柑桔柠檬苦素、诺米林、吖啶酮的检测及相关含量与生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以胡柚(C.changshanensis)、柚(C.grandis)、温州蜜柑(C.unshiu)和椪柑(C.reticulata)的果实、根、枝以及叶片等不同器官和组织为试验材料,改进并建立了柠檬苦素类化合物和吖啶酮生物碱的检测与提取方法,研究了不同柑桔的不同发育阶段、不同器官和组织中柠檬苦素和诺米林的含量变化,检测了不同柑桔果实和根粗提物的抗氧化活性及柚果实囊衣柠檬苦素和诺米林粗结晶的抗氧化和抗菌活性。主要结果如下:
     建立了一个简单、方便、高效的柑桔柠檬苦素和诺米林检测提取方法。TLC与HPLC两种方法相结合可有效地对柑桔柠檬苦素和诺米林进行定性和定量检测。HPLC的检测体系为:检测波长210nm,色谱柱为C_(18)柱,甲醇:乙腈:磷酸缓冲液(pH=3.5)=10:40:39作为流动相;柠檬苦素和诺米林的RSD(n=5)分别为6.48和2.90%,检测限(S/N=3)均为0.03μg/g。柑桔柠檬苦素和诺米林的提取采用二氯甲烷为提取液,50℃水浴提取60min,柠檬苦素和诺米林的回收率分别可达90.45和91.09%。
     根据9(10H)吖啶酮结构荧光特性建立的HPLC检测条件为:激发波长和发射波长分别为395和435nm,色谱柱为C_(18)柱,以去离子水(A)和甲醇(B)为流动相采用梯度洗脱的方法。该检测体系操作简单,灵敏度高,稳定性好,得到的检测限(S/N=3)为0.67ng/g,在0.25-4.00μg/mL浓度范围内RSD(n=5)为1.29-2.85%。柑桔9(10H)吖啶酮提取的优化体系采用乙醇为提取液,在频率和功率分别为26kHz和500W的条件下超声提取60min(30℃),得到9(10H)吖啶酮的回收率在97.12-101.56%范围内。
     在果实发育过程中,不同柑桔果实的油胞层、白皮层、囊衣和汁胞四种组织中柠檬苦素和诺米林的含量变化总体都呈现先上升后下降的趋势;柠檬苦素在椪柑油胞层和胡柚囊衣中的最高含量分别达到1.53和3.52mg/g,诺米林在柚油胞层和胡柚囊衣中的最高含量分别达到2.82和2.92mg/g;柚白皮层中的柠檬苦素和诺米林的含量在发育过程中保持较低的水平,始终分别低于0.09和0.08mg/g;在成熟柚果实的囊衣中,柠檬苦素和诺米林含量呈现回升的现象,含量由采前3w的0.0001和0.06mg/g分别回升到了采收时的0.42和0.51mg/g。对于柑桔不同器官的研究表明,柠檬苦素和诺米林在柑桔的根中大量积累,二者总含量高于同期的果实、叶片和枝中的含量,在椪柑的须根中柠檬苦素和诺米林的总含量达到2.56mg/g,同期果实、叶片和枝的含量分别为1.35、0.64和0.36mg/g。
     柚果实囊衣提取的柠檬苦素和诺米林粗品的抗氧化活性研究结果表明,粗品的抗氧化活性是等量Vc的10.34倍,四个品种柑桔根中柠檬苦素和诺米林粗提物的抗氧化活性是等量Vc的12.59-17.21倍。
     柚果实囊衣提取的柠檬苦素和诺米林粗结晶对细菌和霉菌生长有不同程度的抑制效应。该粗结晶对青霉和黑曲霉的抑菌圈直径分别为2.09和2.25cm(设定的对照分别为1.26和1.25cm),但对细菌抑制效应不明显,抑菌圈直径分别为1.27和1.28cm(设定的对照分别为1.27和1.26cm)。
     柑桔柠檬苦素和诺米林的含量和生物活性变化均呈现遗传、发育阶段、器官和组织的多样性。简便、稳定的柑桔9(10H)吖啶酮检测与提取体系建立,为进一步开展柑桔吖啶酮生物碱的含量和生物活性变化研究提供了一个重要的技术支持。
In the present study, we modified and established the method for determination and extraction of limonin, nomilin and acridone in different organs (fruit, root, stem and leaf) and tissues of C. changshanensis, C. grandis, C. unshiu, and C. reticulate. In addition, the contents and bioactivities such as antioxidant and antibacterial activity were evaluated for limonin and nomilin from citrus fruit or root extracts of different cultivars, developmental stages, tissues and organs, and those in the raw crystal of limonin and nomilin from segment membrane (SM) of C. grandis. The main results were as follows:
     The developed method for determination and extraction of limonin and nomilin from citrus were simple, easy-to-do, and high efficient. Both TLC and HPLC were combined for the quantification and qualification of limonin and nomilin from different citrus samples. The HPLC conditions were: detection wavelength were 210 nm; C_(18) column, methanol: acetonitrile: phosphate buffer (pH=3.5) =10:40:39 were used as the mobile phase; the relative standard deviation (RSD) for limonin and nomilin were 6.48 and 2.90% (n=5), respectively; the limit of detection (LOD) for both compounds were 0.03μg/g (S/N=3). For extraction of limonin and nomilin from citrus, methylene chloride were used as the extraction solution, after 60 min of water bath extraction at 50℃, the recoveries for limonin and nomilin were 90.45 and 91.09%, respectively.
