUSTN1and APOBEC2maybe a hydrophilic but Non-transmembrane protein. MUSTN1and APOBEC2have one and twelve threonine of phosphorylation site, respectively. MUSTN1and APOBEC2have seven and two glycosylation sites, respectively.
     Immunohistochemical analysis revealed that MUSTN1and APOBEC2localizes to nuclei in skeletal and cardiac muscle myofibers. There was tissue-, gender-and age-specific differences in gene expression. MUSTN1and APOBEC2protein might be synergy regulated during chicken post-hatch muscle growth during muscle development. Changes in mRNA abundance were reflected by similar changes in abundance of MUSTN1and APOBEC2protein in Line SD02which consumed the LL, there were also differences between mRNA abundance and protein abundance. Maybe different regulation mechanisms have taking part in the processing, affect the amount of the two molecules.
引文
[1]王健,臧大存,左伟勇等.品种和部位对鸭肉肉质的影响.家畜生态学报[J].2008,29(6):26-33.
    [2]蔡治华,蔡旭冉.AA肉鸡肌纤维直径,嫩度变化与相关性分析.中国畜牧兽医[J].2007,34(2):36-38.
    [3]冯仁勇,罗辉.我国地方鸡肉质性状的研究及展望.畜禽业[J].2005,(004):16-18.
    [4]吴信生,陈国宏.中国部分地方鸡种肌肉组织学特点及其肉品质的比较研究.江苏农学院学报[J].1998,19(4):52-58.
    [5]史兆国.甘肃黄鸡屠体性状和肉品质的测定.甘肃畜牧兽医[J].2000,30(004):1-3.
    [6]苏扬.牛肉的风味化学及风味物质的探讨.四川轻化工学院学报[J].2000,13(002):68-72.
    [7]陈宽维,陈国宏,李慧芳等.优质鸡内涵与选育.中国家禽[J].2003,25(19):5-7.
    [8]周中华,舒鼎铭.优质黄羽矮小型鸡肉质品质分析.山东家禽[J].1996,(002):8-9.
    [9]刘景,李忠荣,冯玉兰.优质鸡肉质的特点及其评定方法.福建畜牧兽医[J].2005,26(6):21-22.
    [10]岳永生,唐辉.四种不同类型鸡肉组织学特性的研究[J].中国畜牧杂志[J].2003,39(001):9-10.
    [11]曾勇庆,孙玉民.莱芜猪肌肉组织学特性与肉质关系的研究.畜牧兽医学报[J].1998,29(006):486-492.
    [12]周金星,毕亚玲,高登慧.肌肉组织学结构及其与肉品品质的关系.山地农业生物学报[J].2005,23(5):438-441.
    [13]张克英,李学伟.饲粮理想蛋白水平对猪肉品质的影响.四川农业大学学报[J].2002,20(1):12-16.
    [14]Liu HH, Wang JW, Zhang RP et al. In ovo feeding of IGF1 to ducks influences neonatal skeletal muscle hypertrophy and muscle mass growth upon satellite cell activation. Journal of cellular physiology[J].2012,227(4):1465-1475.
    [15]Dhoot GK. Changes in the distribution of slow skeletal myosin heavy chain SM1 in developing avian muscle fibres. Journal of muscle research and cell motiliry[J].1988,9(2):120-131.
    [16]赵景鹏.肉鸡肌纤维特性与肉质性状的形成规律及日粮营养调控研究[D].2010,中国农业科学院.
    [17]杨笃宝,王振勇.AA鸡肌肉组织学特性的研究.山东畜牧兽医[J].2000,(3):4-6.
    [18]Li L, Liu HH, Xu F et al. MyoD expression profile and developmental differences of leg and breast muscle in Peking duck (< i> Anas platyrhynchos Domestica) during embryonic to neonatal stages. Micron[J].2010,41(7):847-852.
    [19]朱砺,张克英.肌纤维生长的影响因素分析.四川农业大学学报[J].2002,20(1):37-39.
    [20]杨晓静,猪骨骼肌生长及肌纤维类型分布的分子机理研究[D].2004,南京农业大学.
    [21]Janovska A, Hatzinikolas G, Mano M et al. The effect of dietary fat content on phospholipid fatty acid profile is muscle fiber type dependent. American Journal of Physiology-Endocrinology and Metabolism[J].2010,298(4):779-786.
    [22]刘志军,董佩佩,贾俊静等.肌球蛋白重链MyHC基因与肉品质的关系.兽药与饲料添加剂[J].2009,14(006):28-31.
    [23]陈宽维,陈国宏.肉鸡肌纤维与肉质关系研究.中国畜牧杂志[J].2002,38(006):6-7.
    [24]川井田博,郁明发.猪肉肌纤维粗细与肉质的关系[J].国外畜牧学:猪与禽[J].1983,351-54.
