碳钢缓蚀剂和铜基自组装膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜和钢作为重要的常用金属材料,被广泛地应用于交通运输、建筑、机械、化工、电子、国防工业等领域。由于它们的化学性质较为活泼,在使用环境中易被腐蚀。尤其在比较恶劣的条件下,比如在酸液、含氧水中及含C1-,S042-等离子的溶液中腐蚀会更加强烈。因此,铜和钢的腐蚀防护问题一直受到腐蚀科学领域学者们的密切关注。常用的金属腐蚀防护技术中,合理添加缓蚀剂是一种有效的防腐手段。随着人们环境保护意识的增强,高效、环保型缓蚀剂的开发和研究成为当今腐蚀科学的重要课题之一
     自组装膜是活性分子通过化学键自发吸附在固/液或固/气界面,从而形成具有一定取向、排列紧密的有序分子膜,属于热力学稳定体系。自组装成膜制备方法简单,不受基底形状限制,且形成的膜致密有序,成为具有广泛应用前景的成膜技术之一。金属表面上组装高效的缓蚀剂分子不仅可拓宽缓蚀剂的应用范围,而且自组装膜技术可以通过分子设计和优化组装过程来改变组装膜的物化性质,这就为在二维乃至三维领域内研究其物理性质提供了可能,也为进一步探索缓蚀剂的作用机理,研究和开发新型缓蚀剂开拓了新途径。
     本文研究工作共分两个部分:第一部分,选取了有机杂环化合物和有机磷酸盐作为缓蚀剂,分别研究了它们在硫酸和氯化钠溶液中对碳钢的缓蚀行为,并结合现代表征技术和量化计算对相应的缓蚀机理进行了阐释。第二部分,利用杂环化合物多吸附中心的特点在铜基上组装了缓蚀功能膜,运用电化学方法研究了组装膜在不同腐蚀介质中对铜的腐蚀抑制行为,考察了组装条件对膜质量的影响,并对膜的吸附和缓蚀机理进行了探索。主要研究工作如下:
     1.2,5-二巯基-1,3,4-噻二唑在硫酸中对碳钢的缓蚀行为研究
     运用失重法和电化学方法研究了2,5-二巯基-1,3,4-噻二唑(DMTD)在硫酸中对碳钢的腐蚀抑制行为,并采用扫描电子显微镜(SEM),傅立叶变换红外光谱(FTIR)对碳钢表面缓蚀剂的吸附进行表征和分析。Tafel曲线结果说明DMTD作为一种混合型缓蚀剂抑制了碳钢在硫酸中的腐蚀,但并未改变阴极氢气析出的机制。极化电阻和电化学阻抗图谱(EIS)测试显示,DMTD的添加改变了碳钢表面的双电层结构,增大了腐蚀反应的极化电阻。由失重实验数据求得相关热力学和动力学参数,分析结果表明DMTD分子在碳钢表面的吸附是个自发的放热过程且满足Langmuir吸附等温模型。电容-电位曲线测试表明DMTD吸附前后的碳钢表面在硫酸中均带有正电荷。根据实验结果和计算的量子化学参数,DMTD分子在碳钢上的吸附机理可能是以静电引力和共价键的形成为驱动力的混合吸附过程。
     2.复合膦(磷)酸盐在氯化钠溶液中对碳钢的缓蚀行为研究
     利用Tafel曲线、电化学阻抗图谱研究了三聚磷酸钠和苯乙烯膦酸钠对碳钢在3%氯化钠溶液中的缓蚀性能。Tafel曲线结果表明,三聚磷酸钠为阳极型缓蚀剂,而苯乙烯膦酸钠为混合型缓蚀剂,对钢的阴、阳极腐蚀反应有明显的抑制。相比于单种缓蚀剂,复合膦(磷)酸盐对碳钢有更好的腐蚀抑制作用。同时,电化学测试表明复合膦(磷)酸盐在钢表面存在竞争性吸附,不利于保护膜的生成。
     3.5-巯基-3-苯基-1,3,4-噻二唑-2(3H)硫酮钾盐自组装膜在氯化钠溶液中对铜的缓蚀行为研究
     在铜电极表面制备了5-巯基-3-苯基-1,3,4-噻二唑-2(3H)硫酮钾盐(MPTT)自组装膜。利用Tafel曲线和电化学阻抗图谱考察了自组装条件对自组装膜缓蚀性能的影响,结果显示,较高的MPTT浓度、合适的组装时间、适当的高温有助于增强自组装膜的缓蚀能力。自组装吸附过程包括初始期的快速吸附和后期的结构重排。适当的延长组装时间和提高组装温度有助于MPTT分子重排而得到一个低缺陷的自组装膜。同时发现MPTT的吸附满足Langmuir吸附等温式,并且是一个自发的混合性的吸附过程。根据量化计算,红外光谱和接触角测试等结果,MPTT分子可能是以原子S和N作为吸附中心,取代基苯环通过π-π相互作用排列在吸附层外部,从而形成一个致密的疏水性保护膜。
     4.三聚硫氰酸自组装膜在盐酸中对铜腐蚀的缓蚀行为研究
     利用自组装技术在硝酸刻蚀的铜基上自组装了三聚硫氰酸(TTCA)薄膜。红外光谱证实了TTCA分子在铜表面的吸附,接触角测试和扫描电子显微镜显示自组装膜为亲水性的层状吸附结构。运用电化学方法研究了自组装膜对铜在盐酸中的腐蚀抑制行为,发现自组装膜的缓蚀性能与组装浓度和组装时间有关,最佳条件为在2.5mM TTCA乙醇溶液中组装12小时。Tafel曲线测试表明自组装膜作为混合型缓蚀剂抑制了铜的阴、阳极腐蚀反应,最高缓蚀效率达到91.2%。电化学阻抗图谱说明TTCA分子在铜表面的吸附降低了金属/溶液界面的电容,增大了腐蚀反应的电荷转移电阻。量子化学计算结果显示,TTCA分子的吸附可能以物理吸附为主,原子S和N以在金属表面成键的方式参与吸附。
     5.三聚硫氰酸自组装膜在氯化钠中对铜腐蚀的缓蚀行为研究
     采用浸泡法在不同pH值的TTCA水溶液中将TTCA分子组装在未刻蚀的铜基表面。运用电化学阻抗图谱对组装条件进行优化,测试表明在0.1mM TTCA酸性(pH=4.25)水溶液中浸泡3小时制备的自组装膜对铜具有更好的缓蚀效果。同时,通过改变溶液中氯离子浓度和浸蚀时间来考察自组装膜的耐蚀性能,发现自组装膜在氯化钠溶液中具有较好的稳定性和耐蚀性。根据电化学实验、红外光谱、接触角测试等结果,TTCA在酸性水溶液中的自组装膜可能是由TTCA分子和[Cu-TTCA]络合物组成的混合膜,它作为一个阻止溶液中氧和氯离子侵蚀铜基的屏障,有效地保护了基底金属。
Copper and steel are primary metallic materials and are widely used in transportation, construction, machinery, chemicals, electronics, national defense industry, and so on. But they are susceptible to corrosion in the environment due to their active chemical nature. They would be corroded markedly especially in harsh conditions, such as acid solutions, aqueous solutions containing Cl-, SO42-and dissolved oxygen. Thus, the corrosion of copper and steel has become an important subject for the corrosion researchers. The use of inhibitor is an effective method in common corrosion protection technology. With increased environmental awareness, the development and investigation for highly efficient and environmentally friendly corrosion inhibitors has been an important issue t issue in the field of corrosion science.
     Self-assembled monolayers (SAMs) are well ordered and dense monolayers formed by the spontaneous adsorption of active molecules via chemical bonds on the solid/liquid or solid/gas interface, which are belong to the thermodynamic stability system. Because the preparation method for self-assembled monolayers is simple, independent of substrate shape, and the film formed is compact, it has become one of the film technologies with broad application prospects. Efficient inhibitor molecules assembled on the metal surface could widen the scope of application of the inhibitor. Furthermore, self-assembly technology could adjust the physical and chemical properties of the assembled film by designing molecule and optimizing the assembly process. This offers the possibility to study physical properties of inhibitors in two-dimensional and even three-dimensional field for exploring their inhibition mechanism, and provides a new avenue to develop and research new-type corrosion inhibitors.
     In this paper, the work is divided into two parts:
     The first, we selected an organic heterocyclic compound and an organic phosphonate as inhibitors, and investigated their inhibition performance on the corrosion of mild steel in sulfuric acid and sodium chloride solution, respectively. The corresponding inhibition mechanisms were discussed based on the modern characterization techniques and quantum chemical calculations.
     The second, some heterocyclic compounds with multi-center adsorption sites were assembled on copper surface. The electrochemical methods were used to investigate the inhibition effects of self-assembly monolayers on the copper in different corrosive media and influence of assembly conditions on the SAMs quality. The relevant adsorption and corrosion inhibition mechanism of SAMs have also been explored.
     1. Inhibition effect of2,5-dimercapto-1,3,4-thaidizole on the corrosion of mild steel in sulphuric acid solution
     The effect of2,5-dimercapto-1,3,4-thaidizole (DMTD) on the corrosion of mild steel (MS) in sulphuric acid solution was investigated using weight loss and various electrochemical techniques. Scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to determine characteristic of the inhibitor adsorbed on the carbon steel. The results of Tafel curves indicated the DMTD acted as mixed-type inhibitor for corrosion of carbon steel, but did not change the mechanism of the cathodic hydrogen evolution. Linear polarization resistance and electrochemical impedance spectroscopy (EIS) measurements revealed that the addition of DMTD changed the electrical double layer structure of the carbon steel surface and increased the polarization resistance of the corrosion reaction. Relevant thermodynamic and kinetic parameters obtained by the weight loss measurement showed that the adsorption of DMTD molecules on the carbon steel surface is a spontaneous and exothermic process and obey the Langmuir isothermal adsorption model. Capacitance-potential curve tests indicated carbon steel surface in sulfuric acid carried positive charges before and after adsorption of DMTD molecules. According to the results of experiments and quantum chemical parameters, the adsorption mechanism of DMTD on carbon steel surface could be a mixed adsorption process through both the electrostatic attraction and formation of covalent bond as driving forces.
     2. Inhibition effect of a composite phosphonate on the corrosion of mild steel in sodium chloride solutions
     Tafel curves and electrochemical impedance spectroscopy were used to investigate the inhibition effect of sodium tripolyphosphate and sodium1-phenylvinyl phosphate on the carbon steel corrosion in3%sodium chloride solution. Tafel curves tests revealed sodium tripolyphosphate acted as an anodic inhibitor, but sodium1-phenylvinyl phosphate was a mixed-type inhibitor with strong inhibition performance on both the anodic and cathodic corrosion reaction. Compared with single inhibitor, composite inhibitors performed a better corrosion inhibition on carbon steel. At the same time, the electrochemical tests revealed that a competitive adsorption would occur between the two kinds of inhibitors in composite phosphonate system, which is disadvantageous for the formation of protective film.
     3. Potassium5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione self-assembled monolayer against copper corrosion in sodium chloride solution
     Potassium5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione (MPTT) was self-assembled on copper surface. The influence of assembly conditions on the SAM inhibition properties was investigated by Tafel curves and EIS measurements, and the results indicated that high MPTT concentration, suitable assembly time, and elevated temperature could enhance the inhibitive effect of SAM on copper corrosion under experimental conditions. The self-assembly process includes initial fast adsorption and following structural rearrangement stage. Suitable prolonging assembly time and elevating assembly temperature could promote the rearrangement process of MPTT molecules, and decrease defect density of the SAM on copper surface. It was also found that the adsorption of MPTT obeys the Langmuir adsorption isotherm, and is a spontaneous and composite adsorption process. According to quantum chemical calculations, infrared spectroscopy and contact angle measurement, MPTT molecules may be adsorbed on the copper through the electronegative atoms S and N as adsorption centers, and substituent benzene ring was arranged outside the adsorption layer through π-π interactions, thus forming a compact and hydrophobic protective film.
     4. Inhibition of copper corrosion in hydrochloric acid solution by the self-assembled monolayers of trithiocyanuric acid
     The trithiocyanuric acid (TTCA) molecules were prepared on the etched copper surface in ethanol solution by using self-assembly technique. The FTIR confirmed that the TTCA molecules were adsorbed on the copper surface, and the contact angle and SEM measurements revealed the self-assembly film has a layered structure with hydrophobic nature. The inhibition effect of self-assembly film on the copper corrosion was investigated by electrochemical methods and the results revealed that it was related to the assembly concentration and assembly time. The optimal condition for assembly process is immersion in2.5mM TTCA ethanol solution for12h. Tafel curves tests showed that the self-assembled monolayers acted as a mixed type inhibitor against both cathodic and anodic corrosion reactions, and the highest inhibition efficiency reached91.2%. EIS measurement indicated TTCA molecules adsorbed on copper surface decreased the total capacitance of the metal/solution interface, and increased the charge-transfer resistance of the corrosion reaction. Quantum chemical calculations showed that the adsorption of TTCA molecules may be dominated by physical interaction, and the electronegative atoms of S and N may participate in bonding with the metal surface.
