固定化脂肪酶催化木本油脂制备生物柴油的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
来源于动植物油脂、废餐饮油脂的石化燃料替代产品—生物柴油具有可再生性、生物降解性及环境友好性等特点近来已引起了越来越多的关注。本文以香叶树、黄连木种子为实验原料,分析评价了油脂性质与脂肪酸组成,研究固定化脂肪酶催化香叶树籽油和黄连木籽油制备生物柴油技术,并对其生物柴油性能进行了评价。
     油脂组成与性质研究表明,香叶树油脂脂肪酸组成以饱和短链脂肪酸为主,其中癸酸占33.48%、月桂酸占59.14%,香叶树籽油为低酸值油脂(酸值1.19mgKOH/g)皂化值为215.5mg KOH/g;黄连木籽油脂脂肪酸组成以不饱和长链脂肪酸为主,其中油酸46.77%、亚油酸34.43%,黄连木籽油为高酸值油脂(酸值18.03mgKOH/g),皂化值为155.3mgKOH/g。
     建立反相高效液相色谱法(RP-HPLC)定量分析生物柴油中各组分,流动相为A相甲醇、B相异丙醇—正己烷(体积比5︰4混合),按0min 100%A,15min 50%A+50%B进行二元梯度洗脱,检测器波长210nm。建立了癸酸甲酯等六种脂肪酸甲酯标准品的标准曲线。间隔测定反应过程体系中组分的变化,用以快速监测油脂中甘油三酸酯转变为脂肪酸单酯的进程,并对脂肪酸单酯和甘油三酸酯进行定量监测。
     应用响应面优化法法确定了固定化酶催化香叶树籽油反应制备生物柴油的最优工艺参数,采用叔丁醇作为反应体系的溶剂,Lipozyme TL IM脂肪酶作为催化剂,最佳反应条件为:反应温度38.5℃,甲醇与油摩尔比4∶1,叔丁醇与油体积比1∶1,酶用量为油重的4%,反应转化率达到90%。
     进行了香叶树油脂生物柴油和黄连木油脂生物柴油密度、运动粘度、闪点、倾点、冷滤点、馏程、十六烷指数等性能指标评价,除香叶树生物柴油的闪点(115℃),黄连木生物柴油的运动粘度(6.42mm2/s)不符合美国(ASTM)标准外,其余指标均满足要求。
Biodiesel has appealing more people as an alternative to diesel fuels made from vegetable oils, animal fats or used frying oils. Biodiesel is renewable, biodegradable and environmentally benign. The materials used in this paper were Lindera Communis Hemsl(LCH) seed oil and Pistacia Chinensis Bunge (PCB) seed oil, the qualitative and quantitative composition of the oils and enzymatic ayntheses of biodiesel via LCH and PCB oils were studied. The performance of biodiesel had been evaluated.
     The qualitative and quantitative composition of LCH and PCB: The acid value of LCH seed oil was 1.19mgKOH/g, saponification value 215.5mgKOH/g, the mainly composition of oil was saturated fatty acid(Capric acid 33.48%, Lauric acid 59.14%); The acid value of PCB seed oil was 18.03mgKOH/g, saponification value 155.3mgKOH/g, the mainly composition of oil was unsaturated fatty acid(Linoleic acid 34.43%, Octadecenoic acid 46.77%).
     Study was carried out on gradient elution reversed-phase high-performance liquid chromatography (RP-HPLC), it was used for the determination of compounds occurring during the production of biodiesel from oil.Reservoir A contained methanol, reservoir B congtained 2-propanol-hexane (5:4,v/v). Builded six linear regression equations of fatty acid standards. A linear gradient from 100%A to 50%A +50%B in 15min. It was used for fast monitoring of conversion of the oil triacylglycerols to fatty acid methyl esters and for quantitation of residual TGs in the final biodiesel product.
     The optimized parameters to catalyse LCH seed oil to biodiesel by the immobilized lipase were made by the Response Surface Methodology, tert-butanol was adopted as a reaction medium for lipase-catalyzed methanolysis of oils for biodiesel production, Lipozyme TLIM was used as catalyst, the biodiesel with best conversion 90% was produced at the reaction temperature, 38.5℃; the ratio of mole quantity between methanol and oil, 4; the ratio of volume between tert-butanol and oil, 1; Lipozyme TLIM catalyst concentration, 4%.