    [25]李同树,刘风民,尹逊河等,鸡肉嫩度评定方法及其指标间的相关分析.畜牧兽医学报[J].2004,35(002):171-177.
    [26]罗军.肌肉纤维特性研究进展.黄牛杂志[J].1989,(4):36-40.
    [27]Becker WA, Spencer JV, Mirosh LW et al. Genetic variation of abdominal fat, body weight, and carcass weight in a female broiler line. Poultry science[J].1984,63(4):607-611.
    [28]闫俊书,单安山,时本利等.母代鸡日粮不同蛋白水平对后代肌纤维发育及肌肉生成抑制因子基因(MSTN) mRNA表达的影响.畜牧兽医学报[J].2009,(009):1341-1349.
    [29]李玥,许雪萍,杨晓静等.早期限饲对肉鸡肌肉生长及肌纤维类型的影响.农业生物技术学 报[J].2006,14(6):855-860.
    [30]黄金秀,杨匕云,刘作华等.共轭亚油酸对体外培养的猪骨骼肌肌纤维类型组成的影响.畜牧兽医学报[J].2010,41(003):295-300.
    [31]Baillie A, Garlick PJ. Attenuated responses of muscle protein synthesis to fasting and insulin in adult female rats. American journal of physiology-endocrinology and metabolism[J].1992, 262(1):1-5.
    [32]Ballmer PE, Mcnurlan MA, Southorn BG et al. Effects of human recombinant interleukin-1 beta on protein synthesis in rat tissues compared with a classical acute-phase reaction induced by turpentine. Rapid response of muscle to interleukin-1 beta. Biochemical Journal[J].1991, 279(3):683.
    [33]Metayer S, Seiliez I, Collin A et al. Mechanisms through which sulfur amino acids control protein metabolism and oxidative status. The Journal of nutritional biochemistry[J].2008,19(4): 207-215.
    [34]Corzo A, Mejia L, McDaniel C et al. Interactive effects of feed form and dietary lysine on growth responses of commercial broiler chicks. The Journal of Applied Poultry Research[J].2012, 21(1):70-78.
    [35]Kidd MT, Kerr BJ, Halpin KM et al. Lysine levels in starter and grower-finisher diets affect broiler performance and carcass traits. The Journal of Applied Poultry Research[J].1998,7(4): 351-358.
    [36]Urdaneta-Rincon M, Leeson S. Muscle (pectoralis major) protein turnover in young broiler chickens fed graded levels of lysine and crude protein. Poultry science[J].2004,83(11): 1897-1903.
    [37]Rezaei M, Moghaddam HN, Reza JP et al. The effects of dietary protein and lysine levels on broiler performance, carcass characteristics and N excretion. International Journal of Poultry Science[J].2004,3(2):148-152.
    [38]杨晓静,赵茹茜,陈杰等.猪背最长肌肌纤维类型的发育性变化及其品种和性别特点.中国兽医学报[J].2005,25(1):89-94.
    [39]杨飞云,欧秀琼,黄建等.二元杂交猪肌纤维面积生长规律及其与肉质的相关性研究.畜禽业[J].2001,(11):24-25.
    [40]赵应安,杨匕云.长×荣杂交猪肌纤维面积生长规律研究.四川畜牧兽医[J].2003,30(7):22-23.
    [41]杨烨,方桂友,李忠荣等.不同饲养方式对肉鸡肌纤维组织学特性及肌肉嫩度影响的研究.安徽农业科学[J].2009,(027):13101-13102.
    [42]韩剑众,桑雨周,周天琼.饲养方式和饲喂水平对鸡肉硫胺素含量及肉质的影响.中国家禽[J].2004,26(4):17.
    [43]Rozenboim I, Biran I, Uni Z et al. The effect of monochromatic light on broiler growth and development. Poultry science[J].1999,78(1):135-138.
    [44]Halevy O, Biran I, Rozenboim I. Various light source treatments affect body and skeletal muscle growth by affecting skeletal muscle satellite cell proliferation in broilers. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology[J].1998,120(2): 317-323.
    [45]Halevy OYS, Rozenboim I. Enhancement of meat production by environmental manipulations in embryo and young broilers. World's Poultry Science Journal[J].2006,62(3):485-498.
    [46]Rozenboim I, Biran I, Chaiseha Y et al. The effect of a green and blue monochromatic light combination on broiler growth and development. Poultry science[J].2004,83(5):842-845.
    [47]Yahav S, Rath RS, Shinder D. The effect of thermal manipulations during embryogenesis of broiler chicks (< i> Gallus domesticus) on hatchability, body weight and thermoregulation after hatch. Journal of Thermal Biology[J].2004,29(4):245-250.
