青蛤多糖分离鉴定、硫酸酯化及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青蛤俗名蛤蜊,属软体动物门,双壳纲,青蛤属,为我国主要的水产贝类,在海洋水产业中具有重要地位。青蛤肉质鲜美,营养丰富,富含蛋白质、氨基酸、脂类、糖类、矿物质元素。传统医学证实,青蛤软体组织水浸提物对发炎、哮喘、口腔溃疡等病症疗效较佳。青蛤水提物的生理活性可能与其富含多糖类物质有关。研究表明,一些源于海洋贝类诸如文蛤、菲律宾蛤仔、翡翠贻贝的多糖具有抗肿瘤、消炎、免疫调节等方面的生理活性,并且关于贝类多糖分离纯化、理化性质、单糖组成、结构等方面研究均有报道。而关于青蛤多糖的研究报道甚少。本实验以青蛤为原料,对青蛤多糖进行提取制备、分离纯化,并对多糖的化学组成、结构特征、化学修饰、生理活性等方面进行分析与研究。研究内容及研究结果具体如下:
     (一)青蛤多糖提取条件优化
     采用单因素实验研究提取工艺参数(提取温度、提取时间、提取次数、水料比)对青蛤多糖产率的影响,结果表明,提取温度、提取时间、提取次数对青蛤多糖产率有显著影响。随着提取温度升高,青蛤多糖产率基本呈上升趋势;提取次数2次以上时,随着提取次数增多,多糖产率变化不明显。在单因素研究的基础上,采用二次正交旋转组合实验设计对提取工艺参数进行优化。通过Design expert 7.0统计软件对实验数据进行处理,得到青蛤多糖提取最佳工艺条件(提取温度90℃,提取时间250 min,水料比29,提取次数2次)。在此工艺条件下青蛤多糖的实际产率为15.52%士1.26%,与模型预测结果(15.62%)基本相符。
     (二)青蛤多糖分离纯化、理化性质及结构分析
     采用DEAE-纤维素柱层析法对青蛤粗多糖(Crude CSPS)进行初步分离,获得三个组分(F1、F2、F3)。采用Sephdex G-100凝胶柱层析进一步分离纯化,获得三个纯化组分(CSPS-1、CSPS-2、CSPS-3)。采用HPLC法对CSPS-1、CSPS-2、CSPS-3的纯度进行鉴定,结果表明,CSPS-1、CSPS-2、CSPS-3为均一的多糖组分。
     采用苯酚-硫酸法、硫酸-间羟联苯法、考马斯亮蓝法、氯化钡-明胶法分别对Crude CSPS、CSPS-1、CSPS-2、CSPS-3中总糖、糖醛酸、蛋白质、硫酸基含量进行分析。结果表明,Crude CSPS、CSPS-1、CSPS-2、CSPS-3,总糖含量分别为83.81%、98.75%、95.58%、84.71%;糖醛酸含量分别为1.58%、0.16%、0.96%、2.13%;硫酸基含量分别为0.92%、1.22%、2.08%、3.58%:Crude CSPS、CSPS-3蛋白质分别为3.08%、6.34%,CSPS-1、CSPS-2均未能检出;GC分析表明,Crude CSPS由鼠李糖、岩藻糖、葡萄糖、半乳糖组成,摩尔百分比分别为:10.88%、12.45%、42.78%、33.89%;CSPS-1由木糖、葡萄糖组成,摩尔百分比分别为:4.92%、95.08%。CSPS-2由葡萄糖组成。CSPS-3由鼠李糖、岩藻糖、甘露糖、葡萄糖、半乳糖组成,其摩尔百分比分别为:11.48%、17.15%、12.44%、21.57%、37.36%。HPLC分析结果表明,CSPS-1、CSPS-2、CSPS-3的平均分子量分别为68.6 kDa、80.6 kDa、100.6 kDa。
     采用FT-IR、NMR、高碘酸氧化、Smith降解、甲基化反应、GC-MS对CSPS-1、CSPS-2、CSPS-3结构进行分析。FT-IR分析表明,CSPS-1、CSPS-2、CSPS-3具有多糖的特征吸收,存在α型构型;NMR进一步证实,CSPS-1、CSPS-2、CSPS-3均为α型吡喃糖。高碘酸氧化、Smith降解、甲基化反应、GC-MS分析表明,CSPS-1主链由(1→4)-葡萄糖构成,支链为(1→6)-葡萄糖。CSPS-2主链由(1→3)-葡萄糖、(1→4)-葡萄糖构成,支链为(1→2)-葡萄糖、(1→6)-葡萄糖。CSPS-3主链为(1→3)-葡萄糖、(1→3)-半乳糖,支链为(1→6)-葡萄糖。
     (三)青蛤多糖硫酸酯化及抗肿瘤活性
     采用氯磺酸吡啶法对青蛤多糖纯化组分CSPS-1进行硫酸酯化。通过三因素三水平正交实验研究酯化条件(氯磺酸吡啶比例、酯化温度、酯化时间)对硫酸基取代度(DS)、总糖含量的影响。在正交实验条件制备了DS、总糖含量不同的CSPS-1硫酸酯化样品。CSPS-1硫酸酯化正交实验结果表明,酯化条件对DS的影响由弱到强的顺序为酯化时间<酯化温度<氯磺酸吡啶比例。酯化条件对总糖含量的影响由弱到强的顺序为酯化时间<氯磺酸吡啶比例<酯化温度。采用MTT法研究不同酯化条件下制备的硫酸酯化多糖对人胃癌细胞BGC-823的增殖抑制效果,结果表明,不同DS或总糖含量的多糖样品对人胃癌细胞BGC-823的增殖具有不同的抑制效果。硫酸酯化多糖样品的DS、总糖含量越高,其对人胃癌细胞BGC-823的增殖抑制能力越强。氯磺酸吡啶比例为1:4、酯化温度为65℃、酯化时间为2h时,硫酸酯化多糖的DS、总糖含量均达到最大值(0.102、72.19%),并且对人胃癌细胞BGC-823的增殖抑制率最高达89.44%(400μg/ml,72 h)。
     (四)青蛤多糖抗癌活性
     采用MTT法研究Crude CSPS、CSPS-1、CSPS-2、CSPS-3对人胃癌细胞BGC-823的增殖抑制效果。结果表明,在50-400μg/ml的多糖浓度范围内,Crude CSPS.CSPS-1、CSPS-2、CSPS-3对人胃癌细胞BGC-823的增殖抑制率呈现一定的量效关系。随着多糖浓度提高,Crude CSPS、CSPS-1、CSPS-2、CSPS-3对人胃癌细胞BGC-823的增殖抑制率呈上升趋势。当多糖浓度为400谬g/ml, Crude CSPS、CSPS-1、CSPS-2、CSPS-372 h时对人胃癌细胞BGC-823的增殖抑制率分别为35.16%、58.98%、42.91%、79.89%。在Crude CSPS、CSPS-1、CSPS-2、CSPS-3中,CSPS-3对人胃癌细胞BGC-823的增殖抑制效果最好,抗肿瘤活性最高。CSPS-3较强的抗肿瘤活性可能与其较高的蛋白质、糖醛酸、硫酸基含量及相对复杂的单糖组成、结构有关。
     (五)青蛤多糖抗氧化活性
     采用化学方法对Crude CSPS、CSPS-1、CSPS-2、CSPS-3进行体外抗氧化活性测定。结果表明,Crude CSPS、CSPS-1、CSPS-2、CSPS-3均具有不同的超氧自由基清除能力、羟自由基清除能力、还原力、脂质过氧化抑制活性、金属离子螯合能力。Crude CSPS、CSPS-1、CSPS-2、CSPS-3具有一定的体外抗氧化活性。在0.4~4.0 mg/ml的范围内,随着多糖浓度提高,Crude CSPS、CSPS-1、CSPS-2、CSPS-3的体外抗氧化活性呈上升趋势。青蛤多糖的超氧自由基清除活性由小到大的顺序为CSPS-2< CSPS-1< Crude CSPS< CSPS-3,羟自由基清除活性为CSPS-1< CSPS-2< CSPS-3< Crude CSPS,还原力为Crude CSPS< CSPS-1< CSPS-2< CSPS-3,脂质过氧化抑制活性为CSPS-2< CSPS-1< CSPS-3< Crude CSP,金属离子螯合能力为CSPS-1< CSPS-2 < CSPS-3< Crude CSPS。CSPS-1、CSPS-2、CSPS-3抗氧化活性方面的差异可能是由于多糖的化学组成、分子量、聚合度、硫酸基取代位置、主链特征等方面的差异所致。
     青蛤粗多糖体内抗氧化活性采用CCl4诱导肝损伤模型小鼠进行评价。蛋白质含量、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性、丙氨酸氨基转移酶(ALT)、天门冬氨酸氨基转移酶(AST)等生理生化指标均采用商业试剂盒进行测定。青蛤多糖体内抗氧化实验结果表明,与正常对照组相比,模型对照组处理能够显著提高小鼠血清ALT、AST活性(P<0.05),降低肝SOD、GSH-Px活性(P<0.05),说明本实验的小鼠CCl4诱导肝损伤模型被成功建立。与模型对照组相比,多糖组能够显著提高小鼠肝SOD、GSH-Px活性(P<0.05),降低小鼠肝MDA水平(P<0.05),表明青蛤多糖对CC14诱导的肝损伤小鼠具有保护作用。青蛤多糖的护肝效果可能与青蛤多糖提高小鼠自身抗氧化能力以及抑制脂质过氧化有关。
Cyclina sinensis, commonly called clam, a well-known bivalve mollusk in the family of Veneridae, is widely distributed along the coastal waters of China. It is one of the most important bivalve species in Chinese aquaculture. It has been reported that Cyclina sinensis can be used for the treatment of inflammation, asthma and dental ulcer in traditional Chinese medicine. In addition, it has been demonstrated that it is rich in protein, amino acid, lipid, minerals and polysaccharides that may contribute to the biological functions, such as anti-tumor, anti-inflammation and immune-regulation. However, little attention has been devoted to the isolation, purification, chemical and structural characterization, sulfated modification and biological activities of polysaccharides from Cyclina sinensis (CSPS) compared with those of some other bivalvia species such as Meretrix meretrix Linnaeus, Ruditapes philippinarum and Perna viridis. Therefore, we report here optimization of extraction parameters, isolation and purification, chemical characterization, structures, sulfation, antioxidant and anticancer activities of CSPS. Main results are listed as follows:
     1. Optimization for extraction of CSPS
     The effects of extraction temperature, extraction time, ratio of water to raw material and extraction times on the extraction yields of CSPS were investigated by using single-factor experiments. The results showed that all these variables markedly affected the polysaccharides yield. The yield of CSPS was increased with the increase of extraction temperature. The yield of CSPS stopped growing with increased extraction times when the extraction times were more than 2 times. Based on the single-factor experiments, response surface methodology (RSM) was applied for the parameter optimization for CSPS production. By using the software of Design Expert version 7.0, the optimum values of the tested variables for the extraction of CSPS were obtained as follows:extraction temperature 90℃, extraction time 250 min and ratio of water to raw material 29. Using the optimal conditions, the maximum predicted extraction yield of CSPS was 15.62%, which corresponded fairly well to that of real extraction (15.52%±1.26%).
     2. Isolation, purification, chemical characterization, structures of CSPS