     The biodiesel of LCH and PCB oil had the fuel properties such as density, kinematic viscosity, flash point, pour point, cold filter plugging point, cetane index, distillation temperature and fatty acid composition within the limits prescribed by the American (ASTM)standards, except for a slightly lower flash point(115℃)of LCH biodiesel and a higher kinematic viscosity(6.42mm2/s) of PCB biodiesel than that prescribed by the latter standard.
引文
[1]安文杰,许德平,王海京. 生物柴油化学制备方法[J]. 粮食与油脂,2005,7:3~6
    [2]安文杰,许德平,杜显云. 超临界甲醇法制备生物柴油工艺探讨[J]. 粮食与油脂,2005,8: 21~23
    [3]陈洁. 油脂化学[M]. 化学工业出版社,2004.
    [4]陈燕和. 燃料乙醇产业经济学分析与发展前景展望[J]. 产业与科技论坛,2007,6(7):27~29
    [5]代莉. 喀斯特山地适生树种香叶树群落学及苗期水分、光合特性研究[D]. 贵州大学,2005
    [6]郭良科,李献明,李彦东. 黄连木容器育苗及造林技术[J]. 育苗技术,2007,6:22~23
    [7]郭卫军,闽恩泽. 发展我国生物柴油的初探[J]. 石油学报,2003,19(2):2~6
    [8]郭璇,贺华阳,王涛等. 超临界流体技术制备生物柴油[J]. 现代化工,2003,23:15~18
    [9]何东平. 油脂精炼与加工工艺学[M]. 化学工业出版社,2005
    [10]侯新村. 生物柴油木本能源植物中国黄连木的调查与研究[D]. 中国林业研究科学院,2006
    [11]侯新村. 木本能源植物黄连木研究进展[J]. 安徽农业科学,2007,35(12):3524~3525
    [12]胡爱军,郑捷. 声酶法合成生物柴油的比较研究[J]. 声学技术,2007,26(2):243~247
    [13]黄小明,谢文磊,彭红等.生物柴油的标准和质量控制[J]. 粮油食品科技,2005,3:40~42
    [14]火树华. 树木学[M]. 中国林业出版社,1992.
    [15]蒋宗垲. 香叶树人工林生长及生物生产力[J]. 福建林学院学报,2005,25(3):206~210
    [16]鞠庆华,曾昌凤,郭卫军等. 酯交换法制备生物柴油的研究进展[J]. 化工进展,2004,23(10):1053~1057
    [17]李健,朱跃军,路光. 华北地区的木本油料植物[J]. 中国林副特产,2001,1:56~58
    [18]李朋元,吕进. 黄连木种子育苗技术[J]. 山东林业科技,2007,2:80
    [19]李俐林,杜伟,刘德华等. 新型反应介质中脂肪酶催化多种油脂制备生物柴油[J]. 过程工程学报,2006,6(5):799~803
    [20]李伟,张希良. 国内二甲醚研究述评[J]. 煤炭转化,2007,30(3):88~95
    [21]李为民,邬国英,徐鸽等. 菜籽油制备生物柴油放大实验研究[J]. 江苏工业学院学报,2005,17(2):9~12
    [22]李为民,章文峰,邬国英. 菜籽油油脚制备生物柴油[J]. 江苏工业学院学报,2003,15(1): 7~10
    [23]林娟,周选围,唐克轩. 麻疯树植物资源研究概况[J]. 热带亚热带植物学报,2004,12(3):285~290
    [24]刘启慎,魏玉君,谭浩亮等. 中国黄连木形状变异及类型划分[J]. 河南林业科技,1999,19(1):1~4
    [25]刘启慎,谭浩亮,李建新. 中国黄连木生长规律的研究[J]. 河南林业科技,1999,19(2):3~6
    [26]刘伟伟,张无敌. 生物柴油的理化性质及质量标准[J]. 新能源及工艺,2006,01:27~31
    [27]刘玉兰. 油脂制取与加工工艺学[M]. 科学出版社,2003
    [28]聂开立,王芳,谭天伟. 固定化酶法生产生物柴油[J]. 现代化工,2003,23(9):35~38
    [29]闵恩泽,唐忠,杜泽学等. 发展我国生物柴油产业的探讨[J]. 中国工程科学,2005,7(4):1~4
    [30]裴会明,陈明琦. 黄连木的开发利用[J]. 中国野生植物资源,2005,24(1):43~44
    [31]钱建军,张存劳,姚亚利等. 黄连木油料资源的开发与利用[J]. 中国油脂,2000,25(3):49
    [32]盛梅,李为民,部国英. 生物柴油研究进展[J]. 中国油脂,2003,28(4):66~70
    [33]盛梅,邬国英,徐鸽等. 生物柴油的制备[J]. 高校化学工程学报,2004,18(2):231~236
    [34]苏明,傅志华. 支持清洁能源发展的财政税收政策建议[J]. 经济研究参考,2006,14:52~59
    [35]苏畅,赵崇峰,岳莉等. 生物柴油技术的进展[J]. 当代化工,2004,4,33(2):79~81
    [36]徐鸽,邬国英. 菜籽油生物柴油与 0#柴油氧化安全性比较[J]. 中国油脂,2004,29(12):71~73
    [37]忻耀年,Sondermann B,Emersleben B. 生物柴油的生产和应用[J]. 中国油脂,2001,26(5):72~77
    [38]忻耀年. 生物柴油的发展现状和应用前景[J]. 中国油脂,2005,30(3):49~53
    [39]杨继国,林炜铁,吴军林. 酶法合成生物柴油的研究进展[J]. 化工环保,2004,24(2):116~120
    [40]吴虹,宗敏华,娄文勇. 无溶剂系统中固定化脂肪酶催化废油脂转酯生产生物柴油[J]. 催化学报,2004,25(11):903~908
    [41]章亭洲,杨立荣,朱自强. 脂肪酶改性对其在有机相中催化特性的影响[J]. 浙江大学学报,2001,27(3):237~243
    [42]赵加积. 谁能替代石油[J]. 中国经济特刊,2006,36
    [43]周晓云. 酶学原理与酶工程[M]. 中国轻工业出版社,2005
    [44]朱行. 植物油制成生物柴油[J]. 粮食与油脂,2001,5:50