     The HPLC detection system, which were established based on the fluorescent characteristics of 9(10H)acridone structure, included: an excitation wavelength of 395 nm and an emission wavelength of 435 nm, a gradient combination of deionized water (A) and methanol (B) were used as the elute solution. Such detection system were proved to be high sensitivity and stability, and the limit of detection (LOD) were 0.67 ng/g (S/N=3), the relative standard deviation (RSD) for the contents between 0.25-4.00μg/mL were 1.29-2.85% (n=5). The developed method for extraction and determination of acridone used ethanol as the extraction solution, after 60 min ultrasonic extraction at a frequency of 26 Hz and a power of 500 W at 30℃, the recovery of 9 (10H) acridone were between 97.12-101.56%.
     During the fruit development, there was an increase followed by a decrease for the contents of limonin and nomilin in the citrus fruit of all the four tissues studied, i.e. flavedo, albedo, SM, and juice vesicle (JV). Highest limonin contents were found in the flavedo of C. reticulat and segment membrane (SM) of C. changshanensis, which were 1.53 and 3.52 mg/g, respectively. Highest nomilin contents were found in the flavedo of C. grandis and SM of C. changshanensis, which were 2.82 and 2.92 mg/g, respectively. Both the limonin and nomilin cotents in the albedo of C. Grandis kept at low level throughout the developmental stages, which were lower than 0.09 and 0.08 mg/g, respectively. In the SM of mature C. Grandis fruit, both the limonin and nomilin increased from the 0.0001 and 0.06 mg/g at 3w before harvest to 0.42 and 0.51 mg/g at harvest. The results of study of different citrus organs showed an aboundant accumulation of both the limonin and nomilin in the ctirus root, the total amount of which were higher than their counterparts in the fruit, leaf and stem. The total amount of limonin and nomilin contents in the fibre of C. reticulate were 2.56 mg/g, while the corresponding amount in the fruit, leaf and stem of the same developmental stage were 1.35, 0.64, and 0.36 mg/g, respectively.
     Study of antioxidant activity of the raw crystal of limonin and nomilin from SM of C. grandis showed: the antioxidant capacity of limonoid raw crystal of citrus fruit was 10.34 times that of Vc; the antioxidant capacity of crude extract of citrus root was 12.59-17.21 times that of Vc.
     Different inhibition effect were found for the limonin, nomilin and acridone extract from citrus fruit or root against the growth of two bacteria and two fungus. The diameter of inhibition circle of limonin and nomilin extract against Penicillium digitatum and Aspergillus niger were 2.09 and 2.25 cm, respectively (the control were 1.26 and 1.25 cm, respectively), however, it showed no effect on the growth of Escherichia coil and Staphylococcus aureus, the diameter of inhibition circle were 1.27 and 1.28 cm, respectively (the control were 1.27 and 1.26 cm, respectively).
     The present study showed a genetic, developmental and tissue diversity of both the content and bioactivity of limonin and nomilin in citrus. The developed detection and extraction system for 9 (10H) acridone were easy-to-do and stable, which could be used for further study of content and bioactivity of acridone alkaloid in citrus.
