抗虫水稻对褐飞虱抗性研究及褐飞虱apterousA基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐飞虱是亚洲许多国家水稻上的重要害虫,在我国长江流域及华南流域和西南广大稻区都有分布,能远距离迁飞,繁殖力惊人,常暴发成灾。为揭示褐飞虱灾变的内在机制,必须借助于现代分子生物学手段探索其生长发育的生命特征,开展相关基因的功能研究。本文旨在通过抗虫水稻对褐飞虱生长发育的影响,探索抗虫水稻对褐飞虱的抗虫机制;同时克隆褐飞虱生长发育相关基因apterousA,分析其功能,为褐飞虱的防控提供了新的靶标基因。
     一、含Bph14或Bph15基因抗虫水稻对褐飞虱抗性的研究
     1.苗期抗虫鉴定及分蘖期蜜露量测定结果
     MH63::14, MH63::15和MH63::14&15水稻品系对褐飞虱的抗性级别均小于3,对褐飞虱表现为高抗,并且取食3种抗虫水稻的褐飞虱所分泌的蜜露量显著低于非抗性水稻上褐飞虱的蜜露量。结果表明,含抗虫基因的水稻在苗期和分蘖期对褐飞虱均有较强抗性。
     2.抗虫水稻对褐飞虱生长发育的影响
     与MH63相比,MH63::15和MH63::14&15水稻品系延长了褐飞虱若虫的发育历期,缩短了褐飞虱雌成虫的寿命,降低了褐飞虱的短翅率、雌虫比率、交配率和产卵量。结果表明,抗虫水稻不利于褐飞虱的生长发育及繁殖。
     3.抗虫水稻对褐飞虱抗生性的影响
     抗虫水稻MH63::15和MH63::14&15上累计褐飞虱若虫数和雌成虫数均显著低于非抗虫品种MH63上相应褐飞虱数量,并且褐飞虱雌成虫在抗虫分蘖期水稻上的产卵量也显著低于对照,表明抗虫水稻对褐飞虱有很好的抗生性。
     4.抗虫水稻对褐飞虱体内P450基因的表达调控
     本章节研究了取食抗虫水稻后褐飞虱体内部分P450基因的表达情况,发现取食过MH63::14&15和MH63::15抗性水稻后的褐飞虱体内CYP4C61, CYP4C62和CYP6CW1的表达量升高,CYP6CS1的表达量降低,而CYP303A1的表达量不变。结果表明,CYP4C61,CYP4C62和CYP6CW1在抗虫水稻抵抗褐飞虱的过程中发挥重要作用。
     二、褐飞虱apterouA基因的克隆及其在翅和生殖发育中的功能研究
     1.褐飞虱apterousA基因的克隆与分析
     采用PCR、RT-PCR、RACE等方法克隆了褐飞虱apterousA (NlapA)基因,并根据其cDNA序列推导出氨基酸序列,GenBank的登录号为KC978728。克隆到的褐飞虱NlapA基因cDNA序列长为3004bp,开放阅读框为58-1326bp,共编码422个氨基酸,推测蛋白的分子量为46.6kDa。ApterousA蛋白有2个LIM结构域和1个homeodomain保守结构域。
     2. NlapA在褐飞虱中的时空表达
     研究发现,NlapA基因在褐飞虱各发育时期均有表达,若虫1-5龄和成虫1天的表达量高于成虫2-8天的表达量,并且NlapA基因在褐飞虱3龄若虫中的表达量最高。此外,NlapA基因在褐飞虱若虫的各组织中也均有表达,但在翅芽中的表达量最高,是其它组织中NlapA基因表达量的2.2-9倍。
     3. NlapA RNAi后褐飞虱体内靶基因表达量下降
     根据NlapA基因序列设计3段不同dsapA,将dsapA直接注射到褐飞虱的血腔里,各处理存活率之间无明显差异。取NlapA RNAi后不同时期的褐飞虱和卵,检测NlapA的表达量,结果发现,随着NlapA RNAi时间的延长,靶基因的表达量逐渐降低,第10天时,其表达量最低,仅为对照的9%;第18天时,处理组褐飞虱卵中NlapA的表达量仅为对照的19%。
     4. NlapA RNAi导致褐飞虱翅畸形
     NlapA RNAi后褐飞虱翅出现畸形,其翅畸形率在93%以上,而对照GFP RNAi后的褐飞虱无畸形翅产生。翅畸形主要表现在以下3个方面:表型Ⅰ:褐飞虱的翅脉弯曲导致双翅不能自然合拢;表型Ⅱ:褐飞虱翅脉上的刚毛消失,翅脉变淡;表型Ⅲ:褐飞虱翅脉之间的膜质区域变薄。5. NlapA RNAi降低褐飞虱生殖力
     NlapA RNAi显著降低褐飞虱的产卵量,仅为对照产卵量的15.67-23.13%;NlapA RNAi后褐飞虱卵的孵化率为0,而对照卵孵化率为92.7%。尽管NlapA阻滞了褐飞虱卵的发育,但未影响褐飞虱卵巢的形态发育。
     综上所述,含Bph14或Bph15基因抗虫水稻不利于褐飞虱的生长发育,削弱褐飞虱生殖力;NlapA RNAi导致褐飞虱翅畸形出现,降低褐飞虱的产卵量,阻滞褐飞虱卵的发育。本研究为抗虫水稻的抗虫机制、褐飞虱翅和生殖发育基因的功能研究奠定了坚实的理论基础。
The brown planthopper (BPH), Nilaparvata lugens (Stal) are serious pests in rice fields in many areas of Asia, they are distributed mainly over the Yangtze River, South China and southwestern China. The reproduction of BPH is amazing, they also can migrate to other areas and cause further damage. To illustrate inherent mechanism of disasters caused by BPH, it is necessary to study the molecular mechanism of growth and development of BPH, by molecular biological technology. In this study, the biological effects of insect-resistant rice on BPH was investigated, and that was about to expound insect-resistant mechanism of insect-resistant varieties. Fuhthermore, we cloned N. lugens apterousA(NlapA) gene relating to growth and development, analyzed its function, and providing new genetic resources for BPH controlling.