     5. Corrosion inhibition of copper in sodium chloride solution by self-assembled monolayers of trithiocyanuric acid
     The trithiocyanuric acid (TTCA) molecules were assembled on the non-etched copper surface in aqueous solution at different pH values by using immersion method. The assembly conditions were optimized by using electrochemical impedance spectroscopy measurements, and the results revealed that the TTCA films could provide better protection performance against copper after3h of assembly in0.1mM TTCA acidic aqueous solution. Meantime, the inhibition performance of the films was investigated by changing the concentration of chloride ions and the corrosive immersion time of TTCA-modified electrodes in corrosive media, and the results revealed that the TTCA films possess good stability and durability in sodium chloride solution. According to electrochemical experiments, FTIR and contact angle measurements, the TTCA film assembled in acidic solution could be mixed films involving TTCA molecules and [Cu-TTCA] complex, which could act as a barrier to hinder aggressive species from attacking the underlying copper substrate and provide good protection for copper in sodium chloride solution.
引文
[1]Y.I. Kuznetsov. Current state of the theory of metal corrosion inhibition[J]. Prot. Met.2002, 38,103-111.
    [2]何新快,陈白珍,张钦发.缓蚀剂的研究现状与展望,材料保护,2003,36,1-3.
    [3]何业东,齐慧滨.材料腐蚀与防护概论[M].机械工业出版社,2005.
    [4]吴萌顺,郑家燊.电化学保护与缓蚀剂应用技术[M].化学工业出版社,2006.
    [5]]王佳,曹楚南,陈家坚.缓蚀剂理论与研究方法的进展[J].腐蚀科学与防护技术,1992,4,79-86.
    [6]张天胜,张浩.缓蚀剂[M].化学工业出版社,2008.
    [7]F. Bentiss, M. Traisnel, M. Lagrenee, The substituted 1.3,4-oxadiazoles:a new class of corrosion inhibitors of mild steel in acidic media[J]. Corros. Sci.2000,42,127-146.
    [8]A.K. Singh, M.A. Quraishi, Investigation of the effect of disulfiram on corrosion of mild steel in hydrochloric acid solution[J]. Corros. Sci.2011,53,1288-1297.
    [9]X.H. Li, S.D. Deng, H. Fu, Triazolyl blue tetrazolium bromide as a novel corrosion inhibitor for steel in HCl and H2SO4 solutions[J]. Corros. Sci.2011,53,302-309.
    [10]J.M. Costa, J.M. Lluch. The use of quantum mechanics calculations for the study of corrosion inhibitors[J]. Corros. Sci.1984,24,929-933.
    [11]张大全,高立新.HCI溶液中巯基杂环化合物对铜的缓蚀作用[J].应用化学.2002,19,535-538.
    [12]S.L. Li, Y.G. Wang, S.H. Chen, R. Yu, S.B. Lei, H.Y. Ma, D.X. Liu, Some aspects of quantum chemical calculations for the study of Schiff base corrosion inhibitors on copper in NaCl solutions[J]. Corros. Sci.1999,41,1769-1782.
    [13]王静,汤兵,陈欣义.酸洗缓蚀协同机理研究与进展[J].腐蚀与防护,2007,28,217-220.
    [14]王保成,朱金华.盐酸溶液中乌鲁托品对钢的缓蚀性能[J].北京科技大学学报,2006,28, 259-262.
    [15]张健,杜光军,杨志弘,勾清莉.六次甲基四胺自盐酸溶液中在钢表面上的吸附[J].中南民族学院学报(自然科学版),1998,17,26-29.
    [16]D.D.N. Singh, T.B. Singh. B. Gaur, The role of metal cations in improving the inhibitive performance of hexamine on the corrosion of steel in hydrochloric acid solution[J]. Corros. Sci.1995,37,1005-1019.
    [17]M. Hosseini, S.F.L. Mertens, M.R. Arshadi, Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine[J]. Corros. Sci. 2003,45,1473-1489.
    [18]陈恕华,马洁倩,舒和庆.低碳钢-硫酸-硫脲缓蚀体系的研究[J].腐蚀科学与防护技术.1991,3,13-16.
    [19]韩倩倩.硫脲在0.5mol/L硫酸溶液中对A3钢缓蚀作用的电化学研究[J].表面技术,2009,38,36-38.
    [20]李向红,邓书端,付惠,木冠南.盐酸中烯丙基硫脲在钢表面的吸附及缓蚀作用[J].清洗世界,2009,25,18-22.
    [21]Sk.A. Ali, M.T. Saeed, S.U. Rahman, The isoxazolidines:a new class of corrosion inhibitors of mild steel in acidic medium[J]. Corros. Sci.2003,45,253-266.
    [22]B. Donnelly, T.C. Downie, R. Grzeskowiak, H.R. Hamburg, D. Short, A study of the inhibiting properties of some derivatives of thiourea[J]. Corros. Sci.1974,14,597-606.
    [23]D. Gopi, N. Bhuvaneswaran, S. Rajeswarai, K. Ramadas, Synergistic effect of thiourea derivatives and non-ionic surfactants on the inhibition of corrosion of carbon steel in acid environments[J]. Anti-Corros. Methods Mater.2000,47,332-339.
    [24]吕战鹏,郑家燊,刘江鸿,彭芳明.硫脲衍生物对饱和水溶液中碳钢缓蚀性能的研究[J].腐蚀与防护,1999,20,18-21.
    [25]孙福星,庞正智,武德珍,沈建.HCI中咪唑衍生物复配对碳钢的缓蚀作用研究[J].北京化工大学学报,2005,32,99-102.
    [26]Y. Abboud, A. Abourriche, T. Saffaj, M. Berrada, M. Charrouf, A. Bennamara, A. Cherqaoui, D. Takky, The inhibition of mild steel corrosion in acidic medium by 2,2'-bis(benzimidazole)[J]. Appl. Surf. Sci.2006,252,8178-8184.
    [27]朱驯,周秀芹.环烷基咪唑啉衍生物在硫酸介质中的缓蚀性能研究[J].应用化学,2006,35,51-53.
    [28]张光华,李俊国,郭炎,卢凤纪.三苯环咪唑啉季铵盐的合成与缓蚀性能[J].腐蚀科学与防护技术,2002,14,95-97.
    [29]曾涵,许国强,2-硫代四氢咪唑酮的合成及其对碳钢缓蚀性能测试[J].新疆师范大学学报(自然科学版),2006,25,40-44.
    [30]连辉青,刘瑞泉,朱丽琴,王吉德.噻唑衍生物在酸性介质中对A3钢的缓蚀性能[J].应用化学,2006,23,676-581.
    [31]张军平,张秋禹,颜红侠,赵雯,张和鹏.N.,N’-(2-硫酮基苯骈噻唑基-3-甲基)-正十二胺的缓蚀性能研究[J].材料保护,2008,41,7-10.
    [32]M. Behpour, S.M. Ghoreishi, N. Soltani, M. Salavati-Niasari, The inhibitive effect of some bis-N,S-bidentate Schiff bases on corrosion behaviour of 304 stainless steel in hydrochloric acid solution[J]. Corros. Sci.2009,51,1073-1082.
    [33]N.A. Negm, F.M. Ghuiba, S.M. Tawfik, Novel isoxazolium cationic Schiff base compounds as corrosion inhibitors for carbon steel in hydrochloric acid[J]. Corros. Sci.2011,53, 3566-3575.
    [34]W.H. Li, Q. He, C.L. Pei, B.R. Hou, Experimental and theoretical investigation of the adsorption behaviour of new triazole derivatives as inhibitors for mild steel corrosion in acid media[J]. Electrochim. Acta 2007,52,6386-6394.
    [35]W.H. Li, X. Zhao, F.Q. Liu, B.R. Hou, Investigation on inhibition behavior of S-triazole-trizaole derivatives in acidic solution[J]. Corros. Sci.50(2008) 3261-3266.
    [36]Z.H. Tao, S.G. Zhang, W.H. Li, B.R. Hou, Corrosion inhibition of mild steel in acidic solution by some oxo-triazole derivaties[J]. Corros. Sci.2009,51,2588-2595.
    [37]Hamdy H. Hassan, Essam Abdelghani, Mohammed A. Aminlnhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives, Part Ⅰ. Polarization and EIS studies[J]. Electrochim. Acta 2007,52,6359-6366.
    [38]E. H. El Ashry, A. El Nemr, S.A. Esawy, Safaa Ragab, Corrosion inhibitors Part Ⅱ:Quantum chemical studies on the corrosion inhibitions of steel in acidic medium by some triazole, oxadiazole and thiadiazole derivatives[J]. Electrochim. Acta 2006,51,3957-3968.
    [39]F. Bentiss, M. Bouanis, B. Mernari, M. Traisnel, M. Lagrenee, E(?)ect of iodide ions on corrosion inhibition of mild steel by 3,5-bis(4-methylthiophenyl)-4H-1,2,4-triazole in sulfuric acid solution[J]. J. Appl. Electrochem.2002,32,671-678.
    [40]M. El Aahar, B. mernari, M. Traisnel, F. Bentiss, M. Lagrenee, Corrosion inhibition of mild steel by the new class of inhibitors [2,5-bis(n-pyridyl)-1,3,4-thiadiazoles] in acidic media[J]. Corros.Sci.2001,43,2229-2238.
    [41]F. Bentiss, M. Traisnel, H. Vezin, H.F. Hildebrand, M. Lagrenee, 2,5-Bis(4-dimethylaminophenyl)-1,3,4-oxadiazole and 2,5-bis(4-dimethylaminophenyl)-1.3,4-thiadiazole as corrosion inhibitors for mild steel in acidic media[J]. Corros. Sci.2004,46,2781-2792.
    [42]M. Lebrini, M. Lagrenee, H. Vezin, L. Gengembre, F. Bentiss, Electrochemical and quantum chemical studies of new thiadiazole derivatives adsorption on mild steel in normal hydrochloric acid medium[J]. Corros. Sci.2005,47,485-505.
    [43]F. Bentiss, M. Lebrini, M. Lagrenee, Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric acid system[J]. Corros. Sci.2005,47, 2915-2931.
    [44]F. Bentiss, M. Lebrini, M. Lagrenee, M. Traisnel, A. Elfarouk, H. Vezin, The influence of some new 2,5-disubstituted 1,3,4-thiadiazoles on the corrosion behaviour of mild steel in 1M HCl solution:AC impedance study and theoretical approach[J]. Electrochim. Acta 2007,52, 6865-6872.
    [45]F. Bentiss, B. Mernari, M. Traisnel, H. Vezin, M. Lagrenee, On the relationship between corrosion inhibiting effect and molecular structure of 2,5-bis(n-pyridyl)-1,3,4-thiadiazole derivatives in acidic media:AC impedance and DFT studies[J]. Corros. Sci.2011,53, 487-495.
    [46]Y.M. Tang, X.Y. Yang, W.Z. Yang, R. Wan, Y.Z. Che, X.S. Yin, A preliminary investigation of corrosion inhibition of mild steel in 0.5 M H2SO4 by 2-amino-5-(n-pyridyl)-1,3,4-thiadiazole: Polarization, EIS and molecular dynamics simulations[J]. Corros. Sci.2010,52,1801-1808.
    [47]Y.M. Tang, X.Y. Yang, W.Z. Yang, R. Wan, Y.Z. Che, R. Wan, Experimental and molecular dynamics studies on corrosion inhibition of mild steel by 2-amino-5-phenyl-1,3,4-thiadiazole[J]. Corros. Sci.2010,52,242-249.
    [48]M. Palomar-Pardave, M. Romo, H. Herrera-Hernandez, M.A. Abreu-Quijano, N.V. Likhanova, J. Uruchurtu, J.M. Juarez-Garcia, Influence of the alkyl chain length of 2-amino-5-alkyl-1,3,4-thiadiazole compounds on the corrosion inhibition of steel immersed in sulfuric acid solutions[J]. Corros. Sci.2012,54,231-243.
    [49]M.A. Deyaba, S.S. S.S. Abd El-Rehim, Inhibitory effect of tungstate, molybdate and nitrite ions on the carbon steel pitting corrosion in alkaline formation water containing Cl- ion[J]. Electrochim. Acta 2007,53,1754-1760.
    [50]R.G. Wang. Influence of ultrasound on pitting corrosion and crevice corrosion of SUS304 stainless steel in chloride sodium aqueous solution[J]. Corros. Sci.2008,50,325-328.
    [51]M. Sahina, S. Bilgic, H. Yilmaz, The inhibition effects of some cyclic nitrogen compounds on the corrosion of the steel in NaCl mediums[J]. Appl. Surf. Sci.2002,195,1-7.
    [52]M. Diidukcu, B. Yazici, M. Erbil, The effect of indole on the corrosion behaviour of stainless steel[J]. Mater. Chem. Phys.2004,87,138-141.
    [53]F. El-Taib Heakal, A.S. Foudab, M.S. Radwan, Inhibitive effect of some thiadiazole derivatives on C-steel corrosion in neutral sodium chloride solution[J]. Mater. Chem. Phys. 2011,125,26-36.
    [54]陆柱,蔡兰坤,陈中兴.水处理药剂[M].化学工业出版社,2002.
    [55]X.H. To, N. Pebere, N. Pelaprat, B. Boutevin, Y. Hervaud, A corrosion-protective film formed on a carbon steel by an organic phosphonate[J]. Corros. Sci.1997,39,1925-1934.
    [56]I. Felhosi, E. Kalman, Corrosion protection of iron by α,ω-diphosphonic acid layers[J]. Corros. Sci.2005,47,695-708.
    [57]A. Ulman, An introduction to ultrathin organic films from Langlmuir-Blodgett to self-assembly[M]. NewYork:Academic Press,1991.