引文
蔡护华,桥永文男.柑桔果实中柠檬苦素类化合物的研究现状与展望.植物学报,1996,38(4):328-336
    方羲明,许明仁.椪柑与柳橙果实柠檬苦素类成分之分布与降低椪柑果汁苦味之研究.科学农业,1992,40(7,8):330-332
    胡昌奇,韩建伟,赵建纲等.狭叶白鲜皮中的柠檬苦素类成分.植物学报,1989,31 (6):453-458
    田庆国,丁霄霖.甜橙种子中柠檬苦素类化合物的提取.林产化学与工业,1999,19:71-74
    Abdelgaleil SA, Hashinaga N, Akatani FM. Antifungal activity of limonoids from Khaya ivorensis. Pest Manag Sci, 2005, 61(2): 186-190
    Abdelgaleil SA, lwagawa T, Doe M, Nakatani M. Antifungal limonoids from the fruits of Khaya senegalensis. Fitoterapia, 2004, 75(6): 566-572
    Ahua KM, Ioset JR, Ransijn A, Mauel J, Mavi S. Antileishmanial and antifungal acridone derivatives from the roots of Thamnosma rhodesica. Phytochemistry, 2004, 65(7): 963-968
    Akanitapichat P, Bastow KF. The antiviral agent 5-chloro-1, 3-dihydroxyacridone interferes with assembly and maturation of herpes simplex virus. Antiviral Res, 2002, 53(2): 113-126
    Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants and the generative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90: 7915-7922
    Auzi AA, Waigh RD, Waterman PG Hartley TG RD. Acridone alkaloids from Bosistoa transversa. Phytochemistry, 1996, 42: 235-238
    Baker RA. Potential dietary benefits of citrus pectin and fibre. Food Technol, 1994, 11: 133-139
    Braddock RJ, Cadwallader KR. Citrus by-products manufacture for food use. 1992, Food technol, 46(22): 105-110
    Bandara BMR, Gunatilaka AAL, Wijerathe EMK, et al. Acridone alkaloids and coumarins from Pleiospermium alatum. Phytochemistry, 1990, 29(1): 297-301
    Bastow KF, Itoigawa M, Furukawa H, Kashiwada Y, Bori ID, Ballas LM, Lee KH. Antiproliferative actions of 7-substituted 1,3-dihydroxyacridone: possible involvement of DNA topoisomerase Ⅱ and protein kinase C as biochemical targets. Bio-org Med, 1994, 2: 1403-1411
    Baumert A, Hieke M, Groger D. N-Methylation of anthranilic acid to N-methylanthranilic acid by cell-free extracts of Ruta graveolens tissue cultures. Planta Med, 1983, 48: 258-262
    Bentley MD, Rajab MS, Alford AR, Mendel MJ. Structure-activity studies of modified citrus limonoids as antifeedants for coloradio potato beetle larvage. Leptinotarsa decemlineata Entomol. Exp, 1988, 49: 189-193
    Bentley MD, Rajab MS, Mendel M J, Alford AR. Limonoid Model insect antifeedants. J Agric Food Chem, 1990, 38: 1400-1403
    Bennett RD, Hasegawa S. Limonoids of calmondin seeds. Tetrajedrum, 1981, 37: 17-24
    Bennett RD, Hascggawa SFC. 7α-Oxygoneoted Amonoids Limonoids from the rutaceae. Phytochemistry, 1982, 21 (9): 2349-2354
    Bennett RD, Hasegawa S, Herman Z. Glucosides of acidic Limonoids in citrus. Phytochemistry, 1989, 28(10): 2777-2781
    Botterweck AAM, Verhagen H, Goldbohm RA, Kleinjans J, Brandt PA. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands cohort study. Food Chem Toxicol, 2000, 38: 599-605
    Bowen IH, Patel YN. Acridone alkaloids from Pleiospermium alatum. Phytochemistry, 1986, 25(1): 429-431
    Brano T. Grapefruit: the last decade acquisition. Fitolerapia, 2000, 71: S29-S37
    Chang SH. Ftavonoids, coumarins and acridone alkaloids from the root bark of Citrus limonia. Phytochemistry, 1990, 29(1): 351-353
    Chen JJ, Deady LW, Mackay MF. Synthesis of some acridone alkaloids and related compounds. Tetrahedron, 1997, 53(37): 12717-12728