     The crude CSPS was firstly separated through acolumn of DEAE-cellulose (Whatman DE 52). As a result, three independent elution peaks (F1, F2 and F3) were obtained. The three fractions were loaded onto a column of Sephadex G-100, affording CSPS-1, CSPS-2 and CSPS-3, respectively. Purity of CSPS-1, CSPS-2 and CSPS-3 was further confirmed by using HPLC, and results showed that CSPS-1, CSPS-2 and CSPS-3 were homogeneous polysaccharides respectively.
     The chemical characterizations of CSPS were investigated by various methods. As to crude CSPS, CSPS-1, CSPS-2 and CSPS-3, polysaccharides content, measured by employing the method of sulfuric acid-phenol coloration, was 83.81%,98.75%,95.58% and 84.71%, respectively. Uronic acid content, determined by using the method of sulfate-3-Phenylphenylol assay, was 1.58%,0.16%,0.96% and 2.13%, respectively. Sulfuric radical content, determined by employing the method of gelatin-barium chloride assay, was 0.92%,1.22%,2.08% and 3.58%, respectively. Protein content, measured by applying the method of coomassie brilliant blue coloration, was 3.08%, not detected, not detected and 6.34% respectively. The relative molecular weight of CSPS-1, CSPS-2 and CSPS-3, determined by HPLC, was 68.6 kDa,80.6 kDa and 100.6 kDa, respectively. According to GC analysis, CSPS-1 was composed of xylose and glucose in a molar percent of 4.92 and 95.08, respectively, and CSPS-2 was only composed of glucose. CSPS-3 was composed of rhamnose, fucose, mannose, glucose and galactose with a molar percent of 11.48,17.15,12.44,21.57 and 37.36, respectively.
     The structural characterizations of CSPS were investigated by FT-IR, periodte oxidation, Smith degradation, methylation, GC-MS and NMR analysis. In FTIR spectrum of CSPS, characteristic absorptions of polysaccharides, carboxyl group and pyranose ring were observed. NMR spectroscopy confirmed that there were pyranose rings in CSPS-1, CSPS-2 and CSPS-3. Results of periodate oxidation, Smith degradation, methylation and GC-MS analysis suggested that CSPS-1 was a glucan with a backbone ofα-D-(1→4) Glc, branched withα-D-(1→6) Glc. CSPS-2 was a glucan with a backbone ofα-D-(1→3) Glc andα-D-(1→4) Glc branched withα-D-(1→2) andα-D-(1→6) Glc. CSPS-3 had a backbone ofα-D-(1→3) Glc andα-D-(1→3) gala, branched withα-D-(1→6) Glc.
     3. Sulfated modification of CSPS-1 and its anticancer activities
     Nine modification conditions were designed to sulfate CSPS-1 by chlorosulfonic acid-pyridine (CSA-Pyr) method according to the orthogonal test and focusing on three affecting factors such as ratio of CSA to Pyr, reaction temperature and reaction time. And nine sulfated derivatives with various degrees of substitution (DS) and carbohydrate content were obtained. The results indicated that the extent of the impact of variables on DS followed the order:reaction time< reaction temperature< ratio of CSA to Pyr, and the extent of the impact of variables on carbohydrate content followed the order:reaction time < ratio of CSA to Pyr< reaction temperature. The anticancer activities of the derivatives in vitro were evaluated by determining their inhibitory rates against human gastric cancer BGC-823 cells. The results indicated that the derivaitves with different DS or carbohydrate content showed different anticancer activities. It seemed that polysaccharides with relatively higher DS and carbohydrate content exhibit stronger antitumor activity in vitro. According to results of the orthogonal test, the optimum sulfated conditions of CSPS-1 should be the ratio of CSA to Pyr of 1:4, reaction time of 2 h and reaction temperature of 65℃. Using the optimal conditions, DS and carbohydrate content of products were 0.102 and 72.19%, respectively. And the inhibitory rates against human gastric cancer BGC-823 cells reached 89.44% at 72 h at a concentration of 400μg/ml.
     4. Anticancer activities of CSPS
     The anticancer activities in vitro of crude CSPS, CSPS-1, CSPS-2 and CSPS-3 were evaluated by determining their inhibitory rates against human gastric cancer BGC-823 cells. The results showed that all polysaccharides exhibited a dose-dependent activity within the concentration range of 50-400μg/ml, and the inhibitory effects of crude CSPS, CSPS-1, CSPS-2 and CSPS-3 increased with the increase of sample concentration. At a concentration of 400μg/ml, the inhibitory effects of crude CSPS, CSPS-1, CSPS-2 and CSPS-3 at 72 h were 35.16%,58.98%,42.91% and 79.89%, respectively. CSPS-3 showed strong inhibitory effect on the growth of BGC-823 cells. The higher activity of CSPS-3 might be attributed to its high contents of protein, uronic acid and sulfuric radical as well as relative more complicated monosaccharide composition and structure.
     5. Antioxidant activities of CSPS
     Antioxidant activities in vitro of CSPS, CSPS-1, CSPS-2 and CSPS-3 were measured by using the chemical methods. Results showed that crude CSPS, CSPS-1, CSPS-2 and CSPS-3 had different superoxide radical scavenging activity, hydroxyl radical scavenging activity, reducing power, lipid peroxidation inhibition effect and ferrous ion chelating activity. Crude CSPS, CSPS-1, CSPS-2 and CSPS-3 had some antioxidant activities in vitro. Antioxidant activities of crude CSPS, CSPS-1, CSPS-2 and CSPS-3 were increased with the increase of concentrations ranged from 0.4 mg/ml to 4.0 mg/ml. For superoxide radical, the scavenging activity increased in the order of CSPS-2< CSPS-1< Crude CSPS< CSPS-3. Hydroxyl radical scavenging activity increased in the order of CSPS-1< CSPS-2 < CSPS-3< Crude CSPS. Reducing power increased in the order of Crude CSPS< CSPS-1 < CSPS-2< CSPS-3. Lipid peroxidation inhibition effect increased in the order of CSPS-2 < CSPS-1< CSPS-3< Crude CSPS. Ferrous ion chelating activity increased in the order of CSPS-1< CSPS-2< CSPS-3< Crude CSPS. The difference in antioxidant activities were related to the difference in chemical components, molecular weights, polymerization degree, the position of sulfate groups and polymer backbone of polysaccharides.