    [58]X.K. Zhao, S.Q. Xu, J. H.Fendler, Ultrasmall magnetie Partieles in Langnluir-Blodgett films[J]. J. Phys. Chem.1990,94,2573-581.
    [59]B. Franklin, On the stilling of waves by means of oil[J]. Philos. Trans. R. Soc. London,1774, 64,445-460.
    [60]P. Behroozi, K. Cordray, W. Griffin, F. Behroozi, The calming effect of oil on water[J]. Am. J. Phys.2007,75,407-416.
    [61]A. Pockels, On the spreading of oil upon water[J]. Nature 1894,50,223-224.
    [62]L. Rayleigh, Investigations in Capillarity[J]. Philos. Mag.1899,48,321-337.
    [63]W.B. Hardy, The tension of composite fluid surfaces and the mechanical stability of films of fluid[J]. Proc. R. Soc. London A.1912,86,610-635.
    [64]I. Langmuir, The Shapes of Group Molecules Forming the surfaces of liquids[J]. Proceedings of the National Academy of Sciences of the United States of America (PNAS),1917,3, 251-257.
    [65]K. Blodgett, Films built by depositing successive monomolecular layers on a solid surface[J]. J.Am. Chem. Soc.1935,57,1007-1022.
    [66]K. Blodgett, Built-up film of barium stearate and their optical properties[J]. Phys. Rev.1937, 51,964-982.
    [67]W.C. Bigelow, D.L. Piekett, W.A. Zisman, Oleophobic monolayers:Films adsorbed from solution in non-polar liquids[J]. Colloid Interface. Sci.1946,1,513-538.
    [68]L.C.F. Blackman, M.J.S. Dewar, H. Hampson, An investigation of compounds promoting the dropwise condensation of steam[J]. J. Appl. Chem.1957,7,160-171.
    [69]L.C.F. Blackman, M.J.S. Dewar, Promoters for the dropwise condensation of steam. Part I. Preparation of compounds containing monofunctional sulphur groups[J]. J. Chem. Soc. (resumed),1957,162-165.
    [70]R.G. Nuzzo, D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces[J]. J. Am. Chem. Soc.1983,105,4481-4483.
    [71]M.D Porter, T.B Bright, D.L Allara, C.E.D. Chidsey, Spontaneously organized molecular assemblies.4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry [J]. J. Am. Chem. Soc.1987,109, 3559-3568.
    [72]P. Fenter, P. Eisenberger, J. Li, N. Camillone, S. Bernasek, G. Scoles, T.A. Ramanarayanan, K.S. Liang, Structure of octadecyl thiol self-assembled on the silver (111) surface:an incommensurate monolayer[J]. Langmuir,1991,7,2013-2016.
    [73]E.B. Troughton, C.D. Bain, G.M. Whitesides, R.G. Nuzzo, D.L. Allara, M.D. Porter, Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates:structure, properties, and reactivity of constituent functional groups[J]. Langmuir 1988,4,365-385.
    [74]C.D. Bain, H.A. Biebuyck, G.M. Whitesides, Comparison of self-assembled monolayers on gold:coadsorption of thiols and disulfides[J]. Langmuir 1989,5,723-727.
    [75]C.D. Bain, G.M. Whitesides, Formation of two-component surfaces by the spontaneous assembly of monolayers on gold from solutions containing mixtures of organic thiols[J]. J. Am. Chem. Soc.1988,110,6560-6561.
    [76]M.A. Bryant. J.E. Pemberton, Surface Raman scattering of self-assembled monolayers formed from 1-alkanethiols:behavior of films at gold and comparison to films at silver[J]. J. Am. Chem. Soc.1991,113,8284-8293.
    [77]H.O. Finklea,; M.S. Ravenscroft,; D.A Snider, Electrolyte and temperature effects on long range electron transfer across self-assembled monolayers[J]. Langmuir 1993,9,223-227.
    [78]李景虹.自组装膜电化学[M].高等教育出版社,2002.
    [79]A.Ulman, Formation and structure of self-assembled monolayers[J]. Chem. Rev.1996,96, 1533-1554.
    [80]G. M. Whitesides, P. E. Laibinis, Wet chemical approaches to the characterization of organic surfaces:Self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface[J]. Langmuir 1990,6,87-96.
    [81]L.H. Dubois, R. G. Nuzzo, Synthesis, structure, and properties of model organic surfaces[J]. Annu. Rev. Phys. Chem.1992,43,437-463.
    [82]P.G. de Gennes, Wetting:statics and dynamics[J]. Rev. Mod. Phys.1985,57,827-863.
    [83]S. Dietrich, C. Domb, J.L. Lebowitz, Phase transitions and critical phenomena, vol.12, Academic Press, New York,1988.
    [84]李景虹,程广金,董绍俊.一种新型有序超薄有机膜—自组装膜[J].化学通报,1995,10,11—18.
    [85]G. Nupur, T.L. Randall, Self-assembled monolayers based on chelating aromatic dithiols on gold[J]. Langmuir 1998,14,3815-3819.
    [86]S. Xu, S.J.N. Cruchon-Kupeyrat, J.C. Garno, G.Y, Liu, G.K. Jennings, T.H. Yong, P.E. Laibinis, In situ studies of thiol self-assembly on gold from solution using atomic force microscopy[J]. J. Chem. Phys.1998,108,5002-5012.
    [87]F.P. Zamborini, R.M. Crooks, Corrosion passivation of gold by n-alkanethiol self-assembled monolayers:effect of chain length and end group[J]. Langmuir 1998.14,3279-3286.
    [88]D. Oyamatsu. S. Kuwabata, H. Yoneyama, Underpotential deposition behaviour of metals onto gold electrodes coated with self-assembled monolnyers of alkanethiols[J]. J. Electroanal. Chem.1999.473,59-67.
    [89]H. Hagenstrom, M.A. Schneeweiss, D.M. Kolb, Modification of a Au(111) electrode with ethanethiol.1. adlayer structure and electrochemistry[J]. Langmuir 1999,15,2435-2443.
    [90]R. Yamada, H. Wano, K. Uosaki, Effect of temperature on structure of the self-assembled monolayer of decanethiol on Au(111) surface[J]. Langmuir 2000,16,5523-5525.
    [91]R.G. Pillai, M.D. Braun, M.S. Freund, Electrochemically assisted self-assembly of alkylthiosulfates and alkanethiols on gold:The role of gold oxide formation and corrosion[J]. Langmuir 2010,26,269-276.
    [92]P.E. Laibinis, G.M. Whitesides, D.L. Allara, Y.T. Tao, A.N. Parikh, R.G. Nuzzo, Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, Cu, Ag, Au[J]. J. Am. Chem. Soc.1991,113,7152-7167.
    [93]P.E. Laibinis, G.M. Whitesides, Self-Assembled monolayers of n-alkanethiolates on copper are barrier films that proteet the metal again oxidation by air[J]. J. Am. Chem. Soc.1992,114, 9022-9028.
    [94]H. Ron, H. Cohen, S. Matlis, M. Rappaport., I. Rubinstein, Self-assembled monolayers on oxidized metals.4. Superior n-alkanethiol monolayers on copper[J]. J. Phys. Chem. B 1998, 102,9861-9869.
    [95]G.K. Jennings, P.E. Laibinis, Self-assembled monolayers of alkanethiols on copper provide corrosion resistance in aqueous environments[J]. Colloids Surf. A.1996,116,105-114.
    [96]A.T. Lusk, G.K. Jennings, Characterization of self-assembled monolayers formed from sodiums-alkylthiosulfates on copper[J]. Langmuir 2001,17,7830-7836.
    [97]G.K. Jermings, T-H Yong, J.C. Munro, P.E. Laibinis, Effeet of chain length on the proteetion of copper by n-alkanethiols[J]. Langmuir 1998,14,6130-6139.
    [98]G.K. Jermings, T-H Yong, J.C. Munro, P.E. Laibinis, Structural effects on the barrier properties of self-assembled monolayers formed from long-chain o-alkoxy-n-alkanethiols on copper[J]. J. Am. Chem. Soc.2003,125,2950-2957.
    [99]N. Battaglini, H. Klein, P. Dumas, C. Moustrou, A. Samat, Scanning tunneling microscopy of locally derivatized self-assembled organic monolayers[J]. Appl. Surf. Sci.2003,15,481-484.
    [100]M.M. Sung, K. Sung, C.G. Kim, S.S. Lee, Y. Kim, Self-Assembled monolayers of alkanethiols on oxidized copper surfaces[J]. J. Phys. Chem. B.2000,104,2273-2277.
    [101]Y.S. Tan. M.P. Srinivasan, S.O. Pehkonen, S.Y.M. Chooi, Effects of ring substituents on the protective properties of self-assembled benzenethiols on copper[J]. Corros.Sci.2006,48, 840-862.
    [102]D.A. Hutt, C.Q. Liu, Oxidation Protection of copper surfaces using self-assembled monolayers of octadecanethiol[J]. Appl. Surf. Sci.2005,252,400-411.
    [103]Z. Petrovic, M. Metikos-Hukovic, R. Babic, Modification of copper with self-assembled organic coatings[J]. Prog. Org. Coat.2008,61,1-6.
    [104]A. Kasnoslobodtsev, S. Smirnov, Surface assisted intermolecular interactions in self-assembled coumarin submonolayers[J]. Langmuir 2001,17,7593-7599.
    [105]D.L. Allara, A.N. Parikh, F. Rondelez, Evidenee for a organization in long chain silane monolayers deposited on unique chain two widely different solid substrates[J]. Langmuir 1995,11,2357-2360.
    [106]K. Aramaki, Protection of iron corrosion by ultrathin two-dimensional polymer films of an alkanethiol monolayer modified with alkylethoxysilanes[J]. Corros. Sci.1999,41, 1715-1730.
    [107]M. Itoh, H. Nishihara, K. Aramaki, The protection ability of 11-mercapto-1-undecanol self-assembled monolayer modified with alkyltrichlorosilanes against corrosion of copper[J]. J. Electrochem. Soc.1995,142,1839-1846.
    [108]F. Sinapi, J. Delhalle, Z. Mekhalif, XPS and electrochemical evaluation of two-dimensional organic films obtained by chemical modification of self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane on copper surfaces[J]. Mater. Sci. Eng. C 2002,22, 345-353.
    [109]D.L. Allara, R.G. Nuzzo, Spontaneously organized molecular assemblies:2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminium surface[J]. Langmuir 1985,1,52-66.
    [110]Y.T. Tao, Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver copper and aluminium [J]. J.Am. Chem. Soc.1993,115,4350-4358.
    [111]L. Tao, Y.H. Yin, S.G. Chen, X.T. Chan, S. Cheng, Super-hydrophobic surfaces improve corrosion resistance of copper in seawater[J]. Electrochim. Acta 2007,52,3709-3713.
    [112]赵建章,赵冰,徐蔚青,刘举正,王宗睦,李耀先Schiff碱N,N-双水杨醛缩-1,6-己二胺的光致变色光谱研究[J].高等学校化学学报,2001,22,971-975.
    [113]陈玉红.席夫碱自组装膜对铜的缓蚀作用[M].河北师范大学,2003.
    [114]Z.L. Quan, S.H. Chen, S.L. Li, Protection of copper corrosion by modification of self-assembled films of Shiff bases with alkanethiol[J]. Corros. Sci.2001.43,1071-1080.
    [115]杨学耕,陈慎豪.全属表面自组装缓蚀功能分子膜[J].化学进展2003,15,123-128.
    [116]M. Ehteshamzade, T. Shahrabi, M.G. Hosseini, Inhibition of copper corrosion by self-assembled films of new Schiff bases and their modification with alkanethiols in aqueous medium[J]. Appl. Surf. Sci.2006,252,2949-2959.
    [117]Z.L. Quan, S.H. Chen, Y. Li, X.G. Cui, Adsorption behaviour of Schiff base and corrosion protection of resulting films to copper substrate[J]. Corros. Sci 2002,44,703-715.
    [118]全贞兰,吴培强,杨晓燕.席夫碱自组装膜分子结构对Cu缓蚀性能的影响[J].青岛科技大学学报,2005,26,283-286.
    [119]全贞兰,陈慎豪,华兰,雷圣宾,崔学桂.希夫碱在铜表面上的自组装膜的STM和XPS研究[J].科学学报,2001,46,1618-1621.
    [120]S.B. Ungashe, W.L. Wilson, H.E. Katz, G.R. Scheller, T.M. Putvinski, Synthesis, self-assembly, and photophysical dynamics of stacked layers of porphyrin and viologen phosphonates[J]. J. Am. Chem. Soc.1992,114,8717-8719.
    [121]H.C. Yang, K. Aoki, H.G. Hong, D.D. Sackett, M.F. Arendt, S.L. Yau, C.M. Bell, T.E. Mallouk, Growth and characterization of metal(Ⅱ) alkanebisphosphonate multilayer thin films on gold surfaces[J]. J. Am. Chem. Soc.1993,115,11855-11862.
    [122]王海人,屈钧娥,张强,吴慧敏,李晖.膦酸自组装膜在铝合金表面的吸附及缓蚀行为[J].表面技术,2011,40,40-43.
    [123]I. Felhosi, J. Telegdi, G. Palinkas, E. Kalman, Kinetics of self-assembled layer formation on iron[J]. Electrochim. Acta,2002,47,2335-2340.
