絮凝剂溶解液制备及自动添加机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项研究得到山西省公关项目(絮凝剂配制及自动添加关键技术与装备研究051169)、阳煤集团重大科技项目(选煤厂絮凝剂自动添加系统GY0426)、西山煤电重大科技项目(絮凝剂配制装置及添加技术的研究与应用07140109200705)、太原市大学生创新基金项目(浓缩机防压耙报警装置的研究8122005)的资助。
     随着综采技术和洁净煤技术的快速发展,原煤入选量越来越大,产生的煤泥水也越来越多。为了降低企业成本,节约水资源,节约煤炭资源,如何加快煤泥水沉降实现洗水循环利用成为许多研究人员关注的课题。絮凝剂的出现促进了煤泥水处理关键工艺之一的浓缩技术发展,一定程度上提高了浓缩效率。絮凝剂本身难溶解的特点和对煤泥水絮凝沉降规律有着巨大的作用,使得如何控制其溶解添加成了制约煤泥水浓缩处理的重大难题。
     煤泥水的絮凝沉降是一个受多种因素影响的复杂的物理化学过程。首先是絮凝剂溶解效果的影响。絮凝剂是长分子链的有机物质,溶解越充分其活泼基团暴露在外面的越多,会更多地吸附煤泥水中悬浮颗粒。其次是絮凝剂的添加的影响。实践表明絮凝剂的添加要适量,过少起不到加速沉降的效果,过多不仅浪费絮凝剂,而且还可能出现压耙事故。再者是浓缩机的压耙状态检测。只有保证浓缩机运行正常,絮凝剂添加规律才能起作用,才能正常有效地处理好能够循环利用的煤泥水。这三者互相配合、协调统一才能维持浓缩池的有效作用,改善煤泥水的处理效果,为企业和社会创造效益。因此,作者提出了絮凝剂溶解液制备、絮凝剂溶解液自动添加、浓缩机运行工况监控的关键技术研究。论文分析了煤泥水的性质和影响煤泥水沉降的因素。利用现代计算流体力学FLUENT软件,对浓缩机在不同入料方式下的浓缩池内部流场进行了动态仿真,深入分析了浓缩池流场对于煤泥水沉降的影响。在此基础上又应用多相流理论对浓缩池煤泥水沉降规律进行了仿真,得出浓缩池内煤泥水沉降规律的数学模型(利用实验测得的浓缩池中煤泥水浓度分布规律对仿真数学模型进行了验证和修正,为絮凝剂自动添加控制提供了理论基础。
     论文分析研究了絮凝剂物理化学性质,提出了用溢流形成的流动水面来分散药剂和旋流器紊流场浸润药剂相结合的絮凝剂预溶解方法。利用正交实验方法对于影响絮凝剂溶解的温度、搅拌速度和搅拌时间关键因素进行了显著性研究,并给出推荐溶解条件。综合以上研究结果研制了絮凝剂溶解液制备装置。应用计算机仿真技术确定了溢流堰预溶装置结构参数,应用实验研究,验证了絮凝剂溶解液制备装置良好的溶解效果。
     絮凝剂自动添加控制采用前馈与反馈相结合的控制方法。在前馈环节研究中,提出了基于流量和浓度检测的——煤泥水干煤泥量预添加控制机理。在反馈环节研究中,提出了以浓缩池煤泥水沉降数学模型为基础的煤泥水溢流浓度的间接检测技术。这项技术可以实现浓缩池内多项指标如煤泥界面、溢流浓度、底流浓度等的检测,同时实现了这些指标测量的连续性。在控制策略中使用模糊控制策略,根据经验建立了模糊控制规则表,并应用simulink仿真技术对于模糊控制规则进行了仿真试验研究。基于前馈和反馈的絮凝剂自动添加控制系统获得国家发明专利(ZL200610102033. 2),并经山西省科技厅组织的专家鉴定,确认达到国际先进水平(061160)。
     通过对电流型压耙检测报警装置在周边轨道传动浓缩机上的失效机理分析,提出了随动压耙报警装置。通过建立压耙报警的数学模型,进行报警阈值设定。在实验中再次修正各项指标设定,取得了比较满意的结果,并获国家发明专利(ZL200610102034.7)。
     根据以上研究结果对絮凝剂溶解液制备及自动添加系统提出模块化设计方法和模块配置表。根据不同选煤厂的实际情况可实现快速方案设计。工业试验运行情况表明,基于模糊控制的絮凝剂溶解液制备、自动添加控制装置和随动压耙检测装置的分别应用和有机组合应用,可以适合于不同选煤厂的煤泥水沉降控制。对煤泥水溢流浓度的有效控制,降低生产成本,防止压耙事故的发生,提高企业的经济和社会效益,具有十分重要意义。
This study is supported by the project in Shanxi Province PR (automatically add the flocculant preparation and study of key technology and equipment 051169),Yangquan Coal Industry's major technology project (flocculant automatically adding system of washers GY0426) , Xishan Coal and Electricity Company's major technology project (research and application of flocculant preparation equipment and adding technology 07140109200705) and Taiyuan University Students innovation fund project(study on anti-pressuring rake of thickener and alarming device 8122005)
     With rapid development of the mechanized mining technology and clean coal technology, the amount of coal selection increases, resulting in more and more slime water. In order to reduce costs and save water and coal resources, many researchers concerne about how to accelerate slime water settling and water recycling. The emergence of flocculant improved one of the key process enrichment technology developments for treatment of the slime water and improved the efficiency on certain extent. Which that the characteristics of flocculant difficult to be dissolved and the significant role of flocculent about slime water settlement rules make the control of its water-soluble slime to add constraints become a major problem.