    [48]Collin A, Berri C, Tesseraud S et al. Effects of thermal manipulation during early and late embryogenesis on thermotolerance and breast muscle characteristics in broiler chickens. Poultry science[J].2007,86(5):795-800.
    [49]Megeney LA, Kablar B, Garrett K et al. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes & development[J].1996,10(10):1173-1183.
    [50]Calhabeu F, Hayashi S, Morgan J et al. Alveolar rhabdomyosarcoma-associated proteins PAX3/FOXO1A and PAX7/FOXO1A suppress the transcriptional activity of MyoD-target genes in muscle stem cells. Oncogene[J].2012,32(5):651-662.
    [51]Ling BMT, Bharathy N, Chung TK et al. Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. Proceedings of the National Academy of Sciences[J].2012,109(3):841-846.
    [52]Zhang X, Patel SP, McCarthy JJ et al. A non-canonical E-box within the MyoD core enhancer is necessary for circadian expression in skeletal muscle. Nucleic acids research[J].2012,40(8): 3419-3430.
    [53]Wang DW, Bai XH, Tian QY et al. GEP constitutes a negative feedback loop with MyoD and acts as a novel mediator in controlling skeletal muscle differentiation. Cellular and Molecular Life Sciences[J].2012,69(11):1855-1873.
    [54]Chen X, Liu HH, Sun LL et al. Tissue specific expression of Pax3/7 and MyoD in adult duck tissues. Journal of Applied Animal Research[J].2012,40(4):284-288.
    [55]Averous J, Gabillard J, Seiliez I et al. Leucine limitation regulates myf5 and myoD expression and inhibits myoblast differentiation. Experimental cell research[J].2012,318(3):217-227.
    [56]Liu HH, Wang JW, Li L et al. Molecular evolutionary analysis of the duck MYOD gene family and its differential expression pattern in breast muscle development. British poultry science[J].2011, 52(4):423-431.
    [57]Hennebry A, Berry C, Siriett V et al. Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. American Journal of Physiology-Cell Physiology [J].2009,296(3):525-534.
    [58]Goldhamer DJ, Faerman A, Shani M et al. Regulatory elements that control the lineage-specific expression of myoD. Science [J].1992,256(5056):538.
    [59]Ekmark M, Rana ZA, Stewart G et al. De-phosphorylation of MyoD is linking nerve-evoked activity to fast myosin heavy chain expression in rodent adult skeletal muscle. The Journal of Physiology [J].2007,584(2):637-650.
    [60]Urbanski P, Kuryt J. New SNPs in the coding and 5'flanking regions of porcine MYOD1 (MYF3) and MYF5 genes. Journal of applied genetics[J].2004,45(3):325.
    [61]Aguiar A, Vechetti-Junior I, de Souza RA et al. Myogenin, MyoD and IGF-1 Regulate Muscle Mass but not Fiber-type Conversion during Resistance Training in Rats. International journal of sports medicine[J].2013,34(04):293-301.
    [62]Lee E, Kim J, Lim K et al. Effects of variation in porcine< i> MYOD1 gene on muscle fiber characteristics, lean meat production, and meat quality traits. Meat science[J].2012,92(1): 32-43.
    [63]Buckingham M. Making muscle in mammals. Trends in genetics[J].1992,8(4):144-149.
    [64]Olson EN. MyoD family:a paradigm for development? Genes & development[J].1990,4(9): 1454-1461.
    [65]Nishisho T, Yukata K, Matsui Y et al. Angiogenesis and myogenesis in mouse tibialis anterior muscles during distraction osteogenesis:VEGF, its receptors, and myogenin genes expression. Journal of Orthopaedic Research[J].2012,30(11):1767-1773.
    [66]Du C, Jin YQ, Qi JJ et al. Effects of myogenin on expression of late muscle genes through MyoD-dependent chromatin remodeling ability of myogenin. Molecules and Cells[J].2012, 34(2):133-142.
    [67]Mastroyiannopoulos NP, Nicolaou P, Anayasa M et al. Down-regulation of myogenin can reverse terminal muscle cell differentiation. PLoS One[J].2012,7(1):29896.
    [68]Lee EJ, Bajracharya P, Lee DM et al. Gene expression profiles during differentiation and transdifferentiation of bovine myogenic satellite cells. Genes & Genomics[J].2012,34(2): 133-148.
    [69]Liu C, McFarland D, Velleman S. Effect of genetic selection on MyoD and myogenin expression in turkeys with different growth rates. Poultry science[J].2005,84(3):376-384.
    [70]Alami-Durante H, Cluzeaud M, Bazin D et al. Dietary cholecalciferol regulates the recruitment and growth of skeletal muscle fibers and the expressions of myogenic regulatory factors and the myosin heavy chain in European Sea Bass Larvae. The Journal of nutrition[J].2011,141(12): 2146-2151.