    [124]A. Paszternak, I. Felhosil, Z. Paszti, E. Kuzmann, A. Vertes, E. Kalmanl, L. Nyikos, Surface analytical characterization of passive iron surface modified by alkyl-phosphoric acid layer[J]. Electrochim. Acta 2010,55,804-812.
    [125]A. Raman, M. Dubey, I. Gouzman, E.S. Gawalt, Formation of self-assembled monolayers of alkylphosphonic acid on the native oxide surface of SS 316L[J]. Langmuir 2006,22, 6469-6472.
    [126]W.J. Guo, S.H. Chen, B.D. Huang, H.Y. Ma, X.G. Yang, Protection of self-assembled monolayers formed from triethylphosphate and mixed self-assembled monolayers from triethyl phosphate and cetyltrimethyl ammonium bromide for copper against corrosion[J]. Electrochim. Acta 2006,52,108-113.
    [127]C. Hao, R.H. Yin, Z.Y. Wan, Q.J. Xu, G.D. Zhou, Electrochemical and photoelectrochemical study of the self-assembled monolayer phytic acid on cupronickel B30[J]. Corros. Sci.2008, 50,3527-3533.
    [128]X.R. Ye, X.Q. Xin, J.J. Zhu, Z.L. Xue, Coordination compound films of 1-phenyl-5-mercaptotetrazole on copper surface[J]. Appl. Surf. Sci.1998,135,307-317.
    [129]C.T. Wang, S.H. Chen, H.Y. Ma, C.S. Qi, Protection of copper corrosion by carbazole and N-vinylcarbazole self-assembled films in NaCl solution[J]. J. Appl. Electrochem.2003,33, 179-186.
    [130]B.V. Appa Rao, Md. Yakub Iqbal, B. Sreedhar, Self-assembled monolayer of 2-(octadecylthio)benzothiazole for corrosion protection of copper[J]. Corros. Sci.2009,51, 1441-1452.
    [131]B.V. Appa Rao, Md. Yakub Iqbal, B. Sreedhar, Electrochemical and surface analytical studies of the self-assembled monolayer of 5-methoxy-2-(octadecylthio)benzimidazole in corrosion protection of copper[J]. Electrochim. Acta 2010,55,620-631.
    [132]C.H. Liang, P. Wang, B. Wu, N.B. Huang, Inhibition of copper corrosion by self-assembled monolayers of triazole derivative in chloride-containing solution[J]. J. Solid State Electrochem.2010,14,1391-1399.
    [133]曹楚南.腐蚀电化学原理[M].化学工业出版社,1985.
    [134]王凤平,康万利,敬和民.腐蚀电化学未原理、方法及应用[M].化学工业出版社,2008.
    [135]M.A. Amin, K.F. Khaled, S.A. Fadl-Allah, Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions-Experimental and theoretical studies[J]. Corros. Sci.2010,52,140-151.
    [136]H.Y. Ma, C. Yang, S.H. Chen, Y.L. Jiao, S.X. Huang, D.G. Li, J.L. Luo, Electrochemical investigation of dynamic interfacial processes 1-octadecanethiol-modified copper electrodes in halide-containing solutions[J]. Electrochim. Acta 2003,48,4277-4289.
    [137]贾铮,戴长松,陈玲.电化学测量方法[M].化学工业出版社,2006.
    [138]曹楚南,张鉴清.电化学阻抗谱导论[M].科学出版社,2002.
    [139]I. Epelboin, M. Keddam, Faradaic impedances:Diffusion impedance and reaction impedance [J]. J. Electrochem. Soc.1970,117,1052-1056.
    [140]F. Deflorian, L. Fedrizzi, S. Rossi, P.L. Bonora, Organic coating capacitance measurement by EIS:ideal and actual trend[J]. Electrochim. Acta 1999,44,4243-4249.
    [141]E. Boubour, R.B. Lennox. Insulating properties of self-assembled monolayers monitored by impedance spectroscopy[J]. Langmuir 2000,16,4222-4228.
    [142]A.V. Benedetti, P.T.A. Sumodjo, K. Nobe, P.L. Cabot, W.G. Proud, Electrochemical studies of copper, copper-aluminium and copper-aluminium-silver alloys:Impedance results in 0.5M NaCl[J]. Electrochim. Acta 1995,40,2657-2668.
    [143]张鉴清,曹楚南.电化学阻抗谱方法研究评价有机涂层[J].腐蚀与防护,1998,19,99-104.
    [144]胡吉明.张鉴清,曹楚南.铝合金表面环氧涂层中水传输行为的电化学阻抗谱研究[J].金属学报,2003,39,544-549.
    [145]M. Gojic. The effete of propargylic alcohol on the corrosion inhibition of low alloy CrMo steel in sulphuric acid[J]. Corros. Sci.,2001,43,919-929.
    [146]Y.h. Lua, H.b. Xua, J. Wang, X.F. Kong, Oxygen reduction mechanism on copper in a 0.5M H2SO4[J]. Electrochim. Acta 2009,54,3972-3978.
    [147]L.L. Wu, F. Camacho-Alanis, H. Castaneda, G. Zangari, N. Swami, Electrochemical impedance spectroscopy of carboxylic-acid terminal alkanethiol self assembled monolayers on GaAs substrates [J]. Electrochim. Acta 2010,55,8758-8765.
    [148]P.B. Mathur, T. Vasudevan. Reaction rate studies for the corrosion of metal in acids.1. iron in mineral acids[J]. Corrosion,1982,38,171-178.
    [149]J.A. Mielczarski, E. Mielczarski, Determination of molecular orientation and thickness of self-assembled monolayers of oleate on apatite by FTIR reflection spectroscopy [J]. J. Phys. Chem.1995,99,3206-3217.
    [150]Y.S. Zhao, W.S. Yang, G.J. Zhang, Y. Ma, J.N. Yao, A hierarchical self-assembly of 4,5-diphenylimidazole on copper[J]. Colloids Surf. A 2006,277,111-118.
    [151]L. Feng, Y.L. Song, J. Zhai, B.Q. Liu, J. Xu, L. Jiang, D.B. Zhu, Creation of a superhydrophobic surface from an amphiphilic polymer[J]. Angew. Chem. Int. Ed.2003,42, 800-802.
    [152]S.G. Chen, Y. Chen, Y.H. Lei, Y.S. Yin, Novel strategy in enhancing stability and corrosion resistance for hydrophobic functional films on copper surfaces[J]. Electrochem. Commun. 2009,11,1675-1679.
    [153]唐子龙,宋诗哲.有机缓蚀剂的量子化学研究[J].中国腐蚀与防护学报,1995,15,229—236.
    [154]J. Vosta, J. Eliasek, Study on corrosion inhibition from aspect of quantum chemistry[J]. Corros. Sci.1971,11.223-229.
    [155]M. Ozcan, I. Dehri, M. Erbil, Organic sulphur-containing compounds as corrosion inhibitors for mild steel in acidic media:correlation between inhibition efficiency and chemical structure[J]. Appl. Surf. Sci.2004,236,155-164.
    [156]R. Hasanov, M. Sadikoglu, S. Bilgic, Electrochemical and quantum chemical studies of some Schiff bases on the corrosion of steel in H2SO4 solution[J]. Appl. Surf. Sci.2007,253, 3913-3921.
    [157]K.F. Khaled, Experimental, density function theory calculations and molecular dynamics simulations to investigate the adsorption of some thiourea derivatives on iron surface in nitric acid solutions[J]. Appl. Surf. Sci.2010,256,6753-6763.
    [158]M. Behpour, S.M. Ghoreishi, M. Khayatkashani, N. Soltani, Green approach to corrosion inhibition of mild steel in two acidic solutions by the extract of Punica granatum peel and main constituents[J]. Mater. Chem. Phys.2012,131,621-633.
    [159]F. Bentiss, M. Lebrini, H. Vezin, M. Lagrenee, Experimental and theoretical study of 3-pyridyl-substituted 1.2,4-thiadiazole and 1,3,4-thiadiazole as corrosion inhibitors of mild steel in acidic media[J]. Mater. Chem. Phys.2004,87,18-23.
    [160]A. Chetouani, B. Hammouti, T. Benhadda, M. Daoudi, Inhibitive action of bipyrazolic type organic compounds towards corrosion of pure iron in acidic media[J]. Appl. Surf. Sci.2005, 249,375-385.
    [161]M. Lebrini, M. Lagrenee, M. Traisnel, L. Gengembre, H. Vezin, F. Bentiss, Enhanced corrosion resistance of mild steel in normal sulfuric acid medium by 2,5-bis(n-thienyl)-1,3,4-thiadiazoles:Electrochemical X-ray photoelectron spectroscopy and theoretical studies[J]. Appl. Surf. Sci.2007,253,9267-9276.
    [1]F. Bentiss, M. Lagrenee, M. Traisnel, J.C. Hornez, The corrosion inhibition of mild steel in acidic media by a new triazole derivative[J]. Corros. Sci.1999,41,789-803.
    [2]E. Machnikova, K.H. Whitmire, N. Hackerman, The corrosion inhibition of mild steel in acidic media by a new triazole derivative[J]. Electrochim. Acta.2008,53,6024-6032.
    [3]K.F. Khaled, K. Babic-Samardzija, N. Hackerman, Theoretical study of the structural effects of polymethylene amines on corrosion inhibition of iron in acid solutions[J]. Electrochim. Acta 2005,50,2515-2520.
    [4]M. Hosseini, S.F.L. Mertens, M.R. Arshadi, Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine[J]. Corros. Sci. 2003,45,1473-1489.
    [5]K.F. Khaled, The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HC1 solutions[J]. Electrochim. Acta 2003,48,2493-2503.
    [6]M. Lagrenee, B. Mernari, M. Bouanis, M. Traisnel, F. Bentiss, Study of the mechanism and inhibiting efficiency of 3,5-bis(4-methylthiophenyl)-4H-1,2,4-triazole on mild steel corrosion in acidic media[J]. Corros. Sci.2002,44,573-588.
    [7]F. Bentiss, M. Traisnel, N. Chaibi, B. Mernari, H. Vezin, M. Lagrenee, 2,5-Bis(n-methoxyphenyl)-1,3,4-oxadiazoles used as corrosion inhibitor in acidic media: correlation between inhibition efficiency and chemical structure[J]. Corros. Sci.2002,44, 2271-2289.
    [8]P. Morales-Gil, G. Negron-Silvab, M. Romero-Romo, C. Angeles-Chavezc, M. Palomar-Pardave, Corrosion inhibition of pipeline steel grade API 5L X52 immersed in a 1 M H2SO4 aqueous solution using heterocyclic organic molecules[J]. Electrochim. Acta 2004,49, 4733-4741.
    [9]M. Ozcan, I. Dehri, M. Erbil, Organic sulphur-containing compounds as corrosion inhibitors for mild steel in acidic media:correlation between inhibition efficiency and chemical structure[J]. Appl. Surf. Sci.2004,236,155-164.
    [10]M. Hosseini, S.F.L. Mertens, M. Ghorbani, M.R. Arshadi, Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media[J]. Mater. Chem. Phys.2003,78, 800-808.
    [11]H. Ashassi-Sorkhabi, B. Shaabani, D. Seifzadeh, Effect of some pyrimidinic Shciff bases on the corrosionof mild steel in hydrochloric acid solution[J]. Electrochim. Acta 2005,50,3446-3452.
    [12]E.E. Oguzie, Y. Li, F.H. Wang, Effect of 2-amino-3-mercaptopropanoic acid (cysteine) on the corrosion behaviour of low carbon steel in sulphuric acid[J]. Electrochim. Acta 2007,53, 909-914.
    [13]M.E. Azhar, M. Traisnel, B. Mernari, L. Gengembrec, F. Bentiss, M. Lagrenee, Electrochemical and XPS studies of 2,5-bis(n-pyridyl)-1,3,4-thiadiazoles adsorption on mild steel in perchloric acid solution[J]. Appl. Surf. Sci.2002,185,197-205.
    [14]F. Bentiss, M. Lebrini, M. Lagrenee, M. Traisnel, A. Elfarouk, H. Vezin, The influence of some new 2,5-disubstituted 1,3,4-thiadiazoles on thecorrosion behaviour of mild steel in 1M HCl solution:AC impedance study and theoretical approach[J]. Electrochim. Acta 2007,52, 6865-6872.
    [15]M. Lebrini, M. Lagrenee, M. Traisnel, L. Gengembre, H. Vezin. F. Bentiss. Enhanced corrosion resistance of mild steel in normal sulfuric acid medium by 2,5-bis(n-thienyl)-1,3,4-thiadiazoles: Electrochemical, X-ray photoelectron spectroscopy and theoretical studies[J]. Appl. Surf. Sci. 2007,253,9267-9276.
    [16]F. Bentiss, M. Lebrini, H. Vezin, F. Chai, M. Traisnel, M. Lagrenee, Enhanced corrosion resistance of carbon steel in normal sulfuric acid medium by some macrocyclic polyether compounds containing a 1,3,4-thiadiazole moiety:AC impedance and computational studies[J]. Corros. Sci.51 (2009) 2165-2173.
    [17]R. Solmaza, G. Kardas, B. Yazici, M. Erbil, Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel inhydrochloric acid media[J]. Colloids Surf. A 2008,312.7-17.
    [18]R. Solmaza, G. Kardas, M. Culhab, B. Yazici, M. Erbil, Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media[J]. Electrochim. Acta 2008,53,5941-5952.