     1. Biological effects of rice harbouring Bphl4and Bphl5on BPH
     ①The results of seedling resistance to BPH and honeydew measurement during tillering stage
     The severity scores of MH63::14, MH63::15and MH63::14&15were<3.0, which indicated that insect-resistant rice lines have a high resistance to BPH. In addition, honeydew production of BPH on those insect-resistant lines was significantly lower than that on TN1and MH63. This indicated that the resistance level of introgression lines was obviously improved during seedling and tillering stage.
     ②The biological effects of insect-resistant lines on BPH
     Compared with MH63, the development duration of BPH nymph was significantly retarded, the development duration of female was significantly decreased, and the brachyptery ratio, female ratio, copulation rate and fecundity were significantly decreased by MH63::15and MH63::14&15. This indicated that resistant rice lines were not beneficial to the growth and development of BPH.
     ③The antixenosis of resistant rice lines on BPH
     The average number of nymphs and female adults settled on resistant rice lines (MH63::15and MH63::14&15) was significantly lower than that on MH63, and the number of BPH eggs per tiller was significantly lower than MH63. This indicated that the antixenosis of resistant rice lines on BPH was high.
     ④The expression of P450gene was regulated by insect-resistant rice in BPH
     Among the five P450genes of BPH, the expression of three genes (CYP4C61, CYP4C62and CYP6CW1) was up-regulated, the expression of one gene (CYP6CS1) was down-regulated and one gene (CYP303A1) was unchanged by resistant hosts. This indicated that CYP4C61, CYP4C62and CYP6CW1were important during the insect-resistant course of resistant rice lines.
     2. Gene clone and the role of NlapA in the wing development and reproduction of BPH
     ①Cloning and sequence analysis of NlapA
     The NlapA cDNA is3004bp long and contains a unique open reading frame (ORF) spanning nucleotides58-1326bp. The polypeptide deduced from the ORF comprises422amino acides, with a calculated molecular mass of46.6kDa. The predicted protein contains two conseved LIM domains and one homeodomain.
     ②The expression of NlapA in different tissues and different periods during BPH development
     The results show that the relative expressions of NlapA was investigated in all stages of BPH, the relative expressions of NlapA during first-fifth instar nymphs and one day after BPH emergence were higher than those during two days-eight days after BPH emergence. And the relative expression of NlapA in the third instar nymphs is the highest. In addition, the relative expressions of NlapA are stable during different tissues of BPH, but the relative expression of NlapA is the highest in the wing buds of BPH. And the relative expression of NlapA in wing buds after NlapA RNAi is2.5-6times of that in other tissues.
     ③The expression of NlapA in BPH after NlapA RNAi
     In this study, we design three different dsapA according the sequence of NlapA, he results of NlapA RNAi shows that the relative expressions of NlapA in different periods during BPH development were significantly lower than those in control, the relative expression of NlapA is gradually decreasing over days after injection of dsapA, and the relative expression of NlapA in BPH is the lowest on the tenth day after injection of dsapA. Furthermore, the relative expression of NlapA in eggs after NlapA RNAi is significantly lower than control, and it is only19%of that in control.
     ④NlapA RNAi result in wing abnormality
     The abnormality rates of BPH after injection of dsapAs are above93%, however, the abnormality rates of BPH after injection of dsGFP is zero. NlapA RNAi results in wing morphological defects in BPH, the main wing defects as follows:I:The veins on the wing is crooked, and that results in BPH not to form normal folded wing; Ⅱ:No sensory bristles are existed on the forewing veins, and veins become thinner; Ⅲ:The membranous regions between veins become thinner.
     ⑤NlapA RNAi decreased the reproduction of BPH
     The fecundity of BPH after NlapA RNAi is significantly decreased by dsapA than that in control, and it is only15.67-23.13%of that in control. The emergence rate of BPH after NlapA RNAi is zero, but the emergence rate of BPH after GFP RNAi is92.7%. Although dsapA stops the development of eggs, it has no effect on the morphological characteristics of ovary.