    Cheung LM, Cbeung PCK, Ooi VEC. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chemistry, 2003, 81: 249-255
    Chun MW, Olmstead KK, Choi YS. Synthesis and biological activities of truncated acridone: Structure-activity relationship studies of cytotoxic 5-bydroxy-4-quinolone. Bioorg Med Chem Lett, 1997, 7(2): 789-792
    Dreyer DL. Citrus Bitter Principle. Ⅲ. Isolation of DeacetylNomilin and Deoxylimonin. The J Org Chem, 1965, 749-751
    Emerson. OH. The bitter principles of citrus fruit. J Am Chem Soc, 1948, 70: 545-549
    Evison FF, Rhoades DA, Junghanns KT, Kneusel R.E, Matern DGU. Differential regulation and distribution of acridone synthase in Ruta graveolens. Phytochemistry, 1998, 49(2): 403-411
    Erzar-Petri G; Csedo K; Mollmann H. Fluoreszenzmikroskopische Untersuchung uber die Lokalisierung von Acridon-alkaloiden in Geweben yon Ruta Graveolens. Planta Med, 1976, 29: 370-375
    Fujioka H, Nishiyama Y, Furukawa H, Kumada N. In vitro and in vivo activities of atalaphillinine and related acridone alkaloids against rodent malaria. Antimicrob Agents Chemother, 1989, 33(1): 6-9
    Groger D. Vorkommen und Biochemie der Acridon-Alkaloden Fortschrittsberich. Pharmazie, 1988, 43: 815-826
    Hasegawa S, Bennett RD, Verdon CP. Metabolism of limonoids via a deoxylimonoid pathway in citrus. Phytochemistry, 1980, 19: 1445-1447
    Hasegawa S, Herman Z, Orme ED. Biosynthesis of limonin in citrus: Sites and translocation. Phytochemitry, 1986, 25: 2783-2785
    Hasegawa S, Ou P, Fong CH, Herman Z, Jr CWC, Atkin DR. Changes in the limonoate A-Ring Lactone and Limonin 17-β-D-Glucopyranoside content of navel orange during fruit growth and maturation. J Agric Food Chem, 1991, 39: 262-265
    Hashinaga F. Metabolism of ~(14)C-Nomilin in yuzu fruit. Nippo Shokuhin Kogyo Cakkaishi, 1991, 38: 629-636
    Hashinaga F, Ejima H, Nagahama H, Itoo S. Limonoids in citrus fruits Ⅰ Seasonal changes of limonoid components in ponkan. Tankan, early stasuma mandarin and nastsudaidai fruits. Bull Fac Agric Kagoshima Univ, 1977, 27: 171-180
    Hashinaga F, Itoo S. Seasonal chamges of Limonoid in the component parts of severed citrus fruits. Proc Int Soc citriculure, 1983, 2: 901-905
    Hashinaga F, Hasegawa S. Limonoids in seeds of sudachi(Citrus sudachi Hort.ex Shirai). J Japan Soc Hort Sci, 1989, 58: 227-229
    Hashinaga F, Fong CF, Hasegawa S. Biosynthesis of limonoids in citrus sudachi. Agri Biol Chem, 1990, 54: 3019-3020
    Hashinaga F. Herman Z, Hasegawa S. Limonoids in seeds of yuzu (Citrus junos Sieb ex Tanaka). Nippon Shokuhin Kogyo Gakkaishi, 1990, 37: 380-382
    Herman Z, Fong CH, Ou P, Hasegawa S. Limonoid in citrus ichangensin. J Agric Food Chem, 1990, 37: 1860-1861
    Herman Z, Fong CH, Hasegawa S. Biosynthesis of limonoid glucosides in navel orange. Phytochemistry, 1991, 30(5): 1487-1488
    Herman Z, Hasegawa S, Fong CH, Ou P. Limonoid in citrus ichangensin. J Agric Food Chem, 1989, 37: 850-851
    Huang SC, Chen MT, Wu TS. Alkaloids and coumarins from stern bark of citrus grandis. Phytochemistry, 1989, 28(12): 3574-3576
    Hughes GK, Lahey FN, Price JR, Webb LJ. Alkaloids of the Australian Rutaceae. Nature, 1948, 162: 223-224
    Ishihara A, Ohtsu Y, Iwamura H. Induction of biosynthetic enzymes for avenanthramides in elicitor-treated oat leaves. Planta, 1999, 208(4): 512-518