     Antioxidant activities in vivo of CSPS were evaluated by its attenuation of carbon tetrachloride-induced hepatotoxicity in mice. Protein content, activities of SOD and GSH-Px as well as level of MDA, ALT and AST were determined by using commercially available kits. The results showed that the activities of antioxidant enzymes (SOD and GSH-Px) in liver homogenate of the CCl4-induced mice were significantly decreased and MDA and serum enzymes (ALT and AST) levels were significantly increased compared to that of the normal control (P< 0.05), suggesting that the hepatotoxicity mice model was established successfully. The results also showed that oral administration of Crude CSPS significantly reduced the elevated serum levels of ALT and AST, the level of MDA in the liver that were induced by CCl4 in mice. Moreover, the Crude CSPS treatment was also found to significantly increase the activities of SOD and GSH-Px in the liver. The results suggested that Crude CSPS exhibited potent hepatoprotective effects on CCl4-induced liver damage in mice, likely due to both the increase of antioxidant-defense system activity and the inhibition of lipid peroxidation.
引文
[1]顾润润,于业绍,蔡友琼.青蛤的营养成分分析与评价[J].动物学杂志,2006,3:70-74
    [2]于业绍,郑晓东.青蛤的形态与构造[J].海洋渔业,1995,2:59-62
    [3]Zhao Y, Li Q, Kong L, et al. Genetic and morphological variation in the venus clam Cyclina sinensis along the coast of China [J]. Hydrobiologia,2009,635(1):227-235
    [4]Liu W, Ma Y, Hu S, et al. Rearing Venus clam seeds, Cyclina sinensis (Gmelin), on a commercial scale [J]. Aquaculture,2002,211(1-4):109-114
    [5]于业绍,王慧,刘渝仙,等.青蛤生物学及育苗研究[J].海洋渔业,1993,4:155-161
    [6]于业绍,周琳,黄则平,等.海水比重、温度和底质对青蛤稚贝生长、存活的影响[J].海洋渔业,1997,1:13-16
    [7]于业绍,王慧,刘渝仙,等.青蛤生态及繁殖习性[J].海洋科学,1994,2:17-19
    [8]李晓英,董志国,阎斌伦,等.青蛤与文蛤的营养成分分析与评价[J].食品科学,2010,23:366-370
    [9]舒留泉.2种贝类化学组成和重金属含量分析[J].安徽农业科学,2009,37(31):15288-15289
    [10]于业绍,顾润润,杨星星.青蛤的保活与营养[J].海洋科学,2005,8:10-14
    [11]刘佳,陆宝庭,肖淑玉.四种海洋贝类肌肉中风味物质的分析与评价[J].环境与健康杂志,2008,7:633-634
    [12]曾志南,李复雪.青蛤软体部重量和生化组分含量的季节变化[J].热带海洋,1990,2:8-15
    [13]田国庆,魏恩宗,方应国,等.青蛤低温保活和营养成分的变化[J].上海水产大学学报,2002,2:184-187
    [14]杜罗喜,郄革红.青蛤有效成分的抗肿瘤作用研究(摘要)[J].西南国防医药,1993,5:292
    [15]胡聪聪.青蛤多糖提取的条件优化及其抗肿瘤活性研究[J].中国民族民间医药,2010,19(10):28-29
    [16]刘翠,张桂兰,窦肇华,等.青蛤肉提取液对老龄小鼠外周血T细胞及亚群影响的研究[J].中国老年学杂志,1997,6:374-375
    [17]张桂兰,刘翠,侯秋凤,等.青蛤、扇贝肉提取液对老龄鼠免疫器官巨噬细胞、淋巴细胞ANAE活性影响[J].空军医高专学报,1997,1:4-6
    [18]韩元龙.青蛤散外用治疗化疗后溃疡[J].浙江中医杂志,1994,1:18
    [19]王晓光,高洁.青蛤散治疗银屑病51例[J].四川中医,1994,10:48
    [20]朱远熔.青蛤散治愈阴囊湿疹5例[J].湖北中医杂志,1981,3:32
    [21]樊玉成.中药“青蛤散”对接触传染性脓皰病的疗效[J].中级医刊,1958,5:12
    [22]马崇生.青蛤散治疗湿疹验案两则[J].陕西中医,1984,3:10
    [23]许向彤.青蛤散治肛门湿疹58例临床观察[J].江西中医药,1998,5:42
    [24]谭新云.青蛤散治疗皮肤慢性溃疡[J].长春中医药大学学报,2006,22(2):22
    [25]李端.青蛤油制备方法的改进[J].基层中药杂志,2002,16(1):46
    [26]陈玲,贾汝汉,褚瑰丽.厄贝沙坦对2型糖尿病大鼠肾脏氧化应激和蛋白激酶C活性的影响[J].武汉大学学报(医学版),2004,25(2):150-153
    [27]朱常龙,汪东风,孙继鹏,等.壳寡糖配合物对扇贝产品中镉的脱除作用[J].农产品加工(创新版),2010,7:10-13+20
    [28]曹倩倩,杨静峰,朱蓓薇.扇贝糖原的提取及硫酸化修饰的研究[A].中国食品科学技术学会第七届年会论文摘要集[C].北京:2010
    [29]常林瑞,黄清荣,孙振兴,等.菲律宾蛤仔多糖提取物抑制蚕豆根尖细胞微核形成的研究[J].食品科学,2009,3:235-238
    [30]陈静波.贻贝蒸煮液水溶性多糖的分离纯化、结构分析和活性研究[D].杭州:浙江工商大学,2008
    [31]程仕伟,于晓明,张玉香.紫贻贝多糖提取及其体外抗氧化活性研究[J].食品工业科技,2010,9:132-134
    [32]范秀萍,吴红棉,雷晓凌,等.菲律宾蛤仔氨基多糖的分离提取及其抗肿瘤活性的初步研究[J].食品工业科技,2003,9:73-76
    [33]胡聪聪,杨永芳,丁国芳,等.青蛤多糖提取的条件优化及其抗肿瘤活性研究[J].中国民族民间医药,2010,10:28-29
    [34]金燕,吴皓,常念,等.四角蛤蜊多糖的提取工艺与单糖组分研究[J].中华中医药学刊,2010.3:479-481
    [35]刘小燕.中国圆田螺多糖的提取及体外抗乙肝病毒的实验研究[D].淮南:安徽理工大学,2007
    [36]刘小燕,李朝品,湛孝东.淡水贝类多糖提取工艺的优选[J].时珍国医国药,2007,3:656-657
    [37]马明华,易杨华,汤海峰.厚壳贻贝多糖MA的分离纯化、理化性质及活性研究[J].中国海洋药物,2004,4:14-18
    [38]乔德亮.三角帆蚌多糖提取、纯化、生物活性及其结构[D].南京:南京农业大学2009
    [39]宋荪阳,杨静峰,孙黎明,等.虾夷扇贝性腺糖蛋白的制备及抗氧化活性研究[A].中国食品科学技术学会第七届年会论文摘要集[C].北京:2010
    [40]王长云,管华诗.扇贝边中酸性粘多糖的提取[J].青岛海洋大学学报,1992,S1:71-77
    [41]王长云,管华诗,林洪.海湾扇贝肝素样多糖分离方法的研究[J].海洋与湖沼,1995,S1:66-69
    [42]吴红棉,范秀萍,雷晓凌,等.波纹巴非蛤氨基多糖的分离纯化及其理化性质的初步研究[J].食品与发酵工业,2005,7:133-136
    [43]叶庆俊,范秀萍,吴红棉.珠母贝糖胺聚糖胶囊制备与检测[J].广东海洋大学学报,2008,3:96-99
    [44]徐红丽.东海厚壳贻贝水溶性多糖MP-Ⅰ的结构鉴定及生物学活性研究[D].上海:第二军医大学,2007
    [45]徐红丽,郭婷婷,郭一峰,等.贻贝水溶性多糖MP-Ⅰ的分离纯化及体外抗肿瘤活性研究 [J].第二军医大学学报,2006,9:998-1001
    [46]姚滢.东海厚壳贻贝多糖的分离提纯和免疫学活性研究[D].上海:第二军医大学,2005
    [47]许子茂,李江滨,侯敢.翡翠贻贝多糖的制备及体外对Hela肿瘤细胞生长的抑制作用[J].中国现代药物应用,2010,7:1-2
    [48]闫雪,杨静峰,周大勇,等.虾夷扇贝内脏多糖SVP-12的分离纯化及性质研究[J].食品与发酵工业,2009,(2):172-175
    [49]杨荣华,陈静波,戴志远.贻贝蒸煮液多糖的提取及其生物活性研究[J].中国食品学报,2009,1:84-88
    [50]尹华,袁强,储云月.文蛤多糖的提取及含量测定[J].中国海洋药物,2006,1:48-51
    [51]张铂,吴梧桐.抗肿瘤文蛤糖肽(MGP0405)的分离纯化及性质研究[J].中国天然药物,2006,3:230-233
    [52]赵巧灵.紫贻贝多糖提取分离、结构鉴定及其生物活性的初步研究[D].杭州:浙江工商大学,2010
    [53]吴红棉,叶志国,范秀萍,等.菲律宾蛤仔糖蛋白的分离纯化与理化性质的研究[J].中国食品学报,2008,5:80-85
    [54]王长云,管华诗,李八方.扇贝氨基多糖的红外光谱分析[J].海洋湖沼通报,1994,3:39-44
    [55]周铭东,崔悦礼,陈静华,等.贝类多糖的组成及性质研究[J].云南大学学报(自然科学版),1998,3:187-189
    [56]周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报(理科版),2001,2:197-204
    [57]Coenen G, Bakx E, Verhoef R, et al. Identification of the connecting linkage between homo-or xylogalacturonan and rhamnogalacturonan type I [J]. Carbohydrate Polymers,2007,70(2): 224-235
    [58]Sun Y, Cui S W, Tang J, et al. Structural features of pectic polysaccharide from Angelica sinensis (Oliv.) Diels [J]. Carbohydrate Polymers,2010,80(2):544-550
    [59]Mathlouthi M, Koenig J L. Vibrational spectra of carbohydrates [J]. Advances in carbohydrate chemistry and biochemistry,1987,44:7-89
    [60]Kaurakova M, Capek P, Sasinkova V, et al. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses [J]. Carbohydrate Polymers,2000,43(2):195-203
    [61]Chang X L, Chen B Y, Feng Y M. Water-soluble polysaccharides isolated from skin juice, gel juice and flower of Aloe vera Miller [J]. Journal of the Taiwan Institute of Chemical Engineers, 2011,42(2):197-203
    [62]Kostalova Z, Hromadkova Z, Ebringerova A. Isolation and characterization of pectic polysaccharides from the seeded fruit of oil pumpkin (Cucurbita pepo L. var. Styriaca) [J]. Industrial Crops and Products,2010,31(2):370-377
    [63]Barker S, Bourne E, Stacey M, et al. Infra-red spectra of carbohydrates. Part Ⅰ. Some derivatives of D-glucopyranose [J]. Journal of the Chemical Society (Resumed),1954,1954:171-176
    [64]Wu Y, Cui S W, Tang J, et al. Preparation, partial characterization and bioactivity of water-soluble polysaccharides from boat-fruited sterculia seeds [J]. Carbohydrate Polymers, 2007,70(4):437-443