     Taken together, the results indicated that resistant rice lines were not beneficial to the growth and development of BPH, and they slao decreased the reproduction of BPH; knockdown of NlapA expression in vivo RNAi generated phenotypic defects in the wing, decreased the number of offspring and stopped the development of eggs. This technique will provide powerful tools for functional genomics of BPH, so as to lay a solid foundation of theoretical knowledge for the study of BPH development genes.
引文
1. 彩万志,花保祯,庞雄飞等.普通昆虫学.北京:中国农业大学出版社,2001
    2. 曹骥.作物抗虫原理及应用.科学出版社,1984
    3. 陈桂华,刘小英,顾士光,汤月忠,朱彩华.褐飞虱特大发生年危害规律及减轻危害措施.上海农业科技,2007,3:108-109
    4. 陈建明,俞晓平,程家安,吕仲贤,郑许松,徐红星.不同水稻品种对褐飞虱为害的耐性和补偿作用评价.中国水稻科学,2003,17:265-269
    5. 陈健文.水稻褐飞虱抗性的遗传学研究.广州:华南农业大学,2005
    6. 陈清泉.水稻体内几种游离氨基酸与抗病虫关系的探讨.湖南农业科学,1979,2
    7. 陈若篪,程遐年,杨联民,殷向东.褐飞虱卵巢发育及其与迁飞的关系.昆虫学报,1979,22:280-288
    8. 陈忠斌,孟庆文,仇华吉.RNAi—基因沉默指南.北京:化学工业出版社,2004,45-53
    9. 程家安,孙祥良.水稻品种对褐飞虱种群增长的影响术.植物保护学报,1992,19
    10. 程遐年,植保,吴进才,马飞.褐飞虱研究与防治.中国农业出版社,2003
    11. 戴华国,吴晓毅,武淑文.褐飞虱体内保幼激素滴度变化及其与翅型分化的关系.昆虫学报,2001,44:27-32
    12. 丁锦华,都健.褐飞虱对游离氨基酸的利用.昆虫知识,1990,27:65-67
    13. 丁锦华,胡春林,傅强,何佳春,谢茂成.中国稻区常见飞虱原色图谱.浙江科学技术出版社,2012,18-19
    14. 董向丽,高希武,郑炳宗.植物次生物质诱导作用对杀虫药剂毒力影响研究.昆虫学报,1998,41:111-116
    15. 杜建光,王群,程遐年,褐飞虱.褐飞虱翅型分化的组织学研究.昆虫学报,1997,40:135-138
    16. 段立珍,汪建飞,赵建荣.比色法测定菠菜中草酸含量的条件研究.安徽 农业科学,2007,35:632-633
    17. 冯明光译.植物抗虫性的研究与应用.北京:中国农业科技出版社,1992.
    18. 韩兰芝,翟保平,戴率善,张孝羲,刘培磊.江苏丰县甜菜夜蛾田间种群虫源性质分析.生态学报,2004,24,7:1388-1398
    19. 侯小燕.蝎蛉科昆虫雌性生殖系统比较研究:西北农林科技大学,2007
    20. 华红霞,邓望喜.褐飞虱不同地理种群生物学特性的比较.昆虫学报,1997,40:147-152
    21. 黄凤宽,韦素美,罗善昱,黄所生,李青.稻褐飞虱不同生物型翅型分化的遗传研究.华中农业大学学报,2003,22:549-552
    22. 黄富,潘学贤,阴国大.水稻品种对褐稻虱抗性机制研究概况.昆虫知识,1990,4:242-245
    23. 李国清,顾正远.水稻品种南京14号对褐飞虱抗性的研究:Ⅰ.应用生命表技术评价.南京农业大学学报,1994,17:131-133
    24. 李进波,夏明元,戚华雄,何光存,万丙良,查中萍.水稻抗褐飞虱基因Bphl4和Bph15的分子标记辅助选择.中国农业科学,2006,39:2132-2137
    25.李容柏,秦学毅,韦素美,黄凤宽,李青,罗善昱.普通野生稻抗源94-42-51对稻褐飞虱的抗性评价及其遗传研究.中国水稻科学,2002,16:115-119
    26.李汝铎.温度对褐飞虱种群生长的影响.植物保护学报,1984,11:101-108
    27. 李友荣,侯小华,魏子生.湘早籼19号的选育.湖南农业科学,1995,2,19
    28. 林炎坤.常用的几种葸酮比色定糖法的比较和改进.植物生理学通讯,1989,4:53-55
    29. 刘春茂,吴荣宗.光照强度和氮肥对水稻品种抗褐稻虱的影响.华南农业大学学报,1992b,2:005
    30. 刘春茂,吴荣宗.水稻品种抗褐飞虱的遗传机制及表型稳定性研究.华南农业大学学报,1992-1:1
    31. 刘光杰,胡国文.水稻品种抗稻飞虱机理研究的最新进展.昆虫知识,1995,32:52-55
    32. 刘国庆,颜辉煌,傅强,钱前,张志涛,翟文学,朱立煌.栽培稻的紧穗野生稻抗褐飞虱主效基因的遗传定位.科学通报,2001,46:738-742
    33.刘拥海,俞乐.植物草酸的功能及其代谢调控研究进展.安徽农业科学,2006,34:3572-3573
    34. 刘宇锋,李容柏,杨朗,杨新庆,黄凤宽,韦素美,吕维莉.水稻褐飞虱抗性基因研究进展.广西农业科学,2007,38:11-15
    35. 芦芳,齐国君,秦冉冉,胡高,王政,张孝羲,程遐年,翟保平.褐飞虱卵巢发育的形态变化过程及分级标准.应用昆虫学报,201 1,48:1394-1400
    36. 吕万明.白背飞虱雌性生殖系统的构造和卵巢发育分级的初步观察.昆虫知识,1980,17:182-183
    37. 吕仲贤,Heong Kong-Luen,俞晓平,胡萃.稻株含氮量和密度对褐飞虱存活发育和生殖特性的影响.生态学报,2005,5:1838-1843
    38. 毛新余,王树森,张宏化,王月香.汕优36辐的选育及其应用.杂交水稻,1985,33-35
    39. 施秀珍,吴青君,王少丽,徐宝云,谢文,张友军.RNA干扰在昆虫中的作用机理及应用进展.生物安全学报,2012,21:229-235
    40.宋尔卫主编.RNA干扰的生物学原理与应用.北京:高等教育出版社,2005
    41. 宋雪梅,燕飞,杜立新.RNA诱导沉默复合体中的生物大分子及其装配.遗传,2006,28:761-766
    42.唐明远,罗泽民,彭忠魁.关于杂交水稻中r-氨基丁酸等氨基酸含量与抗褐飞虱的相关性.湖南农业大学学报,1979,4:003
    43.汪茂卿,吴荣宗,张良佑.光照因素对水稻品种苗期褐稻虱抗性的影响.中国水稻科学,1991,5:97-103
    44. 王健,吴振廷,张一丸,陈策香.外源激素对褐飞虱翅型分化的影响.1998,41,371-375
    45. 王荣富,张成林,邹运鼎,吕亮,程遐年.水稻品种抗性对褐飞虱和白背飞虱种群动态的影响.应用生态学报,2000,11:861-865
    46. 王霞,杜孟浩,周国鑫,程家安,娄永根.水杨酸与过氧化氢信号途径在褐 飞虱诱导的水稻挥发物释放中的作用.浙江大学学报,2007,33:15-23
    47. 王荫长.昆虫生理学.北京:中国农业大学出版社,2004
    48. 魏子生,李友荣,侯小华,吴清泉.多抗,优质,丰产,中熟早籼水稻新品种的选育.植物保护学报,1988,15:191-194
    49.吴畏,赵云龙.蟋蟀(Scapsipedus micado saussure)雌性生殖系统结构和卵子发生.上海师范大学学报,2001,30:67-71
    50. 徐秀媛,丁锦华.灰飞虱雌性生殖系统的构造和卵巢发育分级.昆虫知识,1990,27:365-366
    51. 许升全,郑哲民.昆虫生殖系统“锁钥假说”的研究及展望.昆虫知识,1999,36:117-118
    52. 许晓风,程遐年,黎志康.160个水稻重组自交系对褐飞虱抗性的遗传分析.南京农业大学学报,1999,3:253-257
    53. 杨帆,王进军.昆虫细胞色素P450与抗药性关系研究进展.四川动物,2008,27:460-463
    54. 杨琼,邱琳,罗科,曾传敏,谭庆云,涂升斌.水稻抗褐飞虱基因及其利用现状研究.种子,2012,31:61-65
    55. 杨星科.昆虫翅的起源及其假说.天津农业科学,1981,1:36-39
    56. 杨远柱,杨文才.水稻广亲和温敏不育系株1S的选育及应用.杂交水稻,2000,15:6-7