    [19]M. Yadav, D. Sharma, Inhibition of corrosion of copper by 2,5-dimercapto-1,3,4-thiadiazole in 3.5% NaCl solution[J]. J. (indian) Chemi. Technol.2010,17,95-101.
    [20]T.T. Qin, J. Li, H.Q. Luo, M. Li, N.B. Li, Corrosion inhibition of copper by 2,5-dimercapto-1, 3,4-thiadiazole monolayer in acidic solution[J]. Corros. Sci.2011,53,1072-1078.
    [21]A.K. Singh, M.A. Quraishi, Investigation of the effect of disulfiram on corrosion of mild steel in hydrochloric acid solution[J]. Corros. Sci.2011,53,1288-1297.
    [22]D.K. Yadav, B. Maiti, M.A. Quraishi, Electrochemical and quantum chemical studies of 3, 4-dihydropyrimidin-2-(1H)-ones as corrosion inhibitors for mild steel in hydrochloric acid solution[J]. Corros. Sci.2010,52,3586-3598.
    [23]K.F. Khaled, M.A. Amin, Corrosion monitoring of mild steel in sulphuric acid solutions in presence of some thiazole derivatives-Molecular dynamics, chemical and electrochemical studies[J]. Corros. Sci.2009,51,1964-1975.
    [24]M.G. Hosseini, M. Ehteshamzadeh. T. Shahrabi. Protection of mild steel corrosion with Schiff bases in 0.5 M H2SO4 solution[J]. Electrochim.Acta 2007,52,3680-3685.
    [25]M.A. Migahed, I.F. Nassar, Corrosion inhibition of Tubing steel during acidization of oil and gas wells[J]. Electrochim. Acta 2008,53,2877-2882.
    [26]K. Tebbji, K.B. Hammouti, H. Oudda, A. Ramdani, M. Benkadour, The inhibitive effect of bipyrazolic derivatives on the corrosion of steel in hydrochloric acid solution[J]. Appl. Surf. Sci. 2005,252,1378-1385.
    [27]M. Bouklah, A. Ouassini, B. Hammouti, A. El Idrissi, Corrosion inhibition of steel in sulphuric acid by pyrrolidine derivatives[J].Appl. Surf. Sci.2006,252,2178-2185.
    [28]M. Behpour, S.M. Ghoreishi, N. Soltani, M. Salavati-Niasari, The inhibitive effect of some bis-N,S-bidentate Schiff bases on corrosion behaviour of 304 stainless steel in hydrochloric acid solution[J]. Corros. Sci.2009,51,1073-1082.
    [29]B. El Mehdi, B. Mernari, M. Traisnel, F. Bentiss, M. Lagrenee. Synthesis and comparative study of the inhibitive effect of some new triazole derivatives towards corrosion of mild steel in hydrochloric acid solution[J]. Mater. Chem. Phys.2002,77,489-496.
    [30]W.J. Lorenz, F. Mansfeld. The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid Part Ⅰ. Weight loss, polarization, EIS, PZC, EDX and SEM studies[J]. Corros. Sci.1981,21,647-672.
    [31]H.J.W. Lenderink, M.V.D. Linden, J.H.W. DeWit, Corrosion of aluminium in acidic and neutral solutions[J]. Electrochim.Acta 1993,38,1989-1992.
    [32]M. Lebrini, M. Lagrenee, H. Vezin, M. Traisnel, F. Bentiss, Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds[J]. Corros. Sci.2007,49,2254-2269.
    [33]P. Li, J.Y. Li, K.L. Tan, J.Y. Lee, Electrochemical impedance and X-ray photoelectron spectroscopic studies of the inhibition of mild steel corrosion in acids by cyclohexylamine[J]. Electrochim.Acta 1997,42,605-615.
    [34]D.A. Lopez, S.N. Simison, S.R. Sanchez, The influence of steel microstructure on CO2 corrosion EIS studies on the inhibition efficiency of benzimidazole[J]. Electrochim. Acta 2003, 48,845-854.
    [35]M.A. Amin. M. M. Ibrahim. Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative[J]. Corros. Sci.2011,53,873-885.
    [36]A.K. Singh, M.A. Quraishi, The effect of some bis-thiadiazole derivatives on the corrosion of mild steel in hydrochloric acid[J]. Corros. Sci.2010,52,1373-1385.
    [37]E.M. Sherif, Su-Moon Park, Effects of 1,4-naphthoquinone on aluminum corrosion in 0.5 M sodium chloride solutions[J]. Electrochim. Acta 2006,51,1313-1321.
    [38]J.R. Macdonald, The inhibition of low carbon steel corrosion in hydrochloricacid solutions by succinic acid:Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies[J]. Electroanal. Chem.1987,223,25-50.
    [39]A.A. Hermas, M.S. Morad, M.H. Wahdan, Effect of PgTPhPBr on the electrochemical and corrosion behaviour of 304 stainless steel in H2SO4 solution[J]. Appl. Electrochem.2004,34, 95-102.
    [40]T. Poornima, N. Jagannatha, A.N. Shetty, Portugaliae, Studies on corrosion of annealed and aged 18 Ni 250 grade maraging steel in sulphuric acid medium[J]. Electrochim. Acta 2010,28, 173-188.
    [41]M.A. Amin, S. S. Abd El-Rehim, E.E.F. El-Sherbini, R.S. Bayoumi, The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid:Part Ⅰ. Weight loss, polarization, EIS, PZC, EDX and SEM studies[J]. Electrochim. Acta 2007,52,3588-3600.
    [42]M.S. Morad, Effect of sulfur-containing amino acids on the corrosion of mild steel in sulfide-polluted sulfuric acid solutions[J]. Appl. Electrochem.2007,37,1191-1200.
    [43]H. Ma, X.L. Cheng, G. Li, S.H. Chen, Z.L. Quan, S.Y. Zhao, L. Niu, The influence of hydrogen sulfide on corrosion of iron under different conditions[J]. Corros. Sci.2000,42,1669-1683.
    [44]P. Bommersbach, C. Alemany-Dumont, J.P. Millet, B. Normand, Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods[J]. Eletrochim. Acta 2005,51,1076-1084.
    [45]T.V. Schaftinghen, C. LePen, H. Terryn, F. Horzenberger, Investigation of the barrier properties of silanes on cold rolled steel[J]. Electrochim. Acta 2004,49,2997-3004.
    [46]J.O'M. Bockris, A.K.N. Reddy, Modern Electrochemistry, Plenum Press, New York,1972. pp.756.
    [47]F. Bentiss, M. Traisnel, H. Vezin, H.F. Hildebrand, M. Lagrenee, 2,5-Bis(4-dimethylaminophenyl)-1,3,4-oxadiazole and 2,5-bis(4-dimethylaminophenyl)-1,3,4-thiadiazole as corrosion inhibitors for mild steel in acidic media[J]. Corros. Sci.2004,46,2781-2792.
    [48]L.b. Tang, G.N. Mu, G.H. Liu. The effect of neutral red on the corrosion inhibition of cold rolled steel in 1.0 M hydrochloric acid[J].Corros. Sci.2003,45,2251-2262.
    [49]I. Singh, M. Singh, Effect of metallic cations on the corrosion and the hydrogen absorption by cold-rolled mild steel in inhibited sulfuric acid[J]. Corrosion 1987,43,425-428.
    [50]X.H. Li, S.D. Deng, H. Fu, Inhibition by tetradecylpyridinium bromide of the corrosion of aluminium in hydrochloric acid solution[J]. Corrosion Science 2011,53,1529-1536.
    [51]A.K. Singh, M.A. Quraishi. Effect of Cefazolin on the corrosion of mild steel in HC1 solution[J]. Corros. Sci.2010,52,152-160.
    [52]1. Sekine, Y. Hirakawa, Effect of 1-hydroxyethylidene-1,1-diphosphonic acid on the corrosion of SS41 steel in 0.3% sodium chloride solution[J]. Corrosion 1986,42,272-276.
    [53]P. Hohenberg, W. Kohn, Phys. Rev. A.1964,136,864-871.
    [54]E. Cano, J.L. Polo, A. La lglesia, J.M. Bastidas, A study on the adsorption of benzotriazole on copper in hydrochloric acid using the inflection point of the isotherm[J]. Adsorption 2004,10, 219-225.
    [55]D. Do, Adsorption Analysis:Equilibria and Kinetics, Imperial College Press,1980, pp.10-60.
    [56]M.K. Gomma, M.H. Wahdan, Tween-40 as corrosion inhibitor for cold rolled steel in sulphuric acid:Weight loss study, electrochemical characterization, and AFM[J]. Mater. Chem. Phys. 1995,39,209-213.
    [57]M. Benabdellah, A. Aouniti, A. Dafali, B. Hammouti, M. Benkaddour, A. Yahyi, A. Ettouham, Investigation of the inhibitive effect of triphenyltin 2-thiophene carboxylate on corrosion of steel in 2 M H3PO4 solutions[J]. Appl. Surf. Sci.2006.252,8341-8347.
    [58]F. Bentiss, M. Bouanis, B. Mernari, M. Traisnel, H. Vezin, M. Lagrenee, Understanding the adsorption of 4H-1,2,4-triazole derivatives on mild steel surface in molar hydrochloric acid[J].Appl. Surf. Sci.2007,253,3696-3704.
    [59]X.H. Li. S.D. Deng, H. Fu, G.N. Mu, Synergistic inhibition effect of rare earth cerium(Ⅳ) ion and anionic surfactant on the corrosion of cold rolled steel in H2SO4 solution[J]. Corros. Sci. 2008,50,2635-2645.
    [60]M. Bouklah, B. Hammouti, M. Lagrenee, F. Bentiss, Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium[J]. Corros. Sci.2006,48,2831-2842.
    [61]A.S. Algaber, E.M. El-Nemma, M.M. Saleh, Effect of octylphenol polyethylene oxide on the corrosion inhibition of steel in 0.5M H2SO4. Mater. Chem. Phys.2004,86.26-32.
    [62]H. Ashassi-Sorkhabi. B. Shaabani, D. Seifzadeh, Corrosion inhibition of mild steel by some schiff basecompounds in hydrochloric acid[J]. Appl. Surf. Sci.2005,239,154-164.
    [63]A. Popova, E. Sokolova, S. Raicheva, M. Christov, AC and DC study of the temperature e(?)ect on mild steel corrosion in acid media in the presence of benzimidazole derivatives [J]. Corros. Sci.2003,45,33-58.
    [64]A. Popova, M. Christov, A. Vasilev, Inhibitive properties of quaternary ammonium bromides of N-containing heterocycles on acid mild steel corrosion. Part I:Gravimetric and voltammetric results[J]. Corros. Sci.2007,49,3276-3289.
    [65]J.M. Pope, T. Sato, E. Shoji, D.A. Buttry, T. Sotomura, N. Oyama, Spectroscopic identification of 2,5-dimercapto-1,3,4-thiadiazole and its lithium salt and dimer forms[J]. J. Power Sources 1997.68.739-742.
    [66]T. Arslan, F. Kandemirli, E.E. Ebenso,I. Love, H. Alemu, Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium[J]. Corros. Sci. 2009,51,35-47
    [67]N.O. Obi-Egbedi, I.B. Obot, Inhibitive properties, thermodynamic and quantum chemical studies of alloxazine on mild steel corrosion in H2SO4[J]. Corros. Sci.2011,53,263-275.
    [68]M. Lebrini, M. Lagrenee, H. Vezin, L. Gengembre, F. Bentiss. Electrochemical and quantum chemical studies of new thiadiazole derivatives adsorption on mild steel in normal hydrochloric acid medium[J]. Corros. Sci.2005,47,485-505.
    [1]何新快,陈白珍,张钦发.缓蚀剂的研究现状与展望[J].材料保护,2003,36,1—3.
    [2]J. Benzakour, A. Derja, Characterisation of the passive film on iron in phosphate medium by voltammetry and XPS measurements[J]. J. Electroanal. Chem.1997,437,119-124.
    [3]M. Edwards, L. Hidmi, D. Gladwell, Phosphate inhibition of soluble copper corrosion by-product release[J]. Corros. Sci.2002,44,1057-1071.
    [4]N. Etteyeb, L. Dhouibi, H. Takenouti, M.C. Alonso, E. Triki, Corrosion inhibition of carbon steel in alkaline chloride media by Na3PO4[J]. Electrochim. Acta 2007,52,7506-7512.
    [5]I.M. Zin, S.B. Lyon, V.I. Pokhmurskii, Corrosion control of galvanized steel using a phosphate/calcium ion inhibitor mixture[J]. Corros. Sci.2003,45 777-788.
    [6]Y.W. Song, D.Y. Shan, E.H. Han, Corrosion behaviors of electroless plating Ni-P coatings deposited on magnesium alloys in artificial sweat solution[J]. Electrochim. Acta 2007,53 2009-2015.
    [7]S. Rajendran, B.V. Apparo, N. Palaniswamy, Synergistic and antagonistic effects existing among polyacrylamide, phenyl phosphonate and Zn2- on the inhibition of corrosion of mild steel in a neutral aqueous environment[J]. Electrochim. Acta 1998,44,533-537.
    [8]M.S. Morad, An electrochemical study on the inhibiting action of some organic phosphonium compounds on the corrosion of mild steel in steel in aerared acid solutions[J]. Corros. Sci.2000, 42,1307-1326.
    [9]H. Amar, J. Benzakour, A. Derja, D. Villemin, B. Moreau, A corrosion inhibition study of iron by phosphonic acids in sodium chloride solution[J]. J. Electroanal. Chem.2003,558,131-139.