     Slime water settlement is complex physical and chemical processes which is impacted by variety factors. First, effected by flocculant dissolution. Flocculant is a long molecular chain of organic matter. The more adequate dissolved, the more active group exposed flocculant will be absorbed more suspended particles. Second, effected by flocculant adding. Practice shows that flocculant adding must be appropriate, otherwise, it would not achieve the effect of accelerating settlement and wastage and may occur pressure rake accident. Furthermore, it is impacted by pressure rake state detection. Only which ensuring the concentrator running normally, flocculant adding in order to work laws make concentrate machine has a normal settlement rules. These three parts complement each other in order to maintain the harmonization of effective role and to improve slime water treatment effects, and create benefits for enterprises and the society. Therefore, the authors propose that key technology research about preparation of flocculant dissolution and automatically add the dissolved flocculant’s liquid and thickener operation condition monitoring.
     The nature and factors impact slime water sedimentation are analyzed in this paper .Modern computational fluid dynamics software FLUENT are used to simulate the concentrated pool of internal flow field in different feeding modes and then deeply analysis the concentrated pool of water flow field for the settlement of slime water. On this basis, application of multi-phase flow theory concentrated pool of slime on the settlement of law of the simulation of water. Thesis has been concentrated pool of slime water sedimentation law mathematical model.The actual measured sedimentation law is used to optimized the mathematical model. That provides a theoretical basis for automatically flocculant adding control
     The flocculant physical and chemical properties is analyzed in this paper, and the method useing the overflow water to disperse flocculant and the cyclone turbulent field to soak flocculant is presented. Orthogonal experimental method is used to study critical factors impact of flocculant dissolution temperature and of stirring speed and stirring time. And dissolution recommends conditions is given. Based on above, the flocculant dissolving liquid preparation device is designed in this paper. And in this paper computer simulation technology is use to determine the structure parameters of the overflow pre-dissolving device. Experimental results show that the flocculant dissolving liquid preparation device has a good effect.
     The combining method of feed-forward and feedback controll is used in flocculant automatically adding controll. Flocculant adding control mechanism basing on the net amount of slime is proposed in studying on feed-forward part. Study on the feedback part, author put forward a indirect detection technique about concentration of thickener overflow which bases on the law of the of slime water. This technology can detect a number of indicators, such as the slime interface, overflow concentration, the concentration of underflow's. In the control strategy using fuzzy control strategy, based on experience building a fuzzy control rule table and the application of stimulant tool for fuzzy control rules, a computer simulation was studied. That the system of flocculant automatically adding based on feed-forward and feedback control access to national patent (ZL200610102033. 2) and Shanxi Provincial Science and Technology Department experts confirmed that it reached the international advanced level (061160).
     The failure mechanism that current-pressure rake detection alarm device is used on driving around the thickener is analyzed and the servo anti-pressure rake alarm device is proposed. Pressure rake alarm mathematical model is stablished and according model the alarm threshold is set. In the experiment author amended the target setting again and achieved satisfactory results. The device obtains the national invention patent (ZL200610102034.7).
     Based on above study the modular design method and module configuration table about the system of flocculant dissolving and automatically adding is designed in this paper. Industrial experiments shows that the fuzzy control-based flocculant dissolution fluid preparation, automatically adding controls and servo anti-pressure rake alarm can be either used by organic combination of applications or individual. The system is very significant about effective controlling overflow and reducing production costs and preventing pressure rake and improving the enterprise's economic and social benefits.