    57. 俞晓平,吕仲贤,巫国瑞,陶林勇,张志涛.褐飞虱的迁入和翅型分化规律的研究.昆虫学报,1997,40:128-134
    58. 俞晓平,巫国瑞,胡萃.水稻品种对白背飞虱耐性和抗生性的研究.植物保护学报,1990,17:327-330
    59. 袁隆平.中国的杂交水稻.杂交水稻,1986,1:8-18
    60. 曾玲,吴荣宗.水稻品种对褐稻虱的抗性.昆虫学报,1984,27:375-383
    61. 张琼秀,孙梓暄,李广宏,王方海.外源激素对褐飞虱翅型分化的影响.中山大学学报,2007,46:76-78
    62. 张宪政,苏正毂.怍物生理研究法.北京:农业出版杜,1992
    63. 张韵梅,牟吉元.棉铃虫卵巢发育的组织化学及测报分级的研究.山东农 业科学,1994,3,7-9
    64. 张增全.籼、粳稻亚种间和粳稻不同生育期对褐稻虱种群消长的影响.上海农业学报,1988,1:007
    65. 周强,徐涛,张古忍,古德祥,张文庆.虫害诱导的水稻挥发物对褐飞虱的驱避作用.昆虫学报,2003,46:739-744
    66. 朱麟,古德祥,张古忍,游金平.褐飞虱和白背飞虱在抗褐飞虱水稻品种上的行为反应.植物保护学报,2002,29,145-152
    67. 祝莉莉,祝彩磊,翁清妹,黄臻,何光存.水稻抗褐飞虱基因的研究.湖北农业科学,2004,1:19-24
    68. Abouheif E, Wray G A. Evolution of the gene network underlying wing polyphenism in Ants. Science,2002,297:249-252
    69. Alam S, Cohen M. Detection and analysis of QTLs for resistance to the brown planthopper, Nilaparvata lugens, in a doubled-haploid rice population. Theoretical and Applied Genetics,1998,97:1370-1379
    70. Allen ML, Walker III WB. Saliva of Lygus lineolaris digests double stranded ribonucleic acids. Journal of Insect Physiology,2012,58:391-396
    71. Altaratz M, Applebaum SW, Richard DS, Gilbert LI, Segal D. Regulation of juvenile hormone synthesis in wild-type and apterous mutant Drosophila. Molecular and Cellular Endocrinology,1991,81:205-216
    72. Araujo VA, Moreira J, Lino-Neto J. Morphology of the male reproductive system of the social wasp, Polistes versicolor versicolor, with phylogenetic implications. Journal of Insect Science,2010,10:1-10
    73. Athwal D, Pathak M, Bacalangco E, Pura C. Genetics of Resistance to Brown Planthoppers and Green Leafhoppers in Oryza sativa L. Crop Science,1971, 11:747-750
    74. Ayoade O, Morooka S, Tojo S. Enhancement of short wing formation and ovarian growth in the genetically defined macropterous strain of the brown planthopper, Nilaparvata lugens. Journal of Insect Physiology,1999,45: 93-100
    75. Basler K, Struhl G. Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature,1994,368:210-214
    76. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M. Control of coleopteran insect pests through RNA interference. Nature biotechnology,2007,25:1322-1326
    77. Berenbaum M. Animal-plant warfare:molecular basis for cytochrome P450-mediated natural adaptation. Molecular Biology of the Toxic Response. Taylor and Francis, Philadelphia,1999,553-571
    78. Berenbaum MR. Comparative processing of allelochemicals in the Papilionidae (Lepidoptera). Archives of Insect Biochemistry and Physiology, 1991,17:213-221
    79. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001,409: 363-366
    80. Bertuso AG, Morooka S, Tojo S. Sensitive periods for wing development and precocious metamorphosis after precocene treatment of the brown planthopper, Nilaparvata lugens. Journal of Insect Physiology,2002,48:221-229
    81. Blair SS. Mechanisms of compartment formation:evidence that non-proliferating cells do not play a critical role in defining the D/V lineage restriction in the developing wing of Drosophila. Development,1993,119: 339-351
    82. Bourgouin C, Lundgren SE, Thomas JB. apterous is a drosophila LIM domain gene required for the development of a subset of embryonic muscles. Neuron, 1992,9:549-561
    83. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry,1976,72:248-254
    84. Brattsten LB, Ahmad S. Molecular aspects of insect-plant associations. ed: Plenum Press,1986
    85. Brisson J A, Ishikawa A, Miura T. Wing development genes of the pea aphid and differential gene expression between winged and unwinged morphs. Insect Molecular Biology,2010,19:63-73
    86. Brown SJ, Mahaffey JP, Lorenzen MD, Denell RE, Mahaffey JW. Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evolution and Development,1999,1:11-15
    87. Bucher G, Scholten J, Klingler M. Parental RNAi in Tribolium (Coleoptera). Current Biology,2002,12,85-86