    [65]Qiao D, Hu B, Gan D, et al. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii [J]. Carbohydrate Polymers,2009,76(3):422-429
    [66]Gnanasambandam R, Proctor A. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy [J]. Food Chemistry,2000,68(3):327-332
    [67]Gan D, Ma L, Jiang C, et al. Production, preliminary characterization and antitumor activity in vitro of polysaccharides from the mycelium of Pholiota dinghuensis Bi [J]. Carbohydrate Polymers,2011,84(3):997-1003
    [68]Bubb W A. NMR spectroscopy in the study of carbohydrates:Characterizing the structural complexity [J]. Concepts in Magnetic Resonance Part A,2003,19(1):1-19
    [69]Yang L, Zhang L M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources [J]. Carbohydrate Polymers,2009,76(3): 349-361
    [70]Rout D, Mondal S, Chakraborty I, et al. Chemical analysis of a new (1→3)-,(1→6)-branched glucan from an edible mushroom, Pleurotus florida [J]. Carbohydrate research,2005,340(16): 2533-2539
    [71]Mondal S, Chakraborty I, Rout D, et al. Isolation and structural elucidation of a water-soluble polysaccharide (PS-Ⅰ) of a wild edible mushroom, Termitomyces striatus [J]. Carbohydrate research,2006,341(7):878-886
    [72]Matsuhiro B, Conte A F, Damonte E B, et al. Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta) [J]. Carbohydrate research,2005,340(15):2392-2402
    [73]Omarsdottir S, Petersen B O, Barsett H, et al. Structural characterisation of a highly branched galactomannan from the lichen Peltigera canina by methylation analysis and NMR-spectroscopy [J]. Carbohydrate Polymers,2006,63(1):54-60
    [74]Perepelov A V, Zablotni A, Shashkov A S, et al. Structure of the O-polysaccharide and serological studies of the lipopolysaccharide of Proteus mirabilis 2002 [J]. Carbohydrate research,2005,340(14):2305-2310
    [75]Zhang A, Zhang J, Tang Q, et al. Structural elucidation of a novel fucogalactan that contains 3-O-methyl rhamnose isolated from the fruiting bodies of the fungus, Hericium erinaceus [J]. Carbohydrate research,2006,341(5):645-649
    [76]Yang Y, Zhang J S, Liu Y F, et al. Structural elucidation of a 3-O-methyl-D-galactose-containing neutral polysaccharide from the fruiting bodies of Phellinus igniarius [J]. Carbohydrate research, 2007,342(8):1063-1070
    [77]Vliegenthart J F G. Introduction to NMR Spectroscopy of Carbohydrates [M]. Washington, DC: ACS Publications,2006
    [78]Duus J O, Gotfredsen C H, Bock K. Carbohydrate Structural Determination by NMR Spectroscopy:Modern Methods and Limitations [J]. Chemical Reviews,2000,100(12): 4589-4614
    [79]叶立斌,张劲松,潘迎捷.食药用菌多糖结构解析中的核磁共振技术[J].食用菌学报,2007,4:68-75
    [80]刘玉红,王凤山.核磁共振波谱法在多糖结构分析中的应用[J].食品与药品,2007,8:39-43
    [81]李波,陈海华,许时婴.二维核磁共振谱在多糖结构研究中的应用[J].天然产物研究与开发,2005,4:523-526
    [82]王瑞芳.两种贝类糖胺聚糖的理化及结构特征研究[D].湛江:广东海洋大学,2009
    [83]马明华.厚壳贻贝多糖活性成分研究[D].上海:第二军医大学,2004
    [84]吴皓,吴永霞.珠蚌多糖的化学研究[A].全国海洋生物技术与海洋药物学术会议论文集[C].大连:2006
    [85]Lu Y, Wang D, Hu Y, et al. Sulfated modification of epimedium polysaccharide and effects of the modifiers on cellular infectivity of IBDV [J]. Carbohydrate Polymers,2008,71(2):180-186
    [86]Alban S, Schauerte A, Franz G. Anticoagulant sulfated polysaccharides:Part Ⅰ. Synthesis and structure-activity relationships of new pullulan sulfates [J]. Carbohydrate Polymers,2002,47(3): 267-276
    [87]Xing R, Liu S, Yu H, et al. Preparation of high-molecular weight and high-sulfate content chitosans and their potential antioxidant activity in vitro [J]. Carbohydrate Polymers,2005, 61(2):148-154
    [88]Chen S, Wang J, Xue C, et al. Sulfation of a squid ink polysaccharide and its inhibitory effect on tumor cell metastasis [J]. Carbohydrate Polymers,2010,81(3):560-566
    [89]Wang J, Guo H, Zhang J, et al. Sulfated modification, characterization and structure-antioxidant relationships of Artemisia sphaerocephala polysaccharides [J]. Carbohydrate Polymers,2010, 81(4):897-905
    [90]Wang J, Zhang Q, Zhang Z, et al. Synthesized phosphorylated and aminated derivatives of fucoidan and their potential antioxidant activity in vitro [J]. International Journal of Biological Macromolecules,2009,44(2):170-174
    [91]Liu Y, Liu C, Tan H, et al. Sulfation of a polysaccharide obtained from Phellinus ribis and potential biological activities of the sulfated derivatives [J]. Carbohydrate Polymers,2009,77(2): 370-375
    [92]Liu X, Wan Z, Shi L, et al. Preparation and Antiherpetic Activities of Chemically-Modified Polysaccharides from Polygonatum Cyrtonema Hua [J]. Carbohydrate Polymers,2010,83(2): 737-742
    [93]Yuan H, Zhang W, Li X, et al. Preparation and in vitro antioxidant activity of [kappa]-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives [J]. Carbohydrate research,2005,340(4):685-692
    [94]Tsiapali E, Whaley S, Kalbfleisch J, et al. Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity [J]. Free Radical Biology and Medicine,2001,30(4): 393-402
    [95]Kooijman L M, Ganzeveld K J, Manurung R M, et al. Experimental Studies on the Carboxymethylation of Arrowroot Starch in Isopropanol-Water Media [J]. Starch-Starke,2003, 55(11):495-503
    [96]Oliveira M A, Silva D A, Uchoa D E A, et al. Synthesis and characterization of carboxymethylated red angico (Anadenanthera macrocarpa) exudate polysaccharide [J]. Journal of Applied Polymer Science,2007,103(5):2985-2991
    [97]Zhang L, Zhang M, Dong J, et al. Chemical structure and chain conformation of the water-insoluble glucan isolated from Pleurotus tuber-regium [J]. Biopolymers,2001,59(6): 457-464
    [98]Zhang M, Cheung P C K, Zhang L. Evaluation of Mushroom Dietary Fiber (Nonstarch Polysaccharides) from Sclerotia of Pleurotus tuber-regium (Fries) Singer as a Potential Antitumor Agent [J]. Journal of Agricultural and Food Chemistry,2001,49(10):5059-5062
    [99]Zhang M, Zhang L, Chi Keung Cheung P. Molecular mass and chain conformation of carboxymethylated derivatives of (3-glucan from sclerotia of Pleurotus tuber-regium [J]. Biopolymers,2003,68(2):150-159
    [100]Wang J, Liu L, Zhang Q. et al. Synthesized oversulphated, acetylated and benzoylated derivatives of fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro [J]. Food Chemistry,2009,114(4):1285-1290
    [101]Qi H, Zhang Q, Zhao T, et al. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) [J]. Bioorganic& Medicinal Chemistry Letters,2006,16(9):2441-2445