    [711 Meadows E, Flynn JM, Klein WH. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice. PLoS One[J].2011,6(1):16184.
    [72]Xue M, Zan L, Gao L et al.. A novel polymorphism of the myogenin gene is associated with body measurement traits in native Chinese breeds. Genetics and Molecular Research[J].2011,10(4): 2721-2728.
    [73]Vandenburgh HH, Karlisch P, Shansky J et al. Insulin and IGF-1 induce pronounced hypertrophy of skeletal myofibers in tissue culture. American Journal of Physiology-Cell Physiology[J].1991, 260(3):475-484.
    [74]Bodine SC, Stitt TN, Gonzalez M et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature cell biology[J].2001,3(11): 1014-1019.
    [75]Rommel C, Bodine SC, Clarke BA et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways. Nature cell biology[J]. 2001,3(11):1009-1013.
    [76]Tsilidis KK, Travis RC, Appleby PN et al. Interactions between genome-wide significant genetic variants and circulating concentrations of insulin-like growth factor 1, sex hormones, and binding proteins in relation to prostate cancer risk in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. American journal of epidemiology[J].2012,175(9): 926-935.
    [77]Sood S, Hanson ED, Delmonico MJ et al. Does insulin-like growth factor 1 genotype influence muscle power response to strength training in older men and women? European journal of applied physiology[J].2012,112(2):743-753.
    [78]Gao S, Wassler M, Li Y et al. Mir-133A Regulates Expression of Insulin-like Growth Factor-1 Receptor and Smooth Muscle Cell Growth Partly by Targeting Galactosyl Transferase 1-Associating Protein. Journal of the American College of Cardiology[J].2013,61(10_S), Doi:10.1016/S0735-1097(13)61821-5.
    [79]Tang S, Sun D, Ou J et al. Evaluation of the IGFs (IGF1 and IGF2) genes as candidates for growth, body measurement, carcass, and reproduction traits in Beijing You and Silkie chickens. Animal Biotechnology[J].2010,21(2):104-113.
    [80]Bian L, Wang S, Wang Q et al. Variation at the insulin-like growth factor 1 gene and its association with body weight traits in the chicken. Journal of Animal Breeding and Genetics[J]. 2008,125(4):265-270.
    [81]Bennett A, Hester P, Spurlock D. Polymorphisms in vitamin D receptor, osteopontin, insulin-like growth factor 1 and insulin, and their associations with bone, egg and growth traits in a layer-broiler cross in chickens. Animal genetics[J].2006,37(3):283-286.
    [82]Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins:biological actions. Endocrine reviews[J].1995,16(1):3.
    [83]Duclos M. Insulin-like growth factor-I (IGF-1) mRNA levels and chicken muscle growth. Journal of physiology and pharmacology:an official journal of the Polish Physiological Society[J]. 2005,56(3):25-35.
    [84]Duclos M, Chevalier B, Goddard C et al. Regulation of amino acid transport and protein metabolism in myotubes derived from chicken muscle satellite cells by insulin-like growth factor-I. Journal of cellular physiology[J].1993,157(3):650-657.
    [85]Duclos M, Chevalier B, Le Marchand-Brustel Y et al. Insulin-like growth factor-I-stimulated glucose transport in myotubes derived from chicken muscle satellite cells. Journal of endocrinology[J].1993,137(3):465-472.
    [86]Yakar S, Liu JL, Stannard B et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proceedings of the National Academy of Sciences[J].1999,96(13): 7324-7329.
    [87]Guernec A, Chevalier B, Duclos MJ. Nutrient supply enhances both IGF-I and MSTN mRNA levels in chicken skeletal muscle. Domestic animal endocrinology [J].2004,26(2):143-154.
    [88]Beccavin C, Chevalier B, Cogburn L et al. Insulin-like growth factors and body growth in chickens divergently selected for high or low growth rate. Journal of endocrinology [J].2001,168(2): 297-306.
    [89]Papasani MR, Wang G, Cheguru P et al. Interactions of muscle regulatory factors and isoforms of insulin growth factor-1 in the muscle regenerative process. The Journal of Physiology [J].2009, 587(11):2427-2428.
    [90]Lombardo F, Komatsu D, Hadjiargyrou M. Molecular cloning and characterization of Mustang, a novel nuclear protein expressed during skeletal development and regeneration. The FASEB JournalfJ].2004,18(1):52-61.
    [91]Gersch RP, Hadjiargyrou M. Mustnl is expressed during chondrogenesis and is necessary for chondrocyte proliferation and differentiation in vitro. Bone[J].2009,45(2):330-338.