    88. Butler MJ. Discovery of genes with highly restricted expression patterns in the Drosophila wing disc using DNA oligonucleotide microarrays. Development, 2003,130:659-670
    89. Campbell G, Weaver T, Tomlinson A. Axis specification in the developing Drosophila appendage:the role of wingless, decapentaplegic, and the homeobox gene aristaless. Cell,1993,74:1113-1123
    90. Chen J, Cheng S, Yang L, Ying S. The ovarial development of the brown planthopper (Nilaparvata lugens Stal) and it's relation to migration. Acta Entomologica Sinica,1979,22:280-287
    91. Chen J, Zhang D, Yao Q, Zhang J, Dong X, Tian H, Zhang W. Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology,2010,19:777-786
    92. Cohen B, McGuffin ME, Pfeifle C, Segal D, Cohen SM. apterous, a gene required for imaginal disc development in Drosophila encodes a member of the LIM family of developmental regulatory proteins. Genes and Development, 1992,6:715-729
    93. Cook A, Perfect T. Determining the wing-morph of adult Nilaparvata lugens and sogatella furcifera from morphometric measurements on the fifth-instar nymphs. Entomologia Experimentalis et Applicata,1982,31:159-164
    94. Curtiss J, Heilig JS. Arrowhead encodes a LIM Homeodomain protein that distinguishes Subsets of Drosophila Imaginal Cells. Developmental Biology, 1997,190:129-141
    95. Curtiss J, Heilig JS. DeLIMiting development. Bioessays,1998,20:58-69
    96. Dawid IB, Breen JJ, Toyama R. LIM domains:multiple roles as adapters and functional modifiers in protein interactions. Trends in Genetics,1998,14: 156-162
    97. Diaz-Benjumea FJ, Cohen SM. Interaction between dorsal and ventral cells in the imaginal disc directs wing development in Drosophila. Cell,1993,75: 741-752
    98. Dong Y, Friedrich M. Nymphal RNAi:systemic RNAi mediated gene knockdown in juvenile grasshopper. BMC Biotechnology,2005,5:25
    99. Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z, He R, Zhu L, Chen R, Han B. Identification and characterization of Bphl4, a gene conferring resistance to brown planthopper in rice. Proceedings of the National Academy of Sciences, 2009,106:22163-22168
    100. Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger:short RNAs that silence gene expression. Nature Reviews Molecular Cell Biology,2003,4: 457-467
    101. Dzitoyeva S, Dimitrijevic N, Manev H. Intra-abdominal injection of double-stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system. Molecular psychiatry,2001,6:665
    102. Engel MS, Grimaldi DA. New light shed on the oldest insect. Nature,2004, 427:627-630
    103. Fabrick JA, Kanost MR, Baker JE. RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella. Journal of Insect Science,2004,4:1-9
    104. Feinberg EH Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1. Science,2003,301:1545-1547
    105. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811
    106. Freyd G, Kim SK, Horvitz HR. Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-II. Nature, 1990,344:876-879
    107. Fu Q, Zhang Z, Hu C, Lai F, Sun Z. A chemically defined diet enables continuous rearing of the brown planthopper, Nilaparvata lugens (Stal) (Homoptera:Delphacidae). Applied Entomology and Zoology,2001,36: 111-116
    108. Ghanim M, Kontsedalov S, Czosnek H. Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochemistry and Molecular Biology,2007,37:732-738
    109. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature,2000, 404:293-296
    110. Hannon GJ. RNA interference. Nature,2002,418:244-251
    111. Hemming JD, Lindroth RL. Effects of phenolic glycosides and protein on gypsy moth (Lepidoptera:Lymantriidae) and forest tent caterpillar (Lepidoptera:Lasiocampidae) performance and detoxication activities. Environmental Entomology,2000,29:1108-1115