    [102]Eiserich J P, Wong J W, Shibamoto T. Antioxidative Activities of Furan-and Thiophenethiols Measured in Lipid Peroxidation Systems and by Tyrosyl Radical Scavenging Assay [J]. Journal of Agricultural and Food Chemistry,1995,43(3):647-650
    [103]于运海,周大勇,孙黎明,等.虾夷扇贝脏器硫酸酯多糖的制备及性质研究[J].食品科学,2009,6:68-71
    [104]吴红棉.具抗肿瘤活性的马氏珠母贝全脏器糖蛋白、糖胺聚糖及其提取工艺[P].中国专利:00105196,2001-11-14
    [105]易杨华.具有增强免疫和抗肿瘤活性的厚壳贻贝多糖MF4[P].中国专利:200410024958,2005-2-23
    [106]陈方,吴铁,艾春媚,等.马氏珠母贝全脏器提取物糖胺聚糖抗肿瘤作用的实验研究[J].中国临床药理学与治疗学,2002,7(6):511-514
    [107]陈文星,吴皓,陆茵,等.珠蚌多糖对实验性移植肿瘤及NK细胞活性的作用[J].中国海洋药物,2007,2:30-33
    [108]陈艳辉,李超柱,吴磊,等.广西产牡蛎多糖的制备和抗肿瘤活性初步研究[J].中国现代医学杂志,2010,7:1004-1007
    [109]窦昌贵,黄芳,黄罗生,等.文蛤多糖抗癌免疫药理作用的研究[J].中国海洋药物,1999,2:15-19
    [110]范秀萍,王瑞芳,吴红棉,等.菲律宾蛤仔糖胺聚糖RG-1的结构特征及免疫活性研究[A].食品加工与安全学术研讨会暨2010年广东省食品学会年会论文集[C].湛江:2010
    [111]范秀萍,吴红棉,雷晓凌,等.珠母贝氨基多糖的分离纯化及其抗肿瘤活性的初步研究[J].中国海洋药物,2005,2:32-36
    [112]顾谦群,方玉春,王长云,等.扇贝糖蛋白的化学组成与抗肿瘤活性的研究[J].中国海洋药物,1998,3:23-26
    [113]洪鹏志,章超桦,吴红棉,等.翡翠贻贝糖胺聚糖的制备及其生理活性初探[J].上海水产大学学报,2001,2:158-162
    [114]胡健饶,曹明富.三角帆蚌多糖抑瘤作用的实验研究[J].中国现代应用药学,2003,1:11-13
    [115]胡雪琼,吴红棉,刘芷筠,等.近江牡蛎糖胺聚糖的酶解提取及其抗肿瘤活性研究[J].食品研究与开发,2009,7:3-6
    [116]金晓石,胡雪琼,吴红棉,等.华贵栉孔扇贝全脏器中糖胺聚糖的分离提取及其抗肿瘤活性研究[J].现代食品科技,2007,3:36-38
    [117]邢军.扇贝裙边糖胺聚糖抗肿瘤作用及其机制的实验研究[D].青岛:青岛大学,2006
    [118]雷晓凌,吴红棉,范秀萍,等.缢蛏糖胺聚糖的提取分离及其体外抗肿瘤活性的初步研究[J].药物生物技术,2004,3:146-149
    [119]凌霄,陈传,艾春媚.马氏珠母贝糖胺聚糖体外抑制HL-60肿瘤细胞作用的初步观察[J].中国现代应用药学,2006,S2:737-738
    [120]童朝阳,林福生,张守兰,等.褶纹冠蚌Cristaria plicata提取物抗肿瘤作用的实验研究[J].中国海洋药物,2003,3:20-24
    [121]王娅楠,范秀萍,吴红棉.菲律宾蛤仔糖胺聚糖抗肿瘤活性研究[J].广东海洋大学学报,2007,4:49-54
    [122]吴杰连.文蛤糖蛋白MGP-0501抗肿瘤作用及其机制研究[D].南昌:南昌大学,2006
    [123]高莹.扇贝裙边糖胺聚糖对过氧化氢损伤的血管内皮细胞保护作用的研究[D].青岛:青岛大学,2006
    [124]王海桃.牡蛎糖胺聚糖保护血管内皮细胞作用的研究[D].青岛:青岛大学,2007
    [125]王俊,姚滢,张建鹏,等.牡蛎多糖的制备和生物学活性研究[J].医学研究生学报,2006,3:217-220
    [126]邢军,刘赛,王海桃,等.扇贝裙边糖胺聚糖的体外抗肿瘤活性及对荷瘤小鼠抗氧化作用的研究[J].中国药房,2008,19:1459-1461
    [127]范秀萍,吴红棉,王娅楠,等.4种贝类糖胺聚糖体外清除自由基活性的比较[J].食品科技,2008,2:165-167
    [128]李江滨,侯敢.翡翠贻贝多糖对衰老模型小鼠的抗氧化和免疫功能调节作用[J].检验医学与临床,2010,12:1153-1154+1156
    [129]李志.牡蛎多糖的分离纯化及生物学活性研究[D].福州:福建农林大学,2009
    [130]林双喜.河蚌多糖的生物学活性研究[D].福州:福建农林大学,2007
    [131]李雨哲,任娇艳,赵谋明.马氏珍珠贝糖蛋白分离纯化及其抗氧化活性的研究[J].食品与发酵工业,2010,10:30-32
    [132]周文丽,周婷婷,张建鹏,等.贻贝多糖对老龄SD大鼠抗衰老作用[J].第二军医大学学报,2009,7:786-789
    [133]李萌.牡蛎糖胺聚糖抗病毒作用的实验研究[D].青岛:青岛大学,2008
    [134]李萌,杜国威,刘赛,等.牡蛎糖胺聚糖小鼠体内抗病毒作用的实验研究[J].中国海洋药 物,2008,2:50-52
    [135]于囡.扇贝裙边糖胺聚糖抗单纯疱疹病毒Ⅰ型作用的研究[D].青岛:青岛大学,2008
    [136]张莉,刘万顺,韩宝芹,等.菲律宾蛤仔(Ruditapes philippinarum)蛋白聚糖的分离提取及其抗肿瘤活性的初步研究[J].海洋与湖沼,2007,1:62-68
    [137]李江滨,侯敢.翡翠贻贝多糖免疫调节作用研究[J].食品研究与开发,2009,5:3-5
    [138]姚滢,魏江洲,张建鹏,等.贻贝多糖的提纯和生物活性研究[A].中国海洋生化学术会议论文荟萃集[C].湖北:2005
    [139]邢军,刘赛,王海桃,等.扇贝裙边糖胺聚糖抗肿瘤作用和对荷瘤小鼠免疫功能的影响[J].中国医院药学杂志,2008,2:90-93
    [140]何雅军,吴谦,朱瑞斐,等.文蛤多糖与文蛤提取物对小鼠免疫调节影响的比较研究[J].广东药学,1994,3:50-53+40
    [141]湛孝东,王克霞,李朝品,等.蜗牛多糖的提取和免疫学活性研究[J].时珍国医国药,2006,11:2191-2192
    [142]张建鹏,王俊,徐红丽,等.贻贝多糖对大鼠睾丸支持细胞增殖作用的研究[J].中国海洋药物,2006,3:12-14
    [143]栾洁,辛甜,储智勇,等.贻贝多糖对小鼠免疫功能的调节作用[J].中国海洋药物,2010,4:39-41
    [144]顾谦群,方玉春,辛现良,等.栉孔扇贝糖蛋白的肿瘤抑制活性和对免疫功能的影响[J].营养学报,2001,3:200-202
    [145]陈文星,吴皓,金亦涛.珠蚌多糖的免疫调节作用研究[J].中药药理与临床,2001,5:16-18
    [1]Zhao Y, Li Q, Kong L, et al. Genetic and morphological variation in the venus clam Cyclina sinensis along the coast of China [J]. Hydrobiologia,2009,635(1):227-235
    [2]Liu W, Ma Y, Hu S, et al. Rearing Venus clam seeds, Cyclina sinensis (Gmelin), on a commercial scale [J]. Aquaculture,2002,211(1-4):109-114
    [3]Qiao D, Hu B, Gan D, et al. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii [J]. Carbohydrate Polymers,2009,76(3):422-429
    [4]Sevag M, Lackman D B, Smolens J. The isolation of the components of streptococcal nucleoproteins in serologically active form [J]. Journal of Biological Chemistry,1938,124(2): 425
    [5]Wang Z, Luo D, Ena C. Optimization of polysaccharides extraction from Gynostemma pentaphyllum Makino using Uniform Design [J]. Carbohydrate Polymers,2007,69(2):311-317
    [6]Braga M E M, Moreschi S R M, Meireles M A A. Effects of supercritical fluid extraction on Curcuma longa L. and Zingiber officinale R. starches [J]. Carbohydrate Polymers,2006,63(3): 340-346
    [7]Li W, Cui S W, Kakuda Y. Extraction, fractionation, structural and physical characterization of wheat β-D-glucans [J]. Carbohydrate Polymers,2006,63(3):408-416
    [8]Ray B. Polysaccharides from Enteromorpha compressa:Isolation, purification and structural features [J]. Carbohydrate Polymers,2006,66(3):408-416
    [9]Vinogradov E, Brade L, Brade H, et al. Structural and serological characterisation of the O-antigenic polysaccharide of the lipopolysaccharide from Acinetobacter baumannii strain 24 [J]. Carbohydrate research,2003,338(23):2751-2756
    [10]Hou X, Chen W. Optimization of extraction process of crude polysaccharides from wild edible BaChu mushroom by response surface methodology [J]. Carbohydrate Polymers,2008,72(1): 67-74
    [11]Liu Z, Wei G, Guo Y, et al. Image study of pectin extraction from orange skin assisted by microwave [J]. Carbohydrate Polymers,2006,64(4):548-552
    [12]Zou Y, Chen X, Yang W, et al. Response surface methodology for optimization of the ultrasonic extraction of polysaccharides from Codonopsis pilosula Nannf.var.modesta L.T.Shen [J]. Carbohydrate Polymers,2011,84(1):503-508
    [13]Govender S, Pillay V, Chetty D J, et al. Optimisation and characterisation of bioadhesive controlled release tetracycline microspheres [J]. International Journal of Pharmaceutics,2005, 306(1-2):24-40
    [14]Sun Y, Liu J, Kennedy JF. Application of response surface methodology for optimization of polysaccharides production parameters from the roots of Codonopsis pilosula by a central composite design [J]. Carbohydrate Polymers,2010,80(3):949-953
    [15]Atkinson A, Donev A. Optimum Experimental Designs [M]. Oxford:Clarendon Press,1992
    [16]Varnalis A, Brennan J, MacDougall D, et al. Optimisation of high temperature puffing of potato cubes using response surface methodology [J]. Journal of Food Engineering,2004,61(2): 153-163
    [17]Ibanoglu S, Ainsworth P. Effect of canning on the starch gelatinization and protein in vitro digestibility of tarhana, a wheat flour-based mixture [J]. Journal of Food Engineering,2004, 64(2):243-247
    [18]Muralidhar R, Chirumamila R, Marchant R, et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources [J]. Biochemical Engineering Journal,2001,9(1):17-23