    [10]M. Karakus, M. hin, S. Bilgic, An investigationon on the inhibition effects of some new dithiophosphonic acid monoeshters on the corrosion of the steel in 1M HCl medium[J]. Mater. Chem. Phys.2005,92,565-571.
    [11]M. Behpour, S.M. Ghoreishi, N. Soltani, M. Salavati-Niasari, The inhibitive effect of some bis-N,S-bidentate Schiff bases on corrosion behaviour of 304 stainless steel in hydrochloric acid solution[J]. Corros. Sci.2003,45,1675-1082.
    [12]M.E. Achouri, S. Kertit, H.M. Gouttaya, B. Nciri, Y. Bensouda, L. Perez, M.R. Infante, K. Elkacemi, Corrosion inhibition of iron in 1 M HCl by some gemini surfactants in the series of alkanediyl-α,ω-bis-(dimethyl tetradecyl ammonium bromide)[J]. Prog. Org. Coat.2001,43, 267-273.
    [13]王佳,曹楚南,陈家坚.缓蚀剂阳极脱附现象的研究I.缓蚀剂阳极脱附现象[J].中国腐蚀与防护学报,1995,15,241-246.
    [14]M.J. Franklin, D.C. White, H.S. Isaacs, A study of carbon steel corrosion inhibition by phosphate ions and by an organic buffer using a scanning vibrating electrode[J]. Corros. Sci. 1992,33,251-260.
    [15]R. Solmaza, E. Altunbas, G. Kardas, Adsorption and corrosion inhibition effect of 2-((5-mercapto-1,3,4-thiadiazol-2-ylimino)methyl)phenol Schiff base on mild steel[J]. Mater. Chem. Phys.2011,125,796-801.
    [16]E. Bayola, K. Kayakirilmaz, M. Erbil, The inhibitive effect of hexamethylenetetramine on the acid corrosion of steel[J]. Mater. Chem. Phys.2007,104,74-82.
    [17]A. Paszternak, S. Stichleutner,1. Felhosi, Z. Keresztes, F. Nagy, E. Kuzmann, A. Vertes, Z. Homonnay, G. Peto, E. Kalman, Surface modification of passive iron by alkyl-phosphonic acid layers[J]. Electrochim. Acta 2007,53,337-345.
    [18]E. Abelev, D. Starosvetsky, Y. Ein-Eli, Enhanced copper surface protection in aqueous solutions containing short-chain alkanoic acid potassium salts[J]. Langmuir 2007,23,11281-11288.
    [19]A. Popova, S. Raicheva, E. Sokolova, M. Christov. Frequency dispersion of the interfacial impedance at mild steel corrosion in acid media in the presence of benzimidazole derivatives[J]. Langmuir 1996,12,2083-2089.
    [20]S. Ghareba, S. Omanovic. Interaction of 12-aminododecanoic acid with a carbon steel surface:Towards the development of'green'corrosion inhibitors[J]. Corros. Sci.2010,52, 2104-2113.
    [21]W.J. Lorenz, F. Mansfeld. Determination of corrosion rates by electrochemical DC and AC methods[J]. Corros. Sci.1981,21,647-672.
    [22]K. Aramakil, N. Hackerman, Inhibition Mechanism of Medium-Sized Polymethyleneimine[J]. J. Electrochem. Soc.1969,116,568-574.
    [23]M.K. Pavithra, T.V. Venkatesha, K. Vathsala, K.O. Nayana, Synergistic effect of halide ions on improving corrosion inhibition behavior of benzisothiozole-3-piperizine hydrochloride on mild steel in 0.5 M H2SO4 medium[J]. Corros. Sci.2010,52,3811-3819.
    [1]K. Rahmouni, M. Keddam, A. Srhiri, H. Takenouti, Corrosion of copper in 3% NaCl solution polluted by sulphide ions[J]. Corros. Sci.2005,47,3249-3266.
    [2]A. Shaban, E. kalman, J. Telegdi, An investigation of copper corrosion inhibition in chloride solutions by benzo-hydroxamic acids[J]. Electrochim. Acta 1998,43,159-163.
    [3]S.G. Chen, Y. Chen, Y.H. Lei, Y.S. Yin. Novel strategy in enhancing stability and corrosion resistance for hydrophobic functional films on copper surfaces[J]. Electrochem. Commun. 2009,11,1675-1679.
    [4]M. Metikos-Hukovic,I. Skugor, Z. Grubac, R. Babic, Complexities of corrosion behaviour of copper-nickel alloys under liquid impingement conditions in saline water[J]. Electrochim. Acta 2010,55,3123-3129.
    [5]M.M. Sung, K. Sung, C.G. Kim, S.S. Lee, Y. Kim, Self-Assembled Monolayers of Alkanethiols on Oxidized Copper Surfaces[J]. J. Phys. Chem. B 2000,104,2273-2277.
    .[6] A. Ulman, Formation and Structure of Self-Assembled Monolayers[J]. Chem. Rev.1996,96, 1533-1554.
    [7]P.E. Laibinis, G.M. Whitesides, Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air[J]. J. Am. Chem. Soc.1992,114, 9022-9028.
    [8]G.K. Jennings, RE. Laibinis, Self-assembled monolayers of alkanethiols on copper provide corrosion resistance in aqueous environments[J]. Colloids Surf. A 116 (1996) 105-114.
    [9]Y.Q. Feng, W.K Teo, K.S Siow, Z.Q. Gao, K.L. Tan, A.K, Hsieh, Corrosion Protection of Copper by a Self-Assembled Monolayer of Alkanethiol[J]. J. Electrochem. Soc.1997,144, 55-64.
    [10]D. Taneichi, R. Haneda, K. Aramaki, A novel modification of an alkanethiol self-assembled monolayer with alkylisocyanates to prepare protective films against copper corrosion[J]. Corros. Sci.2001,43,1589-1600.
    [11]M. Metikos-Hukovic, R. Babic, Z. Petrovic, D. Posavec, Copper Protection by a Self-Assembled Monolayer of Alkanethiol[J]. J. Electrochem. Soc.2007,154. C138-C143.
    [12]A.T. Lusk, G.K. Jennings, Characterization of Self-Assembled Monolayers Formed from Sodium S-Alkyl Thiosulfates on Copper[J]. Langmuir 2001,17,7830-7836.
    [13]F. Caprioli, M. Beccari, A. Martinelli, V. D. Castro, F. Decker, A multi-technique approach to the analysis of SAMs of aromatic thiols on copper[J]. Phys. Chem. Chem. Phys.2009,11, 11624-11630.
    [14]F. Caprioli, F. Decker, A.G. Marrani, M. Beccari, V.D. Castro, Copper protection by self-assembled monolayers of aromatic thiols in alkaline solutions[J]. Phys. Chem. Chem. Phys. 2010,12,9230-9238.
    [15]Y.S. Tan, M.P. Srinivasan, S.O. Pehkonen, S.M. Chooi, Effects of ring substituents on the protective properties of self-assembled benzenethiols on copper[J]. Corros. Sci.2006,48, 840-862.
    [16]Z.L. Quan, S.H. Chen, Y. Li, X.G. Cui, Adsorption behaviour of Schiff base and corrosion protection of resulting films to copper substrate[J]. Corros. Sci.2002,44,703-715.
    [17]Z.L. Quan, S.H. Chen, S.L. Li, Protection of copper corrosion by modification of self-assembled films of Schiff bases with alkanethiol[J]. Corros. Sci.2001,43,1071-1080.
    [18]D.Q. Zhang, X.M. He, Q.R. Cai, L.X. Gao, G.S. Kim, Arginine self-assembled monolayers against copper corrosion and synergistic effect of iodide ion[J]. J. Appl. Electrochem.2009,39, 1193-1198.
    [19]D.Q. Zhang, X.M. He, Q.R Cai, L.X. Gao, G.S. Kim, pH and iodide ion effect on corrosion inhibition of histidine self-assembled monolayer on copper[J]. Thin Solid Films 2010,518, 2745-2749.
    [20]D.Q. Zhang, P.H. Liu, L X Gao, H.G. Joo, K.Y. Lee, Photosensitive self-assembled membrane of cysteine against copper corrosion [J]. Mater. Lett.2011,65,1636-1638.
    [21]C. Hao, R.H. Yin, Z.Y. Wan, Q.J. Xu, G.D. Zhou, Electrochemical and photoelectrochemical study of the self-assembled monolayer phytic acid on cupronickel B30[J]. Corros. Sci.2008,50, 3527-3533.
    [22]F. Sinapi, J. Delhalle, Z, Mekhalif, XPS and electrochemical evaluation of two-dimensional organic films obtained by chemical modification of self-assembled monolayers of (3-mercaptopropyl)trimethoxysilane on copper surfaces[J]. Mater. Sci. Eng. C 2002,22, 345-353.
    [23]X.R. Ye, X.Q. Xin, J.J. Zhu, Z.L. Xue, Coordination compound films of 1-phenyl-5-mercaptotetrazole on copper surface[J]. Appl. Surf. Sci.1998,135,307-317.
    [24]L. Elkadi, B. Mernari, M. Traisnel, F. Bentiss, M. Lagrenee, The inhibition action of 3,6-bis(2-methoxyphenyl)-1.2-dihydro-1,2,4,5-tetrazine on the corrosion of mild steel in acidic media[J]. Corros. Sci.2000,42,703-719.
    [25]F. Bentis, M. Traisnel, H. Vezin, H.F. Hildebrand, M. Lagrenee, 2,5-Bis(4-dimethylaminophenyl)-1,3,4-oxadiazole and 2,5-bis(4-dimethylaminophenyl)-1,3,4-thiadiazole as corrosion inhibitors for mild steel in acidic media[J]. Corros, Sci.2004,46, 2781-2792.
    [26]D.Q. Zhang, L.X. Gao, G.D. Zhou, Inhibition of copper corrosion in aerated hydrochloric acid solution by heterocyclic compounds containing a mercapto group[J]. Corros. Sci.2004,46, 3031-3040.
    [27]K. Rahmouni, N. Hajjaji, M. Keddama, A. Srhiri, H. Takenouti, The inhibiting effect of 3-methyl 1,2,4-triazole 5-thione on corrosion of copper in 3% NaCl in presence of sulphide[J]. Electrochim. Acta 2007,52,7519-7528.
    [28]E.M. Sherif, S-M. Park,2-Amino-5-ethyl-1,3,4-thiadiazole as a corrosion inhibitor for copper in 3.0% NaCl solutions[J]. Corros. Sci.2006,48,4065-4079.
    [29]M.M. Antonijevic, M.B. Petrovic, Copper Corrosion Inhibitors. A review[J]. Int. J. Electrochem. Sci.2008,3,1-28.
    [30]T.T. Qin, J. Li, H.Q. Luo, M. Li, N.B. Li, Inhibition effects of 2,5-dimercapto-1,3, 4-thiadiazole on the corrosion of mild steel in sulphuric acid solution[J]. Corros. Sci.2011,53. 1072-1078.
    [31]C.T. Wang, S.H. Chen, H.Y. Ma, C.S. Qi, Protection of copper corrosion by carbazole and N-vinylcarbazole self-assembled films in NaCl solution[J]. J. Appl. Electrochem.2003,33, 179-186.
    [32]B.V. Appa Rao, Md. Yakub Iqbal, B. Sreedhar, Self-assembled monolayer of 2-(octadecylthio)benzothiazole for corrosion protection of copper[J]. Corros. Sci.51 (2009) 1441-1452.
    [33]B.V. Appa Raoa, Md. Yakub Iqbal, B. Sreedhar, Electrochemical and surface analytical studies of the self-assembled monolayer of 5-methoxy-2-(octadecylthio)benzimidazole in corrosion protection of copper[J]. Electrochim. Acta 2010,55,620-631.
    [34]Q.Q. Liao, Z.W. Yue, D. Yang, Z.H. Wang, Z.H. Li, H.H. Ge, Y.J. Li, Self-assembled monolayer of ammonium pyrrolidine dithiocarbamate on copper detected using electrochemical methods, surface enhanced Raman scattering and quantum chemistry calculations[J]. Thin Solid Films 2011,519,6492-6498.
    [35]T. Narukawa, Separation and determination of tellurium(Ⅳ) and -(Ⅵ) by electrothermal atomic absorption spectrometry using a tungsten furnace after collection as the 3-phenyl-5-mercapto-1.3,4-thiadiazole -2(3H)-thione-tellurium complex on cobalt(Ⅲ) oxide, [J]. J. Anal. Atom. Spectrum.1999,14,75-80.
    [36]D.L. Giokas, E.K. Paleologos, P.G. Veltsistas, M.I. Karayannis, Micellar enhanced analytical application of bismuthiol- for the spectrophotometric determination of trace copper in nutritional matrices[J]. Microchim. Acta 2002,140,81-86.
    [37]A.K. Majumdar, M.M. Chakrabartty, Spectrophotometrlc determination of palladium: Bismuthiol i as an analytical reagent[J]. Anal. Chim. Acta 1958,19,372-376.
    [38]A. Lalitha, S. Ramesh, S. Rajeswari, Surface protection of copper in acid medium by azoles and surfactants[J]. Electrochim. Acta 2005,51,47-55.
    [39]S.J. Lai, X.J. Chang, J. Mao, Y.H. Zhai, N. Lian, H. Zheng, Determination of silver ion with cadmium sulfide quantum dots modified by bismuthiol ii as fluorescence probe[J]. Anal. Chim. 2007,97,109-121.