    Ito C, Kondo Y, Rao KS, Tokuda H, Nishino H, Furukawa H. Chemical constituents of Glycosmis pentaphylta. Isolation of a novel naphthoquinone and a new acridone alkaloid. Pharm Bull, 1999, 47: 1579-1581
    Itoigawa M, Ito C, Wu TS, Enjo F, Tokuda H, Nishino H, Furukawa H. Cancer chemopreventive activity of acridone alkaloids on Epstein-Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett, 2003, 193(2): 133-138
    Junghanns KT, Kneusel RE, Baumert A, Major W. Molecular cloning and heterologous expession of acridone synthase from elicited Ruta graveolens L. cell suspension cultures. Plant Mol Biol, 1995, 27(4): 681-692
    Kanitapichat P, Lowden CT, Bastow KF. 1,3-Dihydroxyacridone derivatives as inhibitors of herpes virus replication. Antiviral Res, 2000, 45(2): 123-134
    Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M, Takemura Y, Ju-ichi M, Ito C, Furukawa H. Acridones as inducers of HL-60 cell differentiation. Leukemia Res, 1999, 23 (3): 263-269
    Karim MR, Hashinaga F. Isolation and characterization of limonoid glucosyltransferase from pummelo albedo. Food Chemistry, 2002, 76: 431-436
    Khalid SA, Waterman PC. Alkaloids from stem barks of Oricia renieri and Oricia gabonensis. Phytochemistry, 1980, 20(12): 2761-2763
    Korotkova EI, Avramchik OA, Angelov TM, Karbainov YA. Investigation of antioxidant activity and lipophilicity parameters of some preservatives. Electro chimica Acta, 2005, 51: 324-332
    Kumar A, Ellis BE. 4-Coumarate: CoA ligase gene family in Rubus idaeaus: cDNA structures, evolution and expression. Plant Mol Biol, 2003, 51(3): 327-340
    Khaw KT. Healthy aging. BMJ, 1997, 315: 1090-1096.
    Kuzovkina I, Terman I, Schneider AB. Specific accumulation and revised structures of acridone alkaloid glucosides in the tips of transformed roots of Ruta graveolens. Phytochemistry, 2004, 65: 1095-1100
    Lain LY, Haseg KT, Lawa S. Effect of citrus limonoids on glutathione S-transferase activity in mice. J Agric Food Chem, 1989, 37: 878-880
    Lam LK et al. ACS Symposium Series 1994, American Ciurus Society. Ft. Lauderdale. Florida Wada K et al. Chem Pharm Bull, 1992, 40(11): 3079-3080
    Lam YW, Wang HX, Ng TB. A robust cysteine-deficient chitinase-like antifungal protein from inner shoots of the edible chive Allium tuberosum. Biochem Biophys Res Commun, 2000, 279(1): 74-80
    Lowden CT, Bastow KF. Cell culture replication of herpes simplex virus and, or human cytomegalovirus is inhibited by 3,7-dialkoxylated, 1-hydroxyacridone derivatives. Antiviral Res, 2003, 59(3): 143-154
    Lukacin R, Schreiner S, Matern U. Transformation of acridone synthase to chalcone synthase. FEBS Lett, 2001, 508: 413-417
    Lukacin R, Springob K, Urbanke C, Ernwein C, Schroder G, Schroder J, Matern U. Native acridone synthases Ⅰ and Ⅱ from Ruta graveolens L. form homodimers. FEBS Lett, 1999, 448: 135-140
    Maier VP, Grant ER. Specinc thin-layer chromatography assay of limonin: a citrus bitter principle. J Food Scie, 1973, 38: 1244-1246
    Maier W, Baumert A, Groger D. Partial purification and characterization of S-Adenosyl-L-methionie: Anthranilic Acid N-Methyltransferase from ruta cell suspension cultures. J Plant Physiol, 1995, 145: 1-6