    [19]Tanyildizi M S, Ozer D, Elibol M. Optimization of α-amylase production by Bacillus sp. using response surface methodology [J]. Process biochemistry,2005,40(7):2291-2296
    [20]Wang Y, Lu Z. Optimization of processing parameters for the mycelial growth and extracellular polysaccharide production by Boletus spp. ACCC 50328 [J]. Process biochemistry,2005, 40(3-4):1043-1051
    [21]Kaushik R. Saran S, Isar J, et al. Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus [J]. Journal of Molecular Catalysis B:Enzymatic,2006,40(3-4):121-126
    [22]Liu J, Luo J, Ye H, et al. Medium optimization and structural characterization of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3 [J]. Carbohydrate Polymers,2010,79(1):206-213
    [23]Luo J, Liu J, Ke C, et al. Optimization of medium composition for the production of exopolysaccharides from Phellinus baumii Pilat in submerged culture and the immuno-stimulating activity of exopolysaccharides [J]. Carbohydrate Polymers,2009,78(3): 409-415
    [24]Luo J, Liu J, Sun Y, et al. Medium optimization, preliminary characterization and antioxidant activity in vivo of mycelial polysaccharide from Phellinus baumii Pilat [J]. Carbohydrate Polymers,2010,81(3):533-540
    [1]Lu Y, Wang D, Hu Y, et al. Sulfated modification of epimedium polysaccharide and effects of the modifiers on cellular infectivity of IBDV [J]. Carbohydrate Polymers,2008,71(2):180-186
    [2]Alban S, Schauerte A, Franz G. Anticoagulant sulfated polysaccharides:Part I. Synthesis and structure-activity relationships of new pullulan sulfates [J]. Carbohydrate Polymers,2002,47(3): 267-276
    [3]湛孝东.贝类多糖生物学活性研究进展[J].时珍国医国药,2006,17(7):1285-1286
    [4]胡聪聪.青蛤多糖提取的条件优化及其抗肿瘤活性研究[J].中国民族民间医药,2010,19(10):28-29
    [5]Cai W, Gu X, Tang J. Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta [J]. Carbohydrate Polymers,2008,71(3):403-410
    [6]Ye H, Zhou C, Sun Y, et al. Antioxidant activities in vitro of ethanol extract from brown seaweed Sargassum pallidum [J]. European Food Research and Technology,2009,230(1): 101-109
    [7]Qiao D, Hu B, Gan D, et al. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii [J]. Carbohydrate Polymers,2009,76(3):422-429
    [8]Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical chemistry,1956,28(3):350-356
    [9]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical biochemistry,1976,72(1-2): 248-254
    [10]Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids [J]. Analytical biochemistry,1973,54(2):484-489
    [11]Dodgson K, Price R. A note on the determination of the ester sulphate content of sulphated polysaccharides [J]. Biochemical Journal,1962,84(1):106
    [12]Luo J, Liu J, Sun Y, et al. Medium optimization, preliminary characterization and antioxidant activity in vivo of mycelial polysaccharide from Phellinus baumii Pilat [J]. Carbohydrate Polymers,2010,81(3):533-540
    [13]Guerrant G O, Moss C W. Determination of monosaccharides as aldononitrile, O-methyloxime, alditol, and cyclitol acetate derivatives by gas chromatography [J]. Analytical Chemistry,1984, 56(4):633-638
    [14]Alsop G. Determination of the molecular weight of clinical dextran by gel permeation chromatography on TSK PW type columns [J]. Journal of Chromatography A.1982,246(2): 227-240
    [15]Roy S K, Maiti D, Mondal S, et al. Structural analysis of a polysaccharide isolated from the aqueous extract of an edible mushroom, Pleurotus sajor-caju, cultivar Black Japan [J]. Carbohydrate research,2008,343(6):1108-1113
    [16]Maciel J S, Chaves L S, Souza B W S, et al. Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae [J]. Carbohydrate Polymers,2008,71(4):559-565
    [17]Qiao D, Liu J, Ke C, et al. Structural characterization of polysaccharides from Hyriopsis cumingii [J]. Carbohydrate Polymers,2010,82(4):1184-1190
    [18]Liu J, Luo J, Ye H, et al. Medium optimization and structural characterization of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3 [J]. Carbohydrate Polymers,2010,79(1):206-213
    [19]Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates [J]. Carbohydrate Research,1984,131(2):209-217
    [20]Wack M, Blaschek W. Determination of the structure and degree of polymerisation of fructans from Echinacea purpurea roots [J]. Carbohydrate Research,2006,341(9):1147-1153
    [21]Leone S, Lanzetta R, Scognamiglio R, et al. The structure of the O-specific polysaccharide from the lipopolysaccharide of Pseudomonas sp. OX1 cultivated in the presence of the azo dye Orange Ⅱ [J]. Carbohydrate Research,2008,343(4):674-684
    [22]Serrato R V. Sassaki G L, Gorin P A J, et al. Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica [J]. Carbohydrate Polymers,2008,73(4):564-572
    [23]Ali T, Weintraub A, Widmalm G. Structural studies of the O-antigenic polysaccharides from the enteroaggregative Escherichia coli strain 87/D2 and international type strains from E. coli 0128 [J]. Carbohydrate Research,2008,343(4):695-702
    [24]Yang C, He N, Ling X, et al. The isolation and characterization of polysaccharides from longan pulp [J]. Separation and Purification Technology,2008,63(1):226-230
    [25]Hokputsa S, Harding S, Inngjerdingen K, et al. Bioactive polysaccharides from the stems of the Thai medicinal plant Acanthus ebracteatus:their chemical and physical features [J]. Carbohydrate research,2004,339(4):753-762
    [26]Dong Q, Yao J, Fang J, et al. Structural characterization and immunological activity of two cold-water extractable polysaccharides from Cistanche deserticola YC Ma [J]. Carbohydrate research,2007,342(10):1343-1349
    [27]Mazumder S, Morvan C, Thakur S, et al. Cell Wall Polysaccharides from Chalkumra (Benincasa hispida) Fruit. Part I. Isolation and Characterization of Pectins [J]. Journal of Agricultural and Food Chemistry,2004,52(11):3556-3562
    [28]Ye H, Wang K, Zhou C, et al. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum [J]. Food Chemistry,2008,111(2): 428-432
    [29]Xing W, Zhou X, Wang H, et al. Study on the process of extracting colistin by ion exchange chromatography [J]. Chinese Journal of Veterinary Medicine,2003,11:44-45
    [30]Xie J, Xie M, Nie S, et al. Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja [J]. Food Chemistry, 2010,119(4):1626-1632
    [31]张芳,尹鸿萍,王旻,等.硫酸酯化螺旋藻酸性多糖的气相色谱中不同衍生化方法的比较[J].药物生物技术,2002,5:278-280