    112. Hirabayashi H, Angeles E, Kaji R, Ogawa T, Brar D, Khush G Identification of brown planthopper resistance gene derived from O. officinalis using molecular markers in rice. Breed Science,1998,48:82
    113. Hirabayashi H, Ogawa T. Identification and utilization of DNA markers linked to genes for reistance to brown planthopper (BPH) in rice. Advances in Breeding,1999,41
    114. Ho D, Heinrichs E, Medrano F. Tolerance of the rice variety Triveni to the brown planthopper, Nilaparvata lugens. Environmental entomology,1982,11: 598-602
    115. Huang Z, He G, Shu L, Li X, Zhang Q. Identification and mapping of two brown planthopper resistance genes in rice. Theoretical and Applied Genetics, 2001,102:929-934
    116. Hughes CL, Kaufman TC. A diverse approach to arthropod development. Evolution and Development,2000a,2:6-8
    117. Hughes CL, Kaufman TC. RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus:novel roles for Hox genes in the hemipteran head. Development,2000b,127:3683-3694
    118. Hung CF, Holzmacher R, Connolly E, Berenbaum MR, Schuler MA. Conserved promoter elements in the CYP6B gene family suggest common ancestry for cytochrome P450 monooxygenases mediating furanocoumarin detoxification. Proceedings of the National Academy of Sciences,1996,93: 12200-12205
    119. Hung CF, Prapaipong H, Berenbaum MR, Schuler MA. Differential induction of cytochrome P450 transcripts in Papilio polyxenes by linear and angular furanocoumarins. Insect Biochemistry and Molecular Biology,1995,25:89-99
    120. Ishii T, Brar D, Multani D, Khush G. Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza australiensis into cultivated rice, O. sativa. Genome,1994,37:217-221
    121. Iwanaga K, Tojo S, Nagata T. Immigration of the brown planthopper, Nilaparvata lugens, exhibiting various responses to density in relation to wing morphism. Entomologia Experimentalis et Applicata,1985,38:101-108
    122. Iwanaga K, Tojo S. Comparative studies on the sensitivities to nymphal density, photoperiod and rice plant stage in two strains of the brown planthopper, Nilaparvata lugens Stal (Homoptera:Delphacidae). Japanese Journal of Applied Entomology and Zoology,1988,32:68-74
    123. Jena KK, Kim SM. Current status of brown planthopper (BPH) resistance and genetics. Rice,2010,3:161-171
    124. Jurata L, Gill G. Structure and function of LIM domains. Current Topics in Microbiology and Immunology,1998,228:75-113
    125. Kennerdell JR, Carthew RW. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell,1998, 95:1017
    126. Kiger JA, Natzle JE, Kimbrell DA, Paddy MR, Kleinhesselink K, Green MM. Tissue remodeling during maturation of the Drosophila wing. Development Biology,2007,301:178-191
    127. Klowden MJ. Physiological systems in insects, ed:Academic press,2010
    128. Koehn RK, Bayne BL. Towards a physiological and genetical understanding of the energetics of the stress response. Biological Journal of the Linnean Society, 1989,37:157-171
    129. Koyama H. Cathodoluminescence study of SiO2. Journal of Applied Physics, 1980,51:2228-2235
    130. Kusakabe S. Dispersal of the brown planthopper, Nilaparvata lugens Stal (Hemiptera:Delphacidae) in relation to its population growth. Applied Entomology and Zoology,1979,14
    131. Lakshminarayana A, Khush GS. New genes for resistance to the brown planthopper in rice. Crop Science,1977,17:96-100
    132. Li J, Chen Q, Lin Y, Jiang T, Wu G, Hua H. RNA interference in Nilaparvata lugens (Homoptera:Delphacidae) based on dsRNA ingestion. Pest Management Sscience,2011,67:852-859
    133. Li J, Chen Q, Wang L, Liu J, Shang K, Hua H. Biological effects of rice harbouring Bphl4 and Bphl5 on brown planthopper, Nilaparvata lugens. Pest Management Sscience,2011b,67:528-534
    134. Li J, Shang K, Liu J, Jiang T, Hua H. Multi-generational effects of rice harboring Bph15 on brown planthopper, Nilaparvata lugens. Pest Management Science,2013.