    [92]Livne E, Laufer D, Blumenfeld L. Differential response of articular cartilage from young growing and mature old mice to IL-1 and TGF-[beta]. Archives of gerontology and geriatrics[J].1997, 24(2):211-221.
    [93]Liu C, Hadjiargyrou M. Identification and characterization of the Mustang promoter:Regulation by AP-1 during myogenic differentiation. Bone[J].2006,39(4):815-824.
    [94]Li J, Chen Y, Wang YG et al. MUSTN1 mRNA Abundance and Protein Localization is Greatest in Muscle Tissues of Chinese Meat-Quality Chickens. International Journal of Molecular Sciences[J].2013,14(3):5545-5559.
    [95]Krause MP, Moradi J, Coleman S et al. A novel GFP reporter mouse reveals Mustnl expression in adult regenerating skeletal muscle, activated satellite cells and differentiating myoblasts. Acta Physiologica[J].2013, DOI:10.1111/apha.12099.
    [96]Gersch RP, Kirmizitas A, Sobkow L et al.< i> Mustnl is essential for craniofacial chondrogenesis during< i> Xenopus development. Gene Expression Patterns[J].2012, http://dx.doi.org/10.1016/j.gep.2012.01.002.
    [97]Zheng Q, Zhang Y, Chen Y et al. Systematic identification of genes involved in divergent skeletal muscle growth rates of broiler and layer chickens. BMC Genomics[J].2009,10(1):87.
    [98]Xu TS, Huang W, Zhang XH et al. Identification and characterization of genes related to the development of breast muscles in Pekin duck. Molecular Biology Reports[J].2012,39(7): 7647-7655.
    [99]Liu C, Gersch RP, Hawke TJ et al. Silencing of Mustn1 inhibits myogenic fusion and differentiation. American Journal of Physiology-Cell Physiology[J].2010,298(5):1100.
    [100]Gersch RP. Characterization of Hox gene expression during fracture repair and the functional characterization of Mustnl during development and chondrocyte differentiationfD].2010, State University of New York at Stony Brook.
    [101]Liao W, Hong SH, Chan BHJ et al. APOBEC-2, a cardiac-and skeletal muscle-specific member of the cytidine deaminase supergene family. Biochemical and biophysical research communications^].1999,260(2):398-404.
    [102]Rogozin IB, Basu MK, Jordan IK et al. APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases predicted by computational analysis. Cell Cycle[J].2005,4(9):1281-1285.
    [103]Prochnow C, Bransteitter R, Chen XJS. APOBEC deaminases-mutases with defensive roles for immunity. Science in China Series C:Life Sciences[J].2009,52(10):893-902.
    [104]Chester A, Scott J, Anant S et al. RNA editing:cytidine to uridine conversion in apolipoprotein B mRNA. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression[J].2000, 1494(1):1-13.
    [105]Navaratnam N, Morrison JR, Bhattacharya S et al. The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. Journal of Biological Chemistry[J].1993, 268(28):20709-20712.
    [106]Anant S, Mukhopadhyay D, Sankaranand V et al. ARCD-1, an apobec-1-related cytidine deaminase, exerts a dominant negative effect on C to U RNA editing. American Journal of Physiology-Cell Physiology[J].2001,281(6):1904-1916.
    [107]Conticello SG, Thomas CJF, Petersen-Mahrt SK et al. Evolution of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases. Molecular biology and evolution[J].2005,22(2): 367-377.
    [108]Sato Y, Shimizu M, Mizunoya W et al. Differential expression of sarcoplasmic and myofibrillar proteins of rat soleus muscle during denervation atrophy. Bioscience, biotechnology, and biochemistry [J].2009,73(8):1748-1756.
    [109]Sato Y, Probst HC, Tatsumi R et al. Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass, and myopathy. Journal of Biological Chemistry[J].2010,285(10):7111.
    [110]Vonica A, Rosa A, Arduini BL et al. APOBEC2, a selective inhibitor of TGFβ signaling, regulates left-right axis specification during early embryogenesis. Developmental Biology[J].2011, 350(1):13-23.
    [111]Vikne H, Gundersen K, Liestol K et al. Intermuscular relationship of human muscle fiber type proportions:slow leg muscles predict slow neck muscles. Muscle & Nerve[J].2012,45(4): 527-535.
    [112]Chakkalakal JV, Kuang S, Buffelli M et al. Mouse transgenic lines that selectively label Type I, Type ⅡA, and Types ⅡX+B skeletal muscle fibers. genesis[J].2012,50(1):50-58.
    [113]Whalen RG, Sell SM, Butler-Browne GS. Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature[J].1981, (292):805-809.
    [114]Gonzalez-Sanchez A, Bader D. Immunochemical analysis of myosin heavy chains in the developing chicken heart. Developmental Biology[J].1984,103(1):151-158.