    [32]张颖,黄日明,洪爱华,等.南澳海域七种海藻的多糖组成分析[J].暨南大学学报(自然科学与医学版),2006,3:455-459
    [33]Mathlouthi M, Koenig J L. Vibrational spectra of carbohydrates [J]. Advances in carbohydrate chemistry and biochemistry,1987,44:7-89
    [34]He Y, Liu C, Chen Y, et al. Isolation and structural characterization of a novel polysaccharide prepared from Arca subcrenata Lischke [J]. Journal of bioscience and bioengineering,2007, 104(2):111-116
    [35]Liu C, Lin Q, Gao Y, et al. Characterization and antitumor activity of a polysaccharide fromStrongylocentrotus nudus eggs [J]. Carbohydrate Polymers,2007,67(3):313-318
    [36]Zhao G, Kan J, Li Z, et al. Characterization and immunostimulatory activity of an (1→6)-α-D-glucan from the root of Ipomoea batatas [J]. International Immunopharmacology, 2005,5(9):1436-1445
    [37]Gan D, Ma L, Jiang C, et al. Production; preliminary characterization and antitumor activity in vitro of polysaccharides from the mycelium of Pholiota dinghuensis Bi [J]. Carbohydrate Polymers,2011,84(13):997-1003
    [38]Li S, Wang D, Tian W, et al. Characterization and anti-tumor activity of a polysaccharide from Hedysarum polybotrys Hand.-Mazz [J]. Carbohydrate Polymers,2008,73(2):344-350
    [39]李俊,黄艳,何星存,等.罗汉果多糖的结构研究[J].食品工业科技,2008,8:169-172
    [40]白日霞.质谱法测定多糖结构的机理研究[J].光谱实验室,2001,2:165-167
    [1]Lu Y, Wang D, Hu Y, et al. Sulfated modification of epimedium polysaccharide and effects of the modifiers on cellular infectivity of IBDV [J]. Carbohydrate Polymers,2008,71(2):180-186
    [2]Chen J, Wu G, Wang J, et al. Sulfation techniques of Bletilla striata polysaccharide by orthogonal design [J]. Chinese traditional and Herbal Drugs,2005,1:43-46
    [3]Alban S, Schauerte A, Franz G. Anticoagulant sulfated polysaccharides:Part Ⅰ. Synthesis and structure-activity relationships of new pullulan sulfates [J]. Carbohydrate Polymers,2002,47(3): 267-276
    [4]Xing R, Liu S, Yu H, et al. Preparation of high-molecular weight and high-sulfate content chitosans and their potential antioxidant activity in vitro [J]. Carbohydrate Polymers,2005, 61(2):148-154
    [5]Talarico L, Pujol C, Zibetti R, et al. The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell [J]. Antiviral research,2005,66(2-3): 103-110
    [6]马明华.厚壳贻贝多糖活性成分研究[D].上海:第二军医大学,2004
    [7]赵巧灵.紫贻贝多糖提取分离、结构鉴定及其生物活性的初步研究[D].杭州:浙江工商大学,2010
    [8]陈文星,吴皓,陆茵,等.珠蚌多糖对实验性移植肿瘤及NK细胞活性的作用[J].中国海洋药物,2007,2:30-33
    [9]陈艳辉,李超柱,吴磊,等.广西产牡蛎多糖的制备和抗肿瘤活性初步研究[J].中国现代医学杂志,2010,7:1004-1007
    [10]窦昌贵,黄芳,黄罗生,等.文蛤多糖抗癌免疫药理作用的研究[J].中国海洋药物,1999,2:15-19
    [11]童朝阳,林福生,张守兰,等.褶纹冠蚌Cristaria plicata提取物抗肿瘤作用的实验研究[J].中国海洋药物,2003,3:20-24
    [12]许子茂,李江滨,侯敢.翡翠贻贝多糖对荷瘤小鼠的抗肿瘤和免疫功能调节作用[J].中国现代药物应用,2010,9:15-16
    [13]王娅楠,范秀萍,吴红棉.菲律宾蛤仔糖胺聚糖抗肿瘤活性研究[J].广东海洋大学学报,2007,4:49-54
    [14]Wang L, Li X, Chen Z. Sulfated modification of the polysaccharides obtained from defatted rice bran and their antitumor activities [J]. International Journal of Biological Macromolecules,2009, 44(2):211-214
    [15]Dodgson K, Price R. A note on the determination of the ester sulphate content of sulphated polysaccharides [J]. Biochemical Journal,1962,84(1):106
    [16]Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical chemistry,1956,28(3):350-356
    [17]Maciel J S, Chaves L S, Souza B W S, et al. Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae [J]. Carbohydrate Polymers,2008,71(4):559-565
    [18]Crescenzi V, Francescangeli A, Renier D, et al. New cross-linked and sulfated derivatives of partially deacetylated hyaluronan:Synthesis and preliminary characterization [J]. Biopolymers, 2002,64(2):86-94
    [19]Talarico L B, Zibetti R G M, Faria P C S, et al. Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata [J]. International Journal of Biological Macromolecules,2004,34(1-2):63-71
    [20]Wang Y, Zhang L, Li Y, et al. Correlation of structure to antitumor activities of five derivatives of a (3-glucan from Poria cocos sclerotium [J]. Carbohydrate research,2004,339(15): 2567-2574
    [21]Liu Y, Liu C, Tan H, et al. Sulfation of a polysaccharide obtained from Phellinus ribis and potential biological activities of the sulfated derivatives [J]. Carbohydrate Polymers,2009,77(2): 370-375
    [22]Tao Y, Zhang L, Cheung P C K. Physicochemical properties and antitumor activities of water-soluble native and sulfated hyperbranched mushroom polysaccharides [J]. Carbohydrate research,2006,341(13):2261-2269
    [23]Vogl H, Paper D H, Franz G. Preparation of a sulfated linear (1→4)-β-galactan with variable degrees of sulfation [J]. Carbohydrate Polymers,2000,41(2):185-190
    [24]Gan D, Ma L, Jiang C, et al. Production; preliminary characterization and antitumor activity in vitro of polysaccharides from the mycelium of Pholiota dinghuensis Bi [J]. Carbohydrate Polymers,2010:
    [25]Chen Z, Liu Y M, Yang S, et al. Studies on the chemical constituents and anticancer activity of Saxifraga stolonifera (L) Meeb [J]. Bioorganic & medicinal chemistry,2008,16(3):1337-1344
    [26]Yang J, Du Y, Huang R, et al. Chemical modification, characterization and structure-anticoagulant activity relationships of Chinese lacquer polysaccharides [J]. International Journal of Biological Macromolecules,2002,31(1-3):55-62
    [27]Huang Q, Zhang L, Cheung P C K, et al. Evaluation of sulfated [alpha]-glucans from Poria cocos mycelia as potential antitumor agent [J]. Carbohydrate Polymers,2006,64(2):337-344
    [28]Cui F, Tao W, Xu Z, et al. Structural analysis of anti-tumor heteropolysaccharide GFPSlb from the cultured mycelia of Grifola frondosa GF9801 [J]. Bioresource technology,2007,98(2): 395-401
    [29]Jin Y, Zhang L, Zhang M, et al. Antitumor activities of heteropolysaccharides of Poria cocos mycelia from different strains and culture media [J]. Carbohydrate research,2003,338(14): 1517-152
    [1]Liu Q, Kong B, Li G, et al. Hepatoprotective and antioxidant effects of porcine plasma protein hydrolysates on carbon tetrachloride-induced liver damage in rats [J]. Food and Chemical Toxicology, In Press, Accepted Manuscript:
    [2]范秀萍,吴红棉,王娅楠,等.4种贝类糖胺聚糖体外清除自由基活性的比较[J].食品科技,2008,2:165-167
    [3]徐红丽.东海厚壳贻贝水溶性多糖MP-Ⅰ的结构鉴定及生物学活性研究[D].上海:第二军医大学,2007
    [4]李江滨,侯敢.翡翠贻贝多糖对衰老模型小鼠的抗氧化和免疫功能调节作用[J].检验医学与临床,2010,12:1153-1154+1156
    [5]Kanatt S R, Chander R, Sharma A. Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat [J]. Food Chemistry,2007,100(2):451-458