    Maier W, Baumert A, Schumann B, Furukawa H, Groger D. Synthesis of 1,3-dihydroxy-N-methylacridone and its conversion to rutacridone by cell-free extracts of Ruta graveolens cell cultures. Phytochemistry, 1993, 32(3): 691-698
    Maier W, Schumann B, Groger D. Biosynthesis of acridone alkaloids formation of rutacridone by cell-free extracts of Ruta graveolens cell suspension cultures. FEBS Lett, 1990, 263(2): 289-291
    Matsuda H, Yoshikawa M, linuma M. Antinociceptive and Anti-Inflammatory Activities of Limonin isolated from the Fruits of Evodea rutaecarpa var.bodinieri. Planta Med, 1998, 64(4): 339-342
    Miyake M, Ayano S, Ozaki. Limoniods in seeds of karatachi(Poncirus trifoliata). Nippon Nogeikagaku kaishi, 1991, 65: 1347-1349
    McIntosh CA, Mansell RL. Distribution of limonin during the growth and development of leaves and branches of Citrus paradise. J Agric Food Chem, 1983, 31(2): 319-325
    McIntosh CA, Mansell RL, l, Rouseff RL. Distribution of limonin in the fruit tissues of nine grapefruit cultivars. J Agric Food Chem, 1982, 30(4): 689-692
    McIntosh CA, Mansell RL. Three-Dimensional Distribution of Limonin, Limonoate A-Ring Monolactone, and Naringin in the Fruit Tissues of Three Varieties of Citrus paradise. J Agric Food Chem, 1997, 45 (8): 2876-2883
    Michel S, Gaslonde T, Tillequin F. Benzo[b]acronycine derivatives: a novel class of antitumor agents. Eur J Med Chem, 2004, 39(8): 649-655
    Minker E, Bartha C, Rozsa Z, Szendrei K, Reisch J. Antispasmogenic effect of Rutamarin and arborinine on isolated smooth Muscle organs. Planta Med, 1979, 37: 156-160
    Miller EG, Sanders APG, Couvillon AM, Binnie WH, Hasegawa S, Lam LKT. Citrus Limonoids as Inhibitors of Oral Carcinogenesis. Food Technol, 1994, 110-114
    Nakatani M, Abdelgaleil SA, Saad MM, Huang RC, Doe M, Iwagawa T. Phragmalin limonoids from Chukrasia tabularis. Phytochemistry, 2004, 65(20): 2833-2841
    Ohta H, Berhow M, Bennett RD, Hasegawa S. Limonoids in seeds of citrus hanaju. Phytochemistry, 1992, 31(11): 3905-3907
    Ou P, Hasegawa S, Herman Z, Fong CH. Limonin biosythesis in the stem of Citrus limon. Phytochemistry, 1988, 27: 115-118
    Ringali C, Spatafora C, Cali V, Simmonds MS. Antifeedant constituents from Fagara macrophylla. Fitoterapia, 2001, 72(5): 538-543
    Sawake A, Morita M, Suyakiso T, Kishine H, Ohtsubo Y, Minematsu T, Mastsubara Y, Okamoto T. Isolation and characterization of new limonoid glycosides from citrus unshile peels. Carbohychase Research, 1999, 315: 142-147
    Skaltsounis AL, Mitaku S. Acridone alkaloids. The Alkaloids: Chemistry and Biology, 2000, 54: 259-377
    Samir AM, Abdelgaleil, Matsumi D, Yoshiki M, Munehiro N. Rings B,D-seco limonoids from the leaves of Swietenia mahogany. Phytochemistry, 2006, 67(5): 452-458
    Silalahi J. Anticancer and health protective properties of citrus fruit components. Asia Pacific Journal of Clinical Nutrition, 2002, 79-84
    Springob K, LukaCin R, Ernwein C, Groning I, Matern U. Specificities of functionally expressed chalcone and acridone synthases from Ruta graveolens. FEBS J, 2000, 267: 6552-6559
    Takemura Y, Ju-ichi M, Ito C, Furukawa H, Tokuda H. Studies on the inhibitory effects of some acridone alkaloids on Epstein-Barr virus activition. Planta Med, 1995, 61: 366-368
    Vance JR, Bastow KF. Inhibition of DNA topoisomerase Ⅱ catalytic activity by the antiviral agents 7-chloro-1,3-dihydroxyacridone and 1,3,7-trihydroxyacridone. Biochem Pharma, 1999, 58(4): 703-708