引文
[1]刘振冬.清洁能源比例上升或将主导下轮经济繁荣[N].经济参考报,2009,02,10.
    [2]张荣宽,张振.我国矿山机械行业发展状况及存在问题的思考[J].机械工业标准化与质量,2009,5:15~18.
    [3]张东晨,张明旭,陈清如.煤泥水处理中絮凝剂的应用现状及发展展望[J].选煤技术,2004,4:1~3.
    [4]叶大武.中国煤炭洗选加工现状和“十一五”期间选煤的发展[N].中国煤炭信息网,2006,12,7.
    [5]吴式瑜.中国煤炭发展三十年[J].煤炭加工与综合利用,2009,1:1~5.
    [6]高玉洁.2009年全国煤炭经济运行回顾及2010年展望[N].中国煤炭报,2010,02,09.
    [7]北京市“十一五”时期水资源保护及利用规划[N].北京市发展与改革委员会网站,2006,09,08.
    [8]MT/T810-1999,选煤厂洗水闭路循环等级[S].北京,国家标准出版社,1999.
    [9]周春生.我国选煤厂煤泥水处理技术现状与发展方向[J].甘肃科技,2005,21(2):142~143.
    [10]蒋玲.PLC控制的絮凝剂自动配制系统的研究[D].安徽理工大学,2007,4~7.
    [11]黄松.聚合物溶解装置溶解氧含量的增长趋势[J].油气田地面工程,1996,15(2):30~32.
    [12]陈红叶.云岗矿选煤厂煤泥水处理工艺浅析[J].选煤技术,2002,2:8~20
    [13]徐进,陈春雷,韩冰.国家游泳中心泳池水处理系统介绍[J].建筑科技情报,2009,1:29~40.
    [14]童朝东.东滩煤矿选煤厂药剂添加自动控制系统[J].洁净煤技术,2001,7(1): 22~24.
    [15]张峻彦,张明清.煤泥水系统自动加药方案的探索[J].煤质技术,2004,4:62~63.
    [16]王常玮,王贵新,齐冲.尾矿浓缩加药自动控制系统的应用[J].煤质技术,2004,4:20~22.
    [17]马继忠,宋鸿飞.絮凝剂自动加药系统的应用探讨[J].煤炭加工与综合利用,2003,5:26~28.
    [18]樊红宾.一次浓缩机“压耙”事故处理[J].矿山机械,2008,3:98~99.
    [19]刘勇.周边传动式耙式浓缩机压死后牵引方式的改进[J].矿山机械,2007,7:151~152.
    [20]王占楼.选矿厂“压耙”事故引起的思考[J].矿山机械,2007,10:169.
    [21]李少章,朱书全.细泥煤泥水凝聚与絮凝沉降[J].煤炭科学技术。2004,9:43~45.
    [22]王少会,徐初阳.难净化煤泥水沉降试验研究[J].安徽理工大学学报(自然科学版),2004,S1:80~87.
    [23]王世民.马兰矿选煤厂入选泥化煤的研究与实践[J].选煤技术,2001,1:26~28.
    [24]于恒江,于建军,杜士龙.科学分析煤泥水性质合理确定净水药剂制度[J].煤炭技术,2003,22(7):63~65.
    [25]胡晓东.难沉降煤泥水性质研究[J].能源技术与管理,2009,2:89~90.
    [26]崔广文,刘惠杰,朱付显.不同性质煤泥水的絮凝沉降试验研究[J].选煤技术,2009, 4:28~30.
    [27]周曦.洗选煤技术实用手册[M].北京:民族出版社,2003,8~15.
    [28]2005版新编选煤实用技术手册[M].北京:中国煤炭工业出版社,2005,236~248.
    [29]赵德春.改造选煤工艺降低煤泥水浓度[J].选煤技术,2002,3:35~36.
    [30]邓明伟.水质硬度对煤泥浮选影响的分析[J].煤炭技术,2008,10:32~34.
    [31]张凌云,董宪姝.太原选煤厂难沉降煤泥水的试验研究[J].选煤技术,2008,2:15~17.
    [32]顾夏声,黄铭荣,王占生,等.水处理工程[M].北京:清华大学出版社,1985,9.
    [33]朱希英.国外浓缩机的发展特点和趋势[J].矿山机械,1996,5:3~6.
    [34]N.L.Weiss.SME mineral processing handbook[M].NewYork:Hemisphere Publishing Coporation and McGraw Hill book Company 1985,153~160.