    [6]Liu C, Wang C, Xu Z, et al. Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water [J]. Process Biochemistry,2007,42(6):961-970
    [7]Oyaizu M. Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine [J]. Japanese Journal of Nutrition [Eiyogaku Zasshi],1986,44(6):307-315
    [8]Yen G C, Hsieh C L. Antioxidant activity of extracts from Du-zhong (Eucommia ulmoides) toward various lipid peroxidation models in vitro [J]. Journal of Agricultural and Food Chemistry,1998,46(10):3952-3957
    [9]Zeashana H, Amresha G, Singhb S. Hepatoprotective activity of Amaranthus spinosus in experimental animals [J]. Food and Chemical Toxicology,2008,11:3417-3421
    [10]Aruoma O I. Free radicals, oxidative stress, and antioxidants in human health and disease [J]. Journal of the American Oil Chemists' Society,1998,75(2):199-212
    [11]Wickens A P. Ageing and the free radical theory [J]. Respiration physiology,2001,128(3): 379-391
    [12]Pietta P G. Flavonoids as antioxidants [J]. J Nat Prod,2000,63(7):1035-1042
    [13]Liu F, Ooi V, Chang S. Free radical scavenging activities of mushroom polysaccharide extracts [J]. Life Sciences,1997,60(10):763-771
    [14]Lee J, Koo N, Mint D. Reactive oxygen species, aging, and antioxidative nutraceuticals [J]. Comprehensive Reviews in Food Science and Food Safety,2004,3(1):21-33
    [15]Benedet J A, Shibamoto T. Role of transition metals, Fe(Ⅱ), Cr(Ⅱ), Pb(Ⅱ), and Cd(Ⅱ) in lipid peroxidation [J]. Food Chemistry,2008,107(1):165-168
    [16]Yuan Y V, Bone D E, Carrington M F. Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro [J]. Food Chemistry,2005,91(3):485-494
    [17]Halliwell B. Reactive oxygen species in living systems:source, biochemistry, and role in human disease [J]. The American journal of medicine,1991,91(3):S14-S22
    [18]Huang D, Ou B, Prior R L. The chemistry behind antioxidant capacity assays [J]. Journal of Agricultural and Food Chemistry,2005,53(6):1841-1856
    [19]Sun H H, Mao W J, Chen Y, et al. Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2 [J]. Carbohydrate Polymers, 2009,78(1):117-124
    [20]Akashi K, Nishimura N, Ishida Y, et al. Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon [J]. Biochemical and biophysical research communications,2004,323(1):72-78
    [21]Jiang C, Wang M, Liu J, et al. Extraction, preliminary characterization, antioxidant and anticancer activities in vitro of polysaccharides from Cyclina sinensis [J]. Carbohydrate Polymers,2011,84(3):851-857
    [22]Simic M G. Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1988,202(2):377-386
    [23]Diplock A T. Will the 'Good Fairies' Please Prove to us that Vitamin E Lessens Human Degenerative Disease? [J]. Free radical research,1997,27(5):511-532
    [24]Meir S, Kanner J, Akiri B, et al. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves [J]. Journal of agricultural and food chemistry,1995,43(7):1813-1819
    [25]GuleIn I. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts [J]. Food Chemistry,2003,83(3):371-382
    [26]Makris D P, Psarra E, Kallithraka S, et al. The effect of polyphenolic composition as related to antioxidant capacity in white wines [J]. Food research international,2003,36(8):805-814
    [27]Chung Y C, Chang C T, Chao W W, et al. Antioxidative activity and safety of the 50 ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1 [J]. Journal of Agricultural and Food Chemistry,2002,50(8):2454-2458
    [28]Zhang Q F, Zhang Z R, Cheung H Y. Antioxidant activity of Rhizoma Smilacis Glabrae extracts and its key constituent-astilbin [J]. Food Chemistry,2009,115(1):297-303
    [29]Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells:implications for inflammation, heart disease, and cancer [J]. Pharmacological Reviews, 2000,52(4):673
    [30]Janero D R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury [J]. Free Radical Biology and Medicine,1990,9(6): 515-540
    [31]Tsuda T, Watanabe M, Ohshima K, et al. Antioxidative activity of the anthocyanin pigments cyanidin 3-O-(3-D-glucoside and cyanidin [J]. Journal of agricultural and food chemistry,1994, 42(11):2407-2410
    [32]Racanelli V, Rehermann B. The liver as an immunological organ [J]. Hepatology,2006,43(S1): S54-S62
    [33]Vitaglione P, Morisco F, Caporaso N, et al. Dietary antioxidant compounds and liver health [J]. Critical Reviews in Food Science and Nutrition,2005,44(7):575-586
    [34]Wu J, Danielsson, Zern M A. Toxicity of hepatotoxins:new insights into mechanisms and therapy [J]. Expert Opinion on Investigational Drugs,1999,8(5):585-607
    [35]Hsu Y W, Tsai C F, Chang W H, et al. Protective effects of Dunaliella salina-A carotenoids-rich alga, against carbon tetrachloride-induced hepatotoxicity in mice [J]. Food and Chemical Toxicology,2008,46(10):3311-3317
    [36]Taira Z, Yabe K, Hamaguchi Y, et al. Effects of Sho-saiko-to extract and its components, Baicalin, baicalein, glycyrrhizin and glycyrrhetic acid, on pharmacokinetic behavior of salicylamide in carbon tetrachloride intoxicated rats [J]. Food and Chemical Toxicology,2004, 42(5):803-807
    [37]Lee K J, Choi J H, Jeong H G. Hepatoprotective and antioxidant effects of the coffee diterpenes kahweol and cafestol on carbon tetrachloride-induced liver damage in mice [J]. Food and Chemical Toxicology,2007,45(11):2118-2125
    [38]Shenoy K A, Somayaji S, Bairy K. Hepatoprotective effects of Ginkgo biloba against carbon tetrachloride induced hepatic injury in rats [J]. Indian Journal of Pharmacology,2001,33(4): 260-266
    [39]Wang B J, Liu C, Tseng C Y, et al. Hepatoprotective and antioxidant effects of Bupleurum kaoi Liu (Chao et Chuang) extract and its fractions fractionated using supercritical CO2 on CCl4-induced liver damage [J]. Food and Chemical Toxicology,2004,42(4):609-617
    [40]Das S K, Vasudevan D. Protective effects of silymarin, a milk thistle (Silybium marianum) derivative on ethanol-induced oxidative stress in liver [J]. International Journal of Biotechnology & Biochemistry,2006,43:306-311
    [41]Recknagel R O, Glende E A J R, Dolak J A, et al. Mechanisms of carbon tetrachloride toxicity [J]. Pharmacology & therapeutics,1989,43(1):139-154
    [42]Nagata K, Suzuki H, Sakaguchi S. Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis [J]. The Journal of Toxicological Sciences,2007,32(5):453-468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700