    135. Lindroth RL. Mammalian herbivore-plant interactions. Plant-animal Interactions.1989,163-206
    136. Liu PZ, Kaufman TC. hunchback is required for suppression of abdominal identity, and for proper germband growth and segmentation in the intermediate germband insect Oncopeltus fasciatus. Development,2004,131:1515-1527
    137. Liu S, Ding Z, Zhang C, Yang B, Liu Z. Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochemistry and Molecular Biology,2010,40:666-671
    138. Livak KG, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods,2001,25: 402-408
    139. Lundgren SE, Callahan CA, Thor S, Thomas JB. Control of neuronal pathway selection by the Drosophila LIM homeodomain gene apterous. Development, 1995,121:1769-1773
    140. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell,2002,110: 563-574
    141. Maxwell F, Jennings PR. Breeding plants resistant to insects, ed:John Wiley and Sons Ltd.,1980
    142. Milan M, Cohen SM. Temporal regulation of apterous activity during development of the Drosophila wing. Development,2000,127:3069-3078
    143. Mito T, Sarashina I, Zhang H, Iwahashi A, Okamoto H, Miyawaki K, Shinmyo Y, Ohuchi H, Noji S. Non-canonical functions of hunchback in segment patterning of the intermediate germ cricket Gryllus bimaculatus. Development, 2005,132:2069-2079
    144. Miyawaki K, Mito T, Sarashina I, Zhang H, Shinmyo Y, Ohuchi H, Noji S. Involvement of Wingless/Armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mechanisms of Development,2004,121:119-130
    145. Mutti NS, Park Y, Reese JC, Reeck GR. RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. Journal of Insect Science,2006,6:1-7
    146. Nemoto H, Ikeda R, Kaneda C. New Genes for Resistance to Brown Planthopper, Nilaparvata lugens Stal, in Rice. Gene,1989,1:3
    147. Neumann CJ, Cohen SM. Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development,1997,124:871-880
    148. Niwa N, Akimoto-Kato A, Niimi T, Tojo K, Machida R, Hayash S. Evolutionary origin of the insect wing via integration of two developmental modules. Evolution and Development,2010,12:168-176
    149. Ober KA, Jockusch EL. The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle, Tribolium castaneum. Developmental Biology,2006,294:391-405
    150. Painter RH. Insect resistance in crop plants. Soil Science 1951,72:481.
    151. Panda N, Heinrichs EA. Levels of tolerance and antibiosis in rice varieties having moderate resistance to the brown planthopper, Nilaparvata lugens. Environ Entomol,1983,12:1204-121