    [115]Cerny L, Bandman E. Expression of myosin heavy chain isoforms in regenerating myotubes of innervated and denervated chicken pectoral muscle. Developmental biology[J].1987,119(2): 350-362.
    [116]Lagrutta AA, Mccarthy JG, Scherczinger CA et al. Identification and developmental expression of a novel embryonic myosin heavy-chain gene in chicken. DNA[J].1989,8(1):39-50.
    [117]Robbins J, Horan T, Gulick J et al. The chicken myosin heavy chain family. Journal of Biological Chemistry[J].1986,261(14):6606-6612.
    [118]Tidyman WE, Moore LA, Bandman E. Expression of fast myosin heavy chain transcripts in developing and dystrophic chicken skeletal muscle. Developmental dynamics[J].1998,208(4): 491-504.
    [119]Webster C, Silberstein L, Hays AP et al. Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell[J].1988,52(4):503-513.
    [120]Yorita T, Nakamura H, Nonaka I. Satellite cells and muscle regeneration in the developing dystrophic chicken. Experimental Neurology[J].1980,70(3):567-575.
    [121]Huffman K, Zapata I, Reddish J et al. Feed restriction delays developmental fast skeletal muscle myosin heavy chain isoforms in turkey poults selected for differential growth. Poultry science[J].2012,91(12):3178-3183.
    [122]Jordan T, Jiang H, Li H et al. Inhibition of ryanodine receptor 1 in fast skeletal muscle fibers induces a fast-to-slow muscle fiber type transition. Journal of Cell Science[J].2004,117(25): 6175-6183.
    [123]Yamaguchi T, Suzuki T, Arai H et al. Continuous mild heat stress induces differentiation of mammalian myoblasts, shifting fiber type from fast to slow. American Journal of Physiology-Cell Physiology[J].2010,298(1):140-148.
    [124]Crew JR, Falzari K, DiMario JX. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation. Experimental cell research[J].2010,316(6): 1039-1049.
    [125]Pandorf CE, Haddad F, Wright C et al. Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading. American Journal of Physiology-Cell Physiology[J].2009,297(1):6-16.
    [126]Zhao X, Siegel P, Liu Y et al. Housing system affects broiler characteristics of local Chinese breed reciprocal crosses. Poultry science[J].2012,91(9):2405-2410.
    [127]尹华东,赵小玲,肖礼华等.二郎山山地鸡两个品系鸡蛋品质分析.中国家禽科学研究进展第十四次全国家禽科学学术讨论会论文集[J].2009.
    [128]兰茜,尹华东,朱庆等.二郎山山地鸡SD02×SD03杂交组合屠宰性能分析.全球肉鸡产业论坛暨第二届中国白羽肉鸡产业发展大会会刊[J].2010.
    [129]尹华东,赵小玲,刘益平等.二郎山山地鸡两个品系选育效果分析.全球肉鸡产业论坛暨第二届中国白羽肉鸡产业发展大会会刊[J].2010.
    [130]何建平,李金钢,干智等.棕色田鼠血液生理生化指标的测定.动物学杂志[J].2001,36(6):50-53.
    [131]周洪松,陈玎玎.利用血液生化指标多辅助性状综合选择指数对蛋鸡进行早期选种.畜牧兽医学报[J].1998,29(5):479-480.
    [132]Howard LL, Kass PH, Lamberski N et al. Serum concentrations of ionized calcium, vitamin D3, and parathyroid hormone in captive thick-billed parrots (Rhynchopsitta pachyrhyncha). Journal of Zoo and Wildlife MedicinefJ].2004,35(2):147-153.
    [133]Friesen O, Guenter W, Marquardt R et al. The effect of enzyme supplementation on the apparent metabolizable energy and nutrient digestibilities of wheat, barley, oats, and rye for the young broiler chick. Poultry science[J].1992,71(10):1710-1721.
    [134]瞿明仕,熊玲玲,唐志强等.日粮蛋氨酸水平对9-12周泰和鸟骨鸡生长性能和血清尿素氮含量的影响.江西饲料[J].2002,(4):4-6.
    [135]徐琪,谢恺舟,谢芳等.萧山鸡血浆胆固醇含量及其与生产性能相关性分析.畜禽业[J].2003,154(2):6-7.
    [136]Endo A. Biological and pharmacological activity of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Trends in Biochemical Sciences[J].1981, (6):10-13.
    [137]康波,姜冬梅,周瑞进等.鹅体尺,屠宰以及血液生化指标的研究进展.畜牧兽医科技信息[J].2007,(8):7-8.
    [138]郭蓓,刘德敏,张沫.几种血糖测定方法的研究比较.天津医科大学学报[J].2002,8(1):102-104.