    Verzar-Petri G, Csedo K, Mollmann H. Fluoreszenzmikroskopische Untersuchung uber die Lokalisierung von Acridon-alkaloiden in Geweben von Ruta Graveolens. Pianta Med, 1976, 29: 370-375
    Vinaayagum EM, Dulcie AM, Mark WR. Mtcellar electrokinetic Capillary chromatography of Limonoid glucosides from citrus seeds. J Chromatogr A, 1995, 718: 187-193
    Viola A, Mannoni P, Chanon M, Julliard M, Mehta G, Maiya BG, Muthusamy S, Sambaiah T. Phototoxicity of some novel porphyrin hybrids against the human leukemic cell line TF-1. Journal of Photochemistry and Photobiology B: Biology, 1997, 40(3): 263-272
    Watzl B. Health promoting effects of phytochemicals. Proceedings of IUFoST'96 Regional Symposium on Non-Nutritive Health Factors for Future Foods, October 10-11, 1996. Seoul: Korean Society of Food Science and Technology, 1996, 203-222
    Weisburger JH. Mechanisms of action of antioxidants as exemplified in vegetables, tomatoes and tea. Food and Chemical Toxicology. 1999, 37: 943-948
    Wolters B, Eilert U. Antimicrobial substances in callus cultures of Ruta graveolens. Planta Med, 1981, 43: 166-174
    Wu TS, Furakawa H. Acridone alkaloids Ⅶ Constituents of Citrus sinensis Osbeck var. brasiliensis Tanaka. Isolation and characterization of three new acridone alkaloids, and a new coumarin. Chem Pharm Bull, 1983, 31: 901-906
    Wu TS, Huang SC, Jong TT, Lai JS, Kuoh CS. Coumarins, acridone alkaloids and a flavone from citrus grandis. Phytochemistry, 1988, 27(2): 585-587
    Wu TS, Huang SC, Lai JS. Stem bark coumarins of Citrus grandis. Phytochemistry, 1994, 36: 217-219
    Wu TS, Huang SC, Wu PL. Buntanbismine, a bisacridone alkaloid from Citrus grandis f. buntan. Phytochemistry, 1996, 42 (1): 221-223
    Wu TS, Kuoh CS, Furakawa H. Acridone alkaloids from Severinia buxifolia. Phytochemistry, 1982, 21(1): 429-431
    Wu TS, Kuoh CS, Furukawa H. Acridone alkaloids and a coumarin from Citrus grandis. Phytochemistry, 1983, 22(6): 1493-1497
    Wu TS. A 2,2-dimethylpyranoflavonol from citrus nobilis. Phytochemistry, 1987, 26(3): 3094-3095
    Wu TS. Alkaloids and coumarins of Citrus grandis. Phytochemistry, 1988, 27(11): 3717-3718
    Wu TS. Baiyumine-A and -B, two acridone alkaloids from Citrus grandis. Phytochemistry, 1987, 26: 871-872
    Wu TS, Furakawa H, Kuoh CS, Hsu KS. Chemical constituents of Glycosmis citrifolia Structures of novel linear pyranoacridones, furoacridones, and other new acridone alkaloids. Chem Soc Perkin Trans, 1983, 1: 1681-1688
    Yamamoto N, Furukawa H, Ito Y, Yoshida S, Maeno K, Nishiyama Y. Anti-herpesvirus activity of citrusinine-Ⅰ, a new acridone alkaloid, and related compounds. Antiviral Res, 1989, 12: 21-26
    Yang MS, Wu TS, Wang CH. Citracridone-Ⅰ: A new antispasmodic from root barks of Citrus depressa. Planta Med, 1987, 53: 143-147
    Zarubaev VV, Slita AV, Krivitskaya VZ, Sirotkin AK, Kovalenko AL, Chatterjee NK. Direct antiviral effect of cycloferon (10-carboxymethyl-9-acridone) against adenovirus type 6 in vitro. Antiviral Res, 2003, 58(2): 131-137
    Zobel AM, Brown SA. Histological localization of furanocoumarins in Ruta graveolens shoots. Canadian Journal of Botany, 1989, 67: 915-921

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700