    [40]L. Huang, J. Shen, J. Ren, Q.J. Meng, T.S. Yu, The adsorption of 2,5-dimer-capto-1,3,4-thiadiazole (DMTD) on copper surface and its binding behavior[J]. Chin. Sci. Bull.2001,46,1-4.
    [41]A. Nakajima, K. Hashimoto, T. Watanabe, Recent studies on super-hydrophobic films[J]. Monatsh. Chem.2001,132,31-41.
    [42]J.G. Yu, J.C. Yu, W.K. Ho. Z.T Jiang. Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films[J]. New J. Chem.2002,26,607-613.
    [43]G. Mengoli, M.M. Musiani, Electrochemical behaviour of copper in neutral aerated chloride solution.I. Steady-state investigation[J]. J. Appl. Electrochem.1988,18,374-383.
    [44]C.W. Yan, H.C. Lin, C.N. Cao, Investigation of inhibition of 2-mercaptobenzoxazole for copper corrosion[J]. Electrochim. Acta 2000,45,2815-2821.
    [45]G. Kear, B.D. Barker, F.C. Walsh, Electrochemical corrosion of unalloyed copper in chloride media—a critical review[J]. Corros. Sci.2004,46,109-135.
    [46]F. Mansfeld, G. Liu, H. Xiao, C. H. Tsai, B.J. Little, The corrosion behavior of copper alloys, stainless steels and titanium in seawater[J]. Corros. Sci.1994,36,2063-2095.
    [47]A.V. Benedetti, P.T.A. Sumodjo, K. Nobe, P.L. Cabot, W.G. Proud, Electrochemical studies of copper, copper-aluminium and copper-aluminium-silver alloys:impedance results in 0.5 M NaCl[J]. Electrochim. Acta 1995.40,2657-2668.
    [48]O.E. Barcia, O.R. Mattos, N. Pebere. B. Tribollet. Mass-transport study for the electrodissolution of copper in lm hydrochloric acid solution by impedance[J]. J. Electrochem. Soc.1993,140,2825-2832.
    [49]Y. Feng, W.K. Teo, K.S. Siow, K.L. Tan, A.K. Hsieh, The corrosion behaviour of copper in neutral tap water. part ⅰ:corrosion mechanisms[J]. Corros. Sci.1996,38,369-385.
    [50]H. Ma, X. Cheng, G. Li, S. Chen, Z. Quan, S. Zhao, L. Niu, The influence of hydrogen sulfide on corrosion of iron under different conditions[J]. Corros. Sci.2000,42,1669-1683.
    [51]X.Wu, H. Ma, S. Chen, Z. Xu, A. Sui, General equivalent circuts for faradic electrode processes under electrochemical reaction control[J]. J. Electrochem. Soc.1999,146,1847-1853.
    [52]S.L. Li, Y.G. Wang, S.H. Chen, R. Yu, S.B. Lei, H.Y. Ma, De X. Liu, Some aspects of quantum chemical calculations for the study of Schiff base corrosion inhibitors on copper in NaCl solutions[J]. Corros. Sci.1999,41,1769-1782.
    [53]Y. Feng, K.S. Siow, W.K. Teo, K.L. Tan, A.K. Hsieh, Corrosion mechanisms and products of copper in aqueous solutions at various pH values[J]. Corrosion 1997,53,389-398.
    [54]H.Y. Ma, C.Yang, S.H. Chen, Y.L. Jiao, S.X. Huang, D.G. Li. J.L. Luo, Electrochemical investigation of dynamic interfacial processes at 1-octadecanethiol-modified copper electrodes in halide-containing solutions[J]. Electrochim. Acta 2003,48,4277-4289.
    [55]F. Mansfeld, S.L. Jeanjaquet, M.W. Kendig, An electrochemical impedance spectroscopy study of reactions at the metal/coating interface[J]. Corros. Sci.1986,28,735-742.
    [56]A. Popova, S. Raicheva, E. Sokolova, M. Christov, Frequency dispersion of the interfacial impedance at mild steel corrosion in acid media in the presence of benzimidazole derivatives[J]. Langmuir 1996,12,2083-2089.
    [57]A. Popova, E. Sokolova, S. Raicheva, M. Christov, AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives[J]. Corros. Sci.2003,45,33-58.
    [58]H.Y. Ma, S.H. Chen, B.S. Yin, S.Y. Zhao, X.Q. Liu, Impedance spectroscopic study of corrosion inhibition of copper by surfactants in the acidic solutions[J]. Corros. Sci.2003,45, 867-882.
    [59]E.M. Cafferty, N. Hackerman, Double layer capacitance of iron and corrosion inhibition with polymethylene diamines[J]. J. Electrochem. Soc.1972,119,146-154.
    [60]F.B. Growcock, R.J. Jasinski, Time-resolved impedance spectroscopy of mild steel in concentrated hydrochloric acid[J]. J. Electrochem. Soc.1989,136,2310-2314.
    [61]J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology[J]. Chem. Rev.2005,105, 1103-1169.
    [62]R.Yamada, H. Wano, K. Uosaki, Effect of Temperature on Structure of the Self-Assembled Monolayer of Decanethiol on Au(111) Surface[J]. Langmuir 2000,16,5523-5525.
    [63]M. Sahin, S. Bilgic, H. Yilmaz, The inhibition effects of some cyclic nitrogen compounds on the corrosion of the steel in NaCl mediums[J]. Appl. Surf. Sci.2002,195,1-7.
    [64]F. Bentiss, M. Lebrini, M. Lagrenee. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric acid system[J]. Corros. Sci.2005,47,2915-2931.
    [65]A. Kosari, M. Momeni, R. Parvizi, M. Zakeri, M.H. Moayed, A. Davoodib, H. Eshghi, Theoretical and electrochemical assessment of inhibitive behavior of some thiophenol derivatives on mild steel in HCl[J]. Corros. Sci.2011,53,3058-3067.
    [66]N. Hackerman, E. Mccfferty, in:Proceedings of the 5th International Congress on Metallic Corrosion, Houston,1974, p.542-548.
    [67]G.N. Mu, X.M. Li, G.H. Liu, Synergistic inhibition between tween 60 and NaCl on the corrosion of cold rolled steel in 0.5M sulfuric acid[J]. Corros. Sci.2005,47,1932-1952.
    [68]M. Lebrini, F. Bentiss, H. Vezin, M. Lagrenee, The inhibition of mild steel corrosion in acidic solutions by 2.5-bis(4-pyridyl)-1,3.4-thiadiazole:Structure-activity correlation[J]. Corros. Sci. 2006,48,1279-1291.
    [69]F. Bentiss. B. Mernari, M. Traisnel, H. Vezin, M. Lagrenee, On the relationship between corrosion inhibiting effect and molecular structure of 2,5-bis(n-pyridyl)-1,3.4-thiadiazole derivatives in acidic media:Ac impedance and DFT studies[J]. Corros. Sci.2011,53,487-495.
    [70]F. Touharni, A. Aouniti, Y. Abed, B. Hammouti, S. Kertit, A. Ramdani, K. Elkacemi, Corrosion inhibition of armco iron in 1 M HCl media by new bipyrazolic derivatives[J]. Corros. Sci.2000, 42,929-940.
    [71]E. Cano, J.L. Polo, A. La Iglesia, J.M. Bastidas, A study on the adsorption of benzotriazole on copper in hydrochloric acid using the inflection point of the isotherm[J]. Adsorption 2004,10, 219-225.
    [72]M. Lagrenee, H. Vezin, M. Traisnel, F. Bentiss Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds [J]. Corros. Sci.2007,49,2254-2269.
    [73]F.M. Donahue, K. Nobe, Theory of organic corrosion inhibitors[J]. J. Electrochem. Soc.1965, 112,886-891.
    [74]E. Khamis, F. Bellucci, R.M. Latanision, E.S.H. El-Ashry, Acid corrosion inhibition of nickel by 2-(triphenosphoranylidene) succinic anhydride[J]. Corrosion 1991,47,677-686.
    [75]G. Moreit, G. Quartarone, A. Tassan, A. Zingales,5-amino- and 5-chloro-indole as mild steel corrosion inhibitors in 1N sulphuric acid[J]. Electrochim. Acta 1996,41,1971-1960.
    [76]L.M. Vracar, D.M. Drazic, Adsorption and corrosion inhibitive properties of some organic molecules on iron electrode in sulfuric acid[J]. Corros. Sci.2002,44,1669-1680.
    [77]Y.M. Tang, X.Y. Yang, W.Z. Yang, R. Wan, Y.Z. Chen, X.S. Yin, A preliminary investigation of corrosion inhibition of mild steel in 0.5 M H2SO4 by 2-amino-5-(n-pyridyl)-1,3,4-thiadiazole: Polarization, EIS and molecular dynamics simulations[J]. Corros. Sci.2010,52,1801-1808.
    [78]G. Quartarone, T. Bellomi, A. Zingales, Inhibition of copper corrosion by isatin in aerated 0.5 M H2SO4[J]. Corros. Sci.2003,45,715-733.
    [79]J. Fang, J. Li, Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amides[J]. Theochem 2002,593,179-185.
    [80]K.F. Khaled, Corros. Corrosion control of copper in nitric acid solutions using some amino acids-A combined experimental and theoretical study[J]. Corros. Sci.2010,52,3225-3234.
    [81]G. Gece, The use of quantum chemical methods in corrosion inhibitor studies[J]. Corros. Sci. 2008,50,2981-2992.
    [82]R.M. Issa, M.K. Awad, F.M. Atlam, Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils[J]. Appl. Surf. Sci.2008,255.2433-2441.
    [83]N.O. Obi-Egbedi, I.B. Obot, M.I. El-Khaiary, Quantum chemical investigation and statistical analysis of the relationship between corrosion inhibition efficiency and molecular structure of xanthene and its derivatives on mild steel in sulphuric acid[J]. J. Mol. Struct.2011,1002, 86-96.
    [84]M.J. Bahrami, S.M.A. Hosseini, P. Pilvar, Experimental and theoretical investigation of organic compounds as inhibitors for mild steel corrosion in sulfuric acid medium[J]. Corros. Sci.2010, 52,2793-2803.
    [1]P.E. Laibinis, G. M. Whitesides, Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air[J]. J. Am. Chem. Soc.1992,114, 9022-9028.
    [2]G. K. Jennings, P. E. Laibinis, Self-assembled monolayers of alkanethiols on copper provide corrosion resistance in aqueous environments[J]. Colloids Surf. A 1996,116,105-114.
    [3]R.G. Nuzzo, D.L. Allara, Adsorption of bifunctional organic disulfides on gold surfaces[J]. J. Am. Chem. Soc.1983,105,4481-4483.
    [4]C.D. Bain, E.B. Troughtoyt, Y. Tao, J. Evall, G. M. Whitesides, R.G. Nuzzo, Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold[J]. J. Am. Chem. Soc.1989,111,321-335.
    [5]G.E. Poirier, Characterization of Organosulfur Molecular Monolayers on Au(111) using Scanning Tunneling Microscopy [J]. Chem. Rev.1997,97,1117-1127.
    [6]K. Nozawa, H. Nishihara,K. Aramaki, Chemical modification of alkanethiol monolayers for protecting iron against corrosion[J]. Corros. Sci.1997,39,1625-1639.
    [7]H.Y. Ma, C. Yang, S.H. Chen, Y.L. Jiao, S.X. Huang, D.G. Li, J.L. Luo, Electrochemical investigation of dynamic interfacial processes at 1-octadecanethiol-modified copper electrodes in halide-containing solutions[J]. Electrochim. Acta 2003,48,4277-4289.
    [8]M.H. Mirjana, R. Babic, Z. Petrovic, D. Posavec, Copper protection by a self-assembled monolayer of alkanethiol[J]. J. Electrochem. Soc. C 2007,154,138-143.
    [9]P. Wang, C.H. Liang, B. Wu, N.B. Huang, J.L. Li, Protection of copper corrosion by modification of dodecanethiol self-assembled monolayers prepared in aqueous micellar solution[J]. Electrochim. Acta 2010 55,878-883.
    [10]F.P. Zamborini, R.M. Crooks, Corrosion passivation of gold by n-alkanethiol self-assembled monolayers:effect of chain. length and end group[J]. Langmuir 1998,14,3279-3286.
    [11]G. Moretti, F. Guidi, Inhibition of copper corrosion by isatin in aerated 0.5 M H2SO4[J]. Corros. Sci.2002,44,1995-2011.
    [12]G. Quartarone, T. Bellomi, A. Zingales, Tryptophan as copper corrosion inhibitor in 0.5 M aerated sulfuric acid[J]. Corros. Sci.2003,45,715-733.
    [13]M.R. Vogt, A. Lachenwitzer, O.M. Magnussen, R.J. Behm, In-situ STM study of the initial stages of corrosion of Cu(100) electrodes in sulfuric and hydrochloric acid solution[J]. Surf. Sci. 1998,399,49-69.
    [14]K.F. Khaled, N. Hackerman, Ortho-substituted anilines to inhibit copper corrosion in aerated 0.5 M hydrochloric acid[J]. Electrochim. Acta 49 (2004) 485-495.
    [15]D.Q. Zhang, L.X. Gao, G.D. Zhou, Inhibition of copper corrosion in aerated hydrochloric acid solution by heterocyclic compounds containing a mercapto group[J]. Appl. Surf. Sci.2004,225, 287-293.