    [45]Ana V, Pizarro L, Park E Y. Lipase-catalyzed production of biodiesel fuel from vegetab1e oils contained in waste activated bleaching earth[J]. Process Biochemistry,2003,34:1077~1082
    [46]Ban K, Kaieda M, Matsumoto T, Kondo A., Fukuda H. Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles[J]. Biochemical Engineering Journal,2001,8(1):39~43(5)
    [47]Chang H M, Liao H F, Lee C C, Shieh C J. Optimized synthesis of lipase-catalyzed biodiesel by Novozym 435[J]. Journal of Chemical Technology and Biotechnology, 2005,80(3):307~312
    [48]Chen H, Peng B X, Wang D Z, Wang J F. Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts[J]. The Chinese Journal of Process Engineering,2006, 6(4): 571~575
    [49]De B A J, Den U H. An evaluation of three routes for the production of liquid fuels from biomass[J]. Fuel and Energy Abstracts,1997,38(5):326~326(1)
    [50]Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods[J]. Progress in Energy and Combustion Science,2005, 31:466~487
    [51]Du W, Xu Y Y, Zeng J, et al. Novozym 435-catalyzed transesterification of crude soya bean oils for biodiesel production in a solvent-free medium[J]. Biotechnology and Applied Biochemistry, 2004,40(2):187~190
    [52]Du W, Xu Y Y, Liu D H, et al. Comparative study on lipase-catalyzed transfomation of soybean oil for biodiese production with different acyl acceptors[J]. Journal of Molecular Catalysis B:Enzymatic, 2004,30(3-4):125~129
    [53]Goto M, Hatanaka C, Ide S. Biodiesel fuel production by immobilized surfactant-enzyme complex[J]. Kitakyushu Kogyo Koto Senmon Gakko Kenkyu Hokoku,2004,37:81~84
    [54]Hama S, Yamaji H, Kaieda M, et al. Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel fuel production[J]. Biochemical Engineering Journal,2004, 21(2):155~160
    [55]He H Y, Guo X, Zhu S L. Comparison of membrane extraction with traditional extraction methods for biodiesel production[J]. JAOCS,2006,83(5):457~460
    [56]Hsu A, Jones K, Foglia T A, et al. Immobilized lipase-catalysed production of alkyl esters of restaurant grease as biodiesel[J]. Biotechnology and Applied Biochemistry,2002,36(3):181~186
    [57]Iso M, Chen B, Eguchi M, et al. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase[J]. Journal of Molecular Calalysis B:Enzymatic,2001,16(1):53~58
    [58]Kamini N R, Iefuji H. Lipase catalyzed methanolysis of vegetable oils in aqueous medium by Cryptococcus spp.s-2[J]. Process Biochemistry,2001,37(4):405~410
    [59]Kaieda M, Samukawa T, Matsumoto T, et al. Biodiesel fuel Production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent[J]. Journal of Biosciece Bioengineering,1999,88(6):627~631
    [60]Kakugawa K, Shobayashi M, Suzuki O, etal. Purification and characterization of a lipase from the glycolipid producing yeast kurtzmanomycesspI-II[J]. Bioscience Bio technology and Biochemistry, 2002,66(5):978~985
    [61]Kazuhiro B, Shinji H, Keiko N, et al. Repeated use of whole cell biocatalysts immobilized within biomass support particles for biodiesel fuel production[J]. Journal of molecular catalysis B: Enzymatic,2002,17(3-5):157~165