    [139]竭航,尹华东,刘益平等.二郎山山地鸡早期产蛋性状的相关性.四川农业大学学报[J].2010,28(001):90-92.
    [140]兰茜,朱庆,刘益平等.二郎山山地鸡一世代产蛋性能选育效果研究.中国家禽[J].2010,32(023):27-29.
    [141]Xiao LH, Chen SY, Zhao X et al. Association of Cellular Retinol-binding Protein 2 (CRBP2) Gene Polymorphism with Egg Production in Erlang Mountainous Chicken. The journal of poultry science[J].2011,48(3):162-167.
    [142]廉婷,尹华东,刘益平等.二郎山山地鸡不同开产前期体重对产蛋性能的影响.中国家禽[J].2009,31(022):50-51.
    [143]张志超,尹华东,赵小玲等.二郎山山地鸡不同产蛋阶段对种蛋孵化效果的影响.四川农业大学学报[J].2011,29(3):416-418.
    [144]肖礼华,尹华东,赵小玲等.二郎山山地鸡的生长曲线拟合分析.中国家禽科学研究进展——第十四次全国家禽科学学术讨论会论文集[J].2009.
    [145]兰丹,胡耀东,赵桂苹等.二郎山山地鸡鸡距生长测定及分析.中国畜牧兽医[J].2010,(005):140-142.
    [146]张效先,张克英,丁雪梅等.52~75日龄二郎山山地鸡饲粮适宜代谢能和粗蛋白质水平的研究.动物营养学报[J].2010,(005):1257-1264.
    [147]邱莫寒,尹华东,肖礼华等.二郎山山地鸡两个品系早期生长及屠宰性能的比较.黑龙江畜牧兽医[J].2010,(23):036.
    [148]Zerehdaran S, Vereijken AL, Van Arendonk JA et al. Estimation of genetic parameters for fat deposition and carcass traits in broilers. Poultry science[J].2004,83(4):521-525.
    [149]Zhao GP, Cui HX, Liu RR et al. Comparison of breast muscle meat quality in 2 broiler breeds. Poultry science[J].2011,90(10):2355-2359.
    [150]刘升军,呙于明.日粮蛋氨酸及赖氨酸水平对雌性肉仔鸡胴体组成的影响.中国畜牧杂志[J].2001,37(2):5-8.
    [151]罗兰,王丹莉,张卫红等.日粮赖氨酸,蛋氨酸水平对不同性别肉鸡生长性能的影响.中国畜牧杂志[J].1994,30(2):8-10.
    [152]Amills M, Jimenez N, Villalba D et al. Identification of three single nucleotide polymorphisms in the chicken insulin-like growth factor 1 and 2 genes and their associations with growth and feeding traits. Poultry science[J].2003,82(10):1485-1493.
    [153]卢宗藩,吴维芬,王宗元.动物,家畜及实验动物生理生化参数[M].1983:农业出版社.
    [154]Ng'ambi JW, Sebola NA, Norris D. Effect of Hoodia gordonii leaf meal supplementation at finisher stage on productivity, carcass characteristics and meat sensory attributes of male Ross 308 broiler chickens. African Journal of Biotechnology[J].2012,11(95):16205-16209.
    [155]代飞燕,刘海,项勋等.高原地区罗斯308肉鸡生理生化指标测定.四川畜牧兽医[J].2007,34(1):33-34.
    [156]王丹莉,张敏红,杜荣等.高温时日粮铬水平对肉鸡血液生理生化指标和脂肪代谢的影响.畜牧兽医学报[J].2000,31(2):120-123.
    [157]程超,明庆磊.泰和乌骨鸡生理生化指标及其与血液流变学特性的关系.经济动物学报[J].2004,8(4):205-207.
    [158]韩庆,张彬,夏维福等.笼养灰胸竹鸡血液生理生化指标的测定.经济动物学报[J].2004,8(3):148-150.
    [159]李海,许宗运,石长青等.吐鲁番鸡血液生理生化常值的测定.家畜生态[J].2002,23(2):30-31.
    [160]王勇.蓝马鸡和藏马鸡血液生理生化指标测定.畜牧与兽医[J].2001,33(2):31-32.
    [1611 Alina A, Fahmi M, Shazamawati Z et al. Detection of Cholesterol Oxidation Products (COPs) in Raw and Chilled Storage of Chicken Sausages Formulated with Chicken Fat and Red Palm mid Fraction.2012,51-56
    [162]Saunderson CL, Bryan L. Comparison of muscle protein degradation rates in two strains of young chicks by using Nt-methylhistidine excretion. Biochem. Soc. Trans[J].1985, (13):342.
    [163]徐琪,谢恺舟,李碧春等.萧山鸡血浆胆固醇含量及其与屠宰性能相关性分析.当代畜牧[J].2003,(4):22-22.