    [16]L. Larabi, O. Benali, S.M. Mekelleche, Y. Harek,2-Mercapto-1-methylimidazole as corrosion inhibitor for copper in hydrochloric acid[J]. Appl. Surf. Sci.20062,53,1371-1378.
    [17]E.M. Sherif, R.M. Erasmus, J.D. Comins, Effects of 3-amino-1,2,4-triazole on the inhibition of copper corrosion in acidic chloride solutions[J]. J. Colloid. Interf. Sci.2007,311,144-151.
    [18]J.H. Henriquez-Romana, L. Padilla-Campos, M. Paeza, J. Zagal, M. Rubioa, C. Rangel, J. Costamagna, G. Cardenas-Jiron, The influence of aniline and its derivatives on the corrosion behavior of copper in acid solution:a theoretical approach[J]. J. Mol. Struct.2005,757,1-7.
    [19]M. M. Antonijevic, M. B. Petrovic. Copper corrosion inhibitors. A review[J]. Electrochem. Sci. 2008,3,1-28.
    [20]K.R. Henke, D. Robertson, M. Krepps, D.A. Atwood, Chemistry and stability of precipitates from aqueous solutions of 2,4.6-trimercaptotriazine, trisodium salt, nonahydrate (TMT-55) and mercury (Ⅱ) chloride[J]. Wat. Res.2000.34,3005-3010.
    [21]M. Kucharski, E. Chmiel-Szukiewicz, Reactions of Trithiocyanuric Acid with Oxiranes. Ⅰ. Synthesis of Polyetherols[J]. J. Appl. Poly. Sci.2000,76,439-445.
    [22]W. Clegg, J.E. Davies, M.J. Elsegood, E. Lamb, J.J. Longridge, J.M. Rawson, R. Snaith, A.H. Wheatley, The first structural studies on trithiocyanuric acid:the solid state structures of its HMPA adduct and its mono-lithiated HMPA complex[J]. Inorg. Chem. Commun.1998,1, 58-60.
    [23]A. Ranganathan, V.R. Pedireddi, G. Sanjayan, K.N. Ganesh, C.N.R. Raoa, Sensitive dependence of the hydrogen-bonded assemblies in cyan uric acid-4,4'-bipyridyl adducts on the solvent and the structure of the parent acid[J]. J. Mol. Strut.2000,522,87-94.
    [24]M.F. Mahon, K. C. Molloy, M.M. Venter, I. Haiduc, Unsymmetrically-substituted 2,4,6-trimercaptotriazine:supramolecular self-assembly through C=S…N=H hydrogen bonds in the crystal structures of C3N3S3H2Na·3H2O and C3N3S3H2Cu(PPh3)2[J]. Inorg. Chim. Acta 2003, 348,75-81.
    [25]P. Kopel, Z. Travmcek, R. Zboril, J. Marek, Synthesis, X-ray and Mossbauer study of iron(Ⅱ) complexes withtrithiocyanuric acid (ttcH3).The X-ray structures of [Fe(bpy)3](ttcH)·2bpy· 7H2O and [Fe(phen)3](ttcH2)(C104)·2CH3OH·2H2O[J]. Polyhedron 2004,23,2193-2202.
    [26]N. Osaka, M. Ishitsuka, T. Hiaki, Infrared reflection absorption spectroscopic study of adsorption structure of self-assembled monolayer film of trithiocyanuric acid on evaporated silver film[J]. J. Mol. Strut.2009,921,144-149.
    [27]H. Rostkowska, L. Lapinski, A. Khvorostov, M.J. Nowak, UV-induced trithione →trithiol triple proton transfer in trithiocyanuric acid isolated in low-temperature matrixes[J]. J. Phys. Chem. A 2005,109,2160-2166.
    [28]D.M. Liao, Y.B. Luo, P. Yu, Z.G. Chen, Chemistry of copper trimercaptotriazine (TMT) compounds and removal of copper from copper-ammine species by TMT[J]. Appl. Organometal. Chem.2006,20,246-253.
    [29]A. Nakajima, K. Hashimoto, T. Watanabe, (Invited review) Recent studies on super-hydrophobic films[J]. J. Monatshefte fur Chemie 2001,132,31-41.
    [30]J.G. Yu, J. C. Yu, W.K. Ho, Z.T Jiang, Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films[J]. New J. Chem.,2002,26,607-613.
    [31]R. Hofer, M. Textor, N.D. Spencer, Alkyl Phosphate Monolayers, self-assembled from aqueous solution onto metal oxide surfaces[J]. Langmuir 2001,17,4014-4020.
    [32]M. Itagaki, M. Tagaki, T. Mori, K. Watanabe, Active dissolution mechanisms of copper in acidic solutions containing sodium fluoride[J]. Corros. Sci.1996,38,601-610.
    [33]E.M. Sherif, S.M. Park, Inhibition of copper corrosion in acidic pickling solutions by N-phenyl-1,4-phenylenediamine[J]. Electrochim. Acta 2006,51,4665-4673.
    [34]F.K. Crundwell, The anodic dissolution of copper in hydrochloric acid solutions[J]. Electrochim. Acta 1992,37,2707-2714.
    [35]M. Saremi, M. Yeganeh, Corrosion behavior of copper thin films deposited by EB-PVD technique on thermally grown silicon dioxide and glass in hydrochloric acid media[J]. Mater. Chem. Phys.2010,123,456-462.
    [36]M.A. Amin, K.F. Khaled, Copper corrosion inhibition in O2-saturated H2SO4 solutions[J]. Corros. Sci.2010,52,1194-1204.
    [37]G. Quartarone, M. Battilana, L. Bonaldo, T. Tortato, Investigation of the inhibition effect of indole-3-carboxylic acid on the copper corrosion in 0.5 M H2SO4[J]. Corros. Sci.2008,50, 3467-3474.
    [38]D.Q. Zhang, Q.R. Cai, L.X. Gao, K.Y. Lee, Effect of serine, threonine and glutamic acid on the corrosion of copper in aerated hydrochloric acid solution[J]. Corros. Sci.2008,50,3615-3621.
    [39]W.J. Guo, S.H. Chen, H.Y. Ma, A study of the inhibiton of copper corrosion by triethyl phosphate and triphenyl phosphate self-assembled monolayers[J]. J. Serb. Chem. Soc.2006,71, 167-175.
    [40]M. Lebrini, M. Lagrenee, H. Vezin, M. Traisnel, F. Bentiss, Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds[J]. Corros. Sci.2007,49,2254-2269.
    [41]M. Behpour, S.M. Ghoreishi, M. Salavati-Niasari, B. Ebrahimi, Evaluating two new synthesized S-N Schiff bases on the corrosion of copper in 15% hydrochloric acid[J]. Mater. Chem. Phys.2008,107,153-157.
    [42]T.M. Nahir, E.F. Bowden, Impedance spectroscopy of electroinactive thiolate films adsorbed on gold[J]. Electrochim. Acta 1994,39,2347-2352.
    [43]B.V. AppaRao, M. YakubIqbal, B. Sreedhar, Self-assembled monolayer of 2-(octadecylthio)benzothiazole for corrosion protection of copper[J]. Corros. Sci.2009,51, 1441-1452.
    [44]E. Abelev, D. Starosvetsky, Y. Ein-Eli, Enhanced Copper Surface Protection in aqueous solutions containing short-chain alkanoic acid potassium salts, Langmuir 2007,23, 11281-11288.
    [45]H.Y. Ma, S.H. Chen, B.S. Yin, S.Y. Zhao, X.Q. Liu, Impedance spectroscopic study of corrosion inhibition of copper by surfactants in the acidic solutions[J]. Corros. Sci.2003,45, 867-882.
    [46]A. Popova, S. Raicheva, E. Sokolova, M. Christov, Frequency Dispersion of the interfacial impedance at mild steel corrosion in acid media in the presence of benzimidazole derivatives[J]. Langmuir 1996,12,2083-2089.
    [47]H. Ma, X.L. Cheng, G. Li, S.H. Chen, Z.L. Quan, S.Y. Zhao, L. Niu, The influence of hydrogen sulfide on corrosion of iron under different conditions[J]. Corros. Sci.2000,42,1669-1683.
    [48]W.J. Lorenz, F. Mansfeld, Determination of corrosion rates by electrochemical DC and AC methods[J]. Corros. Sci.1981.21,647-672.
    [49]H.F. Ma, T. Song, H. Sun, X. Li, Experimental and theoretical elucidation on the inhibition mechanism of 1-methyl-5-mercapto-1,2,3.4-tetrazole self-assembled films on corrosion of iron in 0.5 M H2SO4 Solutions[J]. Thin Solid Films 2008,516,1020-1024.
    [50]A.V. Benedetti, P.T.A. Sumodjo, K. Nobe, P.L. Cabot, W.G. Proud, Electrochemical studies of copper, copper-aluminium and copper-aluminium-silver alloys:impedance results in 0.5M NaCl[J]. Electrochim. Acta 1995,40,2657-2668.
    [51]L. Elkadi, B. Mernari, M. Traisnel, F. Bentiss, M. Lagrenee, The inhibition action of 3,6-bis(2-methoxyphenyl)-1.2-dihydro-1,2,4,5-tetrazine on the corrosion of mild steel in acidic media[J]. Corros. Sci.2000,42,703-719.
    [52]G.N. Mu, X.M Li, G.H. Liu, Synergistic inhibition between tween60 and NaCl on the corrosion of cold rolled steel in 0.5 M sulfuric acid[J]. Corros. Sci.2005,47,1932-1952.
    [53]F.M. Donahue, K. Nobe, Theory of organic corrosion inhibitors[J]. J. Electrochem. Soc. 1965,112,886-891.
    [54]R.M. Issa, M.K. Awad, F.M. Atlam, Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils[J]. Appl. Surf. Sci.2008,255,2433-2441.
    [55]N.O. Obi-Egbedi, I.B. Obot, Mohammad I. El-Khaiary, Quantum chemical investigation and statistical analysis of the relationship between corrosion inhibition efficiency and molecular structure of xanthene and its derivatives on mild steel in sulphuric acid[J]. J. Mol. Struct.2011, 1002,86-96
    [56]N. Khalil, Quantum chemical approach of corrosion inhibition [J]. Electrochim. Acta 48 (2003) 2635-2640.
    [57]M. Lebrini, M. Lagrenee, H. Vezin, M. Traisnel, F. Bentiss, Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds[J]. Corros. Sci.49 (2007) 2254-2269.
    [1]H. Rostkowska, L. Lapinski, A. Khvorostov, M.J. Nowak, UV-induced trithione →trithiol triple proton transfer in trithiocyanuric acid isolated in low-temperature matrixes[J]. J. Phys. Chem. A.2005,109,2160-2166.
    [2]Henke, A.R. Hutchison, M.K. Krepps, S. Parkin, D.A. Atwood, Chemistry of 2,4,6-trimercapto-1,3,5-triazine (TMT):Acid dissociation constants and group 2 complexes[J]. Inorg. Chem.2001,40,4443-4447.
    [3]D.M. Liao, Y.B. Luo, P. Yu, Z.G. Chen, Chemistry of copper trimercaptotriazine (TMT) compounds and removal of copper from copper-ammine species by TMT[J]. Appl. Organometal. Chem.2006,20,246-253.
    [4]A. Ranganathan, V.R. Pedireddi, G. Sanjayan, K.N. Ganesh, C.N.R. Raoa, Sensitive dependence of the hydrogen-bonded assemblies in cyanuric acid-4,4'-bipyridyl adducts on the solvent and thestructure of the parent acid[J]. J. Mol. Struct.2000,522,87-94.
    [5]J.G. Yu, J. C. Yu, W.K. Ho, Z.T Jiang, effects of calcinatio'n temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films[J]. New J. Chem.2002,26,607-613.
    [6]G. Kear, B.D. Barker, F.C. Walsh, Electrochemical corrosion of unalloyed copper in chloride media—a critical review[J]. Corros. Sci.2004,46,109-135.
    [7]D. Starosvetsky, O. Khaselev, M. Auinat, Y. Ein-Eli, Initiation of copper dissolution in sodium chloride electrolytes[J]. Electrochim. Acta 2006,51,5660-5668.
    [8]N. Osaka, M. Ishitsuka, T. Hiaki, Infrared reflection absorption spectroscopic study of adsorption structure of self-assembled monolayer film of trithiocyanuric acid on evaporated silver film[J]. J. Mol. Strut.2009,921,144-149.
    [9]S.J. Yuan, S.O. Pehkonen, B. Liang, Y.P. Ting, K.G. Neon, E.T. Kang, Poly(1-vinylimidazole) formation on copper surfaces via surface-initiated graft polymerization for corrosion protection[J]. Corros. Sci.2010,52,1958-1968.
    [10]J.R. Bailey, M.J. Hatfield, K.R. Henke, M.K. Krepps, J.L. Morris, T. Otieno, K.D. Simonetti, E.A. Wall, D.A. Atwood, Transition metal complexes of 2,4,6-trimercapto-1,3,5-triazine (TMT): potential precursors to nanoparticulate metal sulfides[J]. J. Organomet. Chem.2001,623, 185-190.
    [11]K.R. Henke, D. Robertson, M.K. Krepps, D.A. Atwood, Chemistry and stability of precipitates fromaqueous solutions of 2,4,6-trimercaptotriazine,trisodium salt, nonahydrate (TMT-55) and mercury (Ⅱ) chloride[J]. Wat. Res.2000,34,3005-3013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700