    [62]Knothe G. Analyzing biodiesel: standards and other methods[J]. JAOCS,2006,83(10):823~833
    [63]Lachenmaier J. Emission reduction of regenerative fuel powered co-generation plants with SCR- and oxidation-catalysts[J]. Catalysis Vols,2001,16/17:1~4
    [64]Meher L C. Optimization of alkali-catalyzed transesteri Wcation of Pongamia pinnata oil for production of biodiesel[J]. Bioresource Technology,2006,97:1392~1397
    [65]Mukesh K M. Lipase-mediated transformation of vegetable oils into biodiesel using propan-2-ol as acyl acceptor[J]. Biotechnology Letters,2006,28: 637~640
    [66]Noureddini H, Gao X, Philkana R S. Immobilized pseudomonas cepacia lipase for biodiesel fuel production from soybean oil[J]. Bioresource Technology,2005,96(7):769~777
    [67]Oda M, Kaieda M, Hama S, et al. Facilitatory effect of immobilized lipase-producing Rhizopus oryzae cells on acyl migration in biodiesel-fuel production[J]. Biochemical Engineering Journal,2005,23(1):45~51
    [68]Saka S, Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol [J]. Fuel,2001,88(2):225~231
    [69]Shah S, Sharma S, Gupta M N. Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil[J]. Energy&Fuels,2004,18(1):154~159
    [70]Shimada Y, Watanabe Y, Samukawa T, et al. Conversion of vegetable oil to biodiesel using immobilized candida antarctica lipase[J]. J.Am. Oil chem. Soc.,1999,76(7):789~793
    [71]Shimada Y, Watanabe Y, Sugihara A, et al. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing[J]. Journal of Molecular Catalysis B:Enzymatic,2002,17(3-5):133~142
    [72]Soumanou M M, Bornscheuer U T. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil[J]. Enzyme and Microbial Techno1ogy,2003, 33(1):97~103
    [73]Uosukainen E, Lamsa M, Linko Y Y,et al. Optimization of enzymatic transesterification of rapeseed oil ester using response surface and principal component methodology choice of the lipase and study of the mechanism[J]. Enzyme and Microbial Technology,1999, 25(3):236~243(8)
    [74]Veljkovic′ V B, et al. Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids[J]. Fuel,2006,85(17-18):2671~2675
    [75]Vivek R, Giridhar M. Synthesis of biodiesel from edible and non-edible oils in supercritical alcohols and enzymatic synthesis in supercritical carbon dioxide[J]. Fuel,2007,86(17-18):2650~2659
    [76]Vicente G. Integrated biodiesel production: a comparison of different homogeneous catalysts systems [J]. Bioresoutce Technology,2004,92:297~305.
    [77]Yasuhisa A, Hideki F, Yuji S, et al. Biofuel production process by novel biocatalysts[J]. Journal of Molecular Catalysis,2002,17(3-5):111
    [78]Yomi W, Praphan P, Toshihiro N, et al. Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antaritice lipase[J]. Journal of Molecular Catalysis B: Enzymatic,2006,44:99~105.
    [79]Yuichiro W, Dadan K, Shiro S. Biodiesel fuel from vegetable oil by various supercritical alcohols[J]. Applied Biochemistry and Biotechnology,2004,115(1-3):793~802

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700