    [35]薛伟东.高效浓缩机应用[J].煤质技术,2002,3:15~16.
    [36]龙天渝,蔡增基.流体力学[M].北京:中国建筑工业出版社,2004:67~78.
    [37]S.V.Patankar.Numerical Heat Transfer and Fluid Flows[M].NewYork:Hemisphere Publishing Coporation and McGraw Hill book Company,1978:98~101.
    [38]Vesilind PA. Theoretical consideration: Dedign ofprototype thickeners from batch settlingtest [J]. Water & Sewage Works, 1968,115(7):302~307.
    [39]K.Versteeg,W.Malalasekera.An Introduction to Computationl Fluid Dynamics: The finite Volume Method[J]. Infoscience, New York, 1995,132:65~80.
    [40]C. J. Chen, S. Y. Jaw. Fundamenttals of Tubulence Modeling[J]. Taylor & Francis, Washington, 1998:15~16.
    [41]B. E. Lunder, D.B.Spalding.Lectures in Mathemmation Models of Turbulence[M]. London:Academicpress Press, 1990:156~162.
    [42]V. Yakhot, S. A. Orzag. Renormalization Group Analysis of Turbulence: Basic Theory[J]. Scient Comput. 1986, 1: 3~11.
    [43]Huang peng, Wei xinzhao. Solution of the problem of determination of the density of heat fliow due to high-pressure gas quench[J]. Metal Science and heat Treatment,2006,(15): 199~204.
    [44]王福军.计算流体动力学-CFD软件原理与应用[M].北京:清华大学出版社,2004:243~265.
    [45]温正,石良臣,任毅如.FLUENT流体计算应用教程[M].北京:清华大学出版社,2009:195~205.
    [46]Jiangfan, Chenweipeng, Liyuanyuan. Numerical simulation on Dam Safety Based on Multiphase Flow[J]. Progree in Safety Science and Tecgnology VI,2006,10:2336~2369.
    [47]Jiangfan, Chenweipeng,Mai mingren. Numerical simulation on water and sediments two-phase flows in river[J]. Progree in Safety Science and Tecgnology V, 2005,11:1634~2285.
    [48]R.T.约汉森,R. L伯格(美).采油化学[M].北京:石油工业出版社,1989:160.
    [49]B. J. Daly, F. H. Harlow. Transport Equatins in Turbulence[J]. Phys Fluids, 1970,13: 2634~2649.
    [50]M. M. Gibson, B. E. Launder. Ground Effects on Presure Fluctuations in the Atmospheric Boundary Layer[J].Fluid Mech, 1978,86:491~511.
    [51]T. H. Shih,W.W. Liou,A.Shabbir,etc.A Newκ-εEddy Viscosity Model for High Reynolds Number Turbulence Flows[J].Comput. Fluids, 1995,24:227~238.
    [52]刘大有.关于二相流、多相流、多流体模型和非牛顿流等概念的探讨[J].力学进展,1994,24(1): 66~73.
    [53]S. Fu, B.E.Launder, M.A.Leshchziner. Moderling Strongly Swirling Recirculating Jet Flow with Reynolds-Stress Transport Closures[C]. In Sixth Symposium on Turbulent Shear Flows, Toulouse, France, 1987:456~458.
    [54]B.E.Launder. Second-Moment Closure and Its Use in Moderling Turbulent Industrail Flows[J]. International Jouranal for Numerical Methods in Fluids, 1989,9:963~985.
    [55]B.E.Launder. Second-Moment Closure: Present and Future[J]. Inter. J. Heat Fluid Flow, 1989,10:282~300.
    [56]B.E.Launder, D.S.A. Samaraweera. Aplication of A Second-Moment Turbulence Closure to Heat amd Mass Transport in Thin Shear Flows-I Two-Dimensional Transport[J]. Int. J Heat Mass Transfer, 1979,22:1633~1643.
    [57]S. Y. Jaw. Fundamenttals of Tubulence Modeling[M]. Washington:Taylor & Francis, 1998: 163~164.
    [58]周云龙,洪文鹏,孙斌.多相流体力学理论及其应用[M].北京:科学出版社,2008: 166~173.
    [59]C. G. Spasiale. Analytical Methods for The Development of Reynolds-Stress Closure in Turbulence[J]. Ann Rev Fluid Mech. 1991,23:107~157.
    [60]F. Mashayek. Turbulent gas-solid flows, Part I: Driect Simulation and Reynolds Closure[J]. Numerical Heat Transfer, Part B: Fundamental, 2002,41:1~29.