    152. Panda N, Khush GS. Host plant resistance to insects, ed:Cab International Wallingford, UK,1995.
    153. Parejarearn A, Lapis D, Hibino H. Reaction of rice varieties to rice ragged stunt virus (RSV) infection by three brown planthopper (BPH) biotypes. International Rice Research Newsletter,1984,9:7-8
    154. Pathak MD, Cheng CH and Fortuno ME, Resistance to Nephotettix impicticeps and Nilaparvata lugens in varieties of rice. Nature,1969,223:502-504
    155. Pfaff SL, Mendelsohn M, Stewart CL, Edlund T, Jessell TM. Requirement for LIM Homeobox Gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell,1996,84:309-320
    156. Ren N, Zhu C, Lee H and Adler P N. Gene expression during Drosophila wing morphogenesis and differentiation. Genetics,2005,171:625-638
    157. Schuler MA. The role of cytochrome P450 monooxygenases in plant-insect interactions. Plant physiology,1996,112:1411
    158. Schwarz K, Anton M, Kuhn H. Sequence determinants for the positional specificity of lipoxygenases. Advances in Experimental Medicine and Biology, 2003,507:55-60
    159. Shakesby A, Wallace I, Isaacs H, Pritchard J, Roberts D, Douglas A. A water-specific aquaporin involved in aphid osmoregulation. Insect Biochemistry and Molecular Biology,2009,39:1-10
    160. Sharma P N, Torii A, Takumi S, Mori N, Nakamura C. Marker-assisted pyramiding of brown planthopper (Nilaparvata lugens Stal) resistance genes Bphl and Bph2 on rice chromosome 12. Hereditas,2004,140:61-69
    161. Shawlot W, Behringer RR. Requirement for Liml in head-organizer function. Nature,1995,374:425-430
    162. Sheng HZ, Zhadanov AB, Mosinger JB, Fujii T, Bertuzzi S, Grinberg A, Lee EJ, Huang SP, Mahon KA, Westphal H. Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science,1996,272:1004-1007
    163. Sivakumar S, Rajagopal R, Venkatesh GR, Srivastava A, Bhatnagar RK. Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry 1 Ac. Journal of Biological Chemistry,2007,282:7312-7319
    164. Soberon M, Pardo-Lopez L, Lopez I, Gomez I, Tabashnik BE, Bravo A. Engineering modified Bt toxins to counter insect resistance. Science,2007,318: 1640-1642
    165. Sogawa K, Pathak M. Mechanisms of brown planthopper resistance in Mudgo variety of rice (Hemiptera:Delphacidae). Applied. Entomoogy and Zoology, 1970,5:145-158
    166. Strauss SY, Agrawal AA. The ecology and evolution of plant tolerance to herbivory. Trends in Ecology and Evolution,1999,14:179-185
    167. Suh JP, Yang SJ, Jeung JU, Pamplona A, Kim JJ, Lee JH, Hong HC, Yang CI, Kim YG, Jena KK. Development of elite breeding lines conferring Bphl8 gene-derived resistance to brown planthopper (BPH) by marker-assisted selection and genome-wide background analysis in japonica rice (Oryza sativa L.). Field Crops Research,2011,120:215-222
    168. Thor S, Thomas JB. The Drosophila islet gene governs axon pathfinding and neurotransmitter identity. Neuron,1997,18:397-409
    169. Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One,2009,4:e6225
    170. Timmons L, Fire A. Specific interference by ingested dsRNA. Nature,1998, 395:854-854
    171. Tomoyasu Y, Arakane Y, Kramer KJ, Denell RE. Repeated co-options of exoskeleton formation during wing-to-elytron evolution in beetles. Current Biology,2009,19:2057-2065
    172. Tomoyasu Y, Denell RE. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Development Genes and Evolution,2004,214:575-578
    173. Trauner J, Buning J. Germ-cell cluster formation in the telotrophic meroistic ovary of Tribolium castaneum (Coleoptera, Polyphaga, Tenebrionidae) and its implication on insect phylogeny. Development Genes and Evolution,2007,217: 13-27
    174. Turner C, Davy M, MacDiarmid R, Plummer K, Birch N, Newcomb R. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Molecular Biology,2006,15: 383-391
    175. Uddin K R, Baqui M A. Effects of photoperiod on the wing dimorphism of brown planthopper, Nilaparvata lugens (Stal) (Homoptera:Delphacidae). Bangladesh Journal of Entomology,1993,3:95-98
    176. Vogel A, Rodriguez C, Warnken W, Izpisua Belmonte J. Dorsal cell fate specified by chick Lmxl during vertebrate limb development. Nature,1995, 378:716-720
    177. Voinnet O. Non-cell autonomous RNA silencing. FEBS Letters,2005,579; 5858-5871
    178. Walker WB, Allen ML. RNA interference-mediated knockdown of LAP in Lygus lineolaris induces mortality in adult and pre-adult life stages. Entomologia Experimentalis etApplicata,2011,138:83-92
    179. Walker WB, Allen ML. Expression and RNA interference of salivary polygalacturonase genes in the tarnished plant bug, Lygus lineolaris. Journal of Insect Science,2010,10:173
    180. Way JC, Chalfie M. mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell,1988,54:5-16
    181. Whittaker RH, Feeny PP. Allelochemics:chemical interactions between species. Science,1971,171:757-770
    182. Whyard S, Singh AD, Wong S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochemistry and Molecular Biology,2009, 39:824-832
    183. Williams JA, Paddock SW, Carroll SB. Pattern formation in a secondary field: a hierarchy of regulatory genes subdivides the developing Drosophila wing disc into discrete subregions. Development,1993,117:571-584
    184. Winston WM, Molodowitch C, et al. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science,2002,295:2456-2459
    185. Yamada S. Dual wing-form determination mechanism in the brown planthopper, Nilaparvata lugens Stal (Homoptera:Delphacidae). Applied Entomology and Zoology,1991,26,590-592
    186. Yang H, You A, Yang Z, Zhang F, He R, Zhu L, He G. High-resolution genetic mapping at the Bph15 locus for brown planthopper resistance in rice (Oryza sativa L). Theoretical and Applied Genetics,2004,110:182-191
    187. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell,2000,101:25-34
    188. Zha W, Peng X, Chen R, Du B, Zhu L, He G. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One,2011,6:e20504
    189. Zhang B, Dai W. Ultrastructure of the spermatozoa of Cicadella viridis (Linnaeus) and its bearing on the phylogeny of Auchenorrhyncha. Micron, 2012,43:978-984
    190. Zhang Q. Strategies for developing green super rice. Proceedings of the national Academy of Sciences,2007,104:16402-16409

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700