    [164]Mahagna M, Nir Ⅰ. Comparative development of digestive organs, intestinal disaccharidases and some blood metabolites in broiler and layer-type chicks after hatching. British poultry science[J].1996,37(2):359-371.
    [165]Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2< sup>-ΔΔCT Method. methods[J].2001,25(4):402-408.
    [166]Han XL, Xu XW, Liu B. Molecular Characteristics of the Porcine MUSTN1 Gene and its Significant Association with Economic Traits. Journal of Animal Veterinary Advances[J].2010, 9(18):2351-2356.
    [167]朱道立.骨骼肌肌纤维类型的转变及其调控机制.生物学教学[J].2009,34(10):003.
    [168]程甦.品种及营养水平对猪肌纤维发育规律的影响研究[D].2008,西南大学.
    [169]Eliminowska-Wenda G, Rosinski A, Klosowska D et al. Effect of feeding system (intensive vs. semi-intensive) on growth rate, microstructural characteristics of pectoralis muscle and carcass parameters of the White Italian Geese. Archiv fur Geflugelkunde[J].1997,61(3):117-119.
    [170]Li J, Wang C, Kong FL et al. Association Study between the Single Nucleotide Polymorphisms of MUSTN1 Gene and Carcass Traits in Chickens. Asian Journal of Animal Veterinary Advances[J].2012,7(11):1157-1165.
    [171]赵小玲.鸡ADFP和PLIN基因与脂肪组织生长发育关系的遗传学研究[D].2008,四川农业大学.
    [172]张增荣.鸡CAPN1,CAPN2, CAPN3和CAST基因的克隆,表达及其在肉质中的遗传效应分析[D].2009,四川农业大学.
    [173]Sambrook J,Russell D.分子克隆实验指南(上,下册)[M].黄培堂,王嘉玺,朱厚础等泽,2002,北京:科学出版社.
    [174]奥斯伯,Ausubel FM,金斯顿等.精编分子生物学实验指南[M].2005:科学出版社.
    [175]Blom N, Gammeltoft S, Brunak S et al. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of molecular biology[J].1999,294(5):1351.
    [176]Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. Journal of molecular biology [J].1982,157(1):105-132.
    [177]Gupta R, Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function, in Pac Symp Biocomput.2002.(7):22.
    [178]Caragea C, Sinapov J, Silvescu A et al. Glycosylation site prediction using ensembles of Support Vector Machine classifiers. BMC bioinformatics[J].2007,8(1):438.
    [179]Julenius K, M(?)lgaard A, Gupta R et al. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology[J].2005,15(2): 153-164.
    [180]Chen YZ, Tang YR, Sheng ZY et al. Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs. BMC bioinformatics[J].2008,9(1):101.
    [181]Gupta R, Jung E, Brunak S. Prediction of N-glycosylation sites in human proteins, pre paration[J]. 2004.
    [182]巴克沃尼什,韦莱特,李衍达等.生物信息学基因和蛋白质分析的实用指南[M].2000:清华大学出版社.
    [183]张成岗,贺福初.生物信息学方法与实践[M].2002:科学出版社.
    [184]Marchler-Bauer A, Anderson JB, Cherukuri PF et al. CDD:a Conserved Domain Database for protein classification. Nucleic acids research[J].2005,33(1):192-196.
    [185]Vogt M, Puntschart A, Geiser J et al. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. Journal of applied physiology [J].2001, 91(1):173-182.
    [186]Mikl MC, Watt IN, Lu M et al. Mice deficient in APOBEC2 and APOBEC3. Molecular and cellular biology[J].2005,25(16):7270.
    [187]Gygi SP, Rochon Y, Franza BR et al. Correlation between protein and mRNA abundance in yeast. Molecular and cellular biology[J].1999,19(3):1720-1730.
    [188]Xu HG, Xu GY, Wang DH et al. Molecular cloning and tissue distribution of the phosphotyrosine interaction domain containing 1 PID1 gene in Tianfu goat. Gene[J].2013,515(1):71-77.
    [189]Xu HG, Xu GY, Wang DH et al. Molecular cloning, sequence identification and expression analysis of novel caprine MYLPF gene. Molecular Biology Reports[J].2013,40(3): 2565-2572.
    [190]Setlow P. Small, acid-soluble spore proteins of Bacillus species:structure, synthesis, genetics, function, and degradation. Annual Reviews in Microbiology[J].1988,42(1):319-338.
    [191]Greenbaum D, Colangelo C, Williams K et al. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome biology[J].2003,4(9):117.
    [192]Chen G, Gharib TG, Huang CC et al. Discordant protein and mRNA expression in lung adenocarcinomas. Molecular & Cellular Proteomics[J].2002,1(4):304-313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700