    [61]于恒江,于建军,杜士龙.科学分析煤泥水性质合理确定净水药剂制度[J].煤炭技术,2003,22(7):63~65.
    [62]Gao Guijun, Kou Ziming. Coal mud contact surface indirect survey technology[C].6th International Symposium onInstrumentation and Control Technology, 2006,3:68~72.
    [63]胡之力,杨建明,任太祥.絮凝剂的研究及性能评价[J].大连铁道学院学报,1998,02:49~51.
    [64]丁伟.丙烯酞胺类聚合物合成及性能研究[D].大庆石油学院,2006:59~61.
    [65]严瑞玻.水溶性高分子[M].北京:化学工业出版社,1998:159~161.
    [66]刘玉勇.反相乳液聚合研究进展[J].化学推进与高分子材料,2003,1(6):27~30.
    [67]项林峰.赤泥沉降用高效聚丙烯酰胺系列絮凝剂的制备与性能研究[D].中南大学,2007.
    [68]吴靖嘉,彭树馥,刘小平.高分子量聚丙烯酰胺的双梯度分级及某些溶液性质的研究[J].兰州大学学报(自然科学版), 1995,04:133~137.
    [69]Mc CormickC.L. Structural Design of Water Soluble Copolymer, In: ACS Symposium Series467[C]. Washington DC: Am Chem Soc,1991:2~24.
    [70]方道斌,郭睿威,哈润华,等.丙烯酞胺聚合物[M].北京:化学工业出版社,2006:243~249.
    [71]张学佳,纪巍,康志军.聚丙烯酰胺的特性及应用[J].化学工业与工程技术,2008, 05:45~49.
    [72]林瑞洵,伍宜池.部分水解聚丙烯酰胺溶液的流变性质[J].广州化学,1980,01:37~42.
    [73] George,Schurz.Field Preparation of polymer Solution used to Improve[J]. Oil Recovery, 1972,10:420~425.
    [74]溥淑琴,郝克君.聚丙烯酞胺及水解聚丙烯酞胺的粘度对加盐浓度及时间的依赖性[J].应用化学,1986,6:35~40.
    [75]曹文仲,顾松青.合成高分子絮凝剂的物理化学性质和应用技术研究[J].轻金属,1996,05:8~13.
    [76]张鸿秀,张宝玉.概率论与数理统计[M].太原:山西高校联合出版社,1992:120~135.
    [77]张兆顺,崔桂香.流体力学[M].北京:清华大学出版社,2006:32~39.
    [78]王裕清.液压传动与控制技术[M].北京:煤炭出版社,1997:12~29.
    [79]王积伟.液压传动[M].北京:机械工业出版社,2007:43~48.
    [80]寇子明,高贵军,董宪姝等.絮凝剂自动添加系统及其方法[P], CN,ZL200610102033. 2,2009.2
    [81]侯晶晶,王玉西.电磁流量计常见故障排除方法[J].中国计量,2009,6:114~115.
    [82]崔韶鹏.浅谈电磁流量计[J].计量与测试技术,2009,8:48~50.
    [83]杨纶标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,2006:144~165.
    [84]曾光奇,胡均安,王东.模糊控制理论与工程应用[M].武汉:华中科技大学出版社,2000:124~132.
    [85]Meada M, S Murakami. A Self-tuning Fuzzy Controller[J].Fuzzy Sets andSystems, 1992, 51:29~40.
    [86]Buckley J, Ying H. Fruzzy Controller Theory: Limit Theorems for Linear Fuzzy Control Rules[J]. Automarica, 1989, 25(3): 469~472.
    [87]夏玮,李国辉.控制系统仿真与实例详解[M].北京:人民邮电出版社,2008:200~220.
    [88]马小亮.大功率交—交变频调速及矢量控制技术[M].北京:机械工业出版社,1991: 132~174.
    [89]成大先.机械设计手册[M].北京:化学工业出版社,2004:23~32.
    [90]董永胜,穆永森,齐秀英.自动报警和高压风在预防浓缩机压耙子事故中的应用[J].选煤技术,2003,05:43~44.
    [91]机械工业学会.中国机械设计大典[M].南昌:江西科学技术出版社,2002:43~52.
    [92]寇子明,高贵军,李军霞.浓缩机随动防压耙报警装置[P],CN,ZL200610102034.7, 2008.6
    [93]北京捷麦通讯器材有限公司.无线数传模块.2003,8:3~10.
    [94]周国际,宋宝瑞,谢建立.数值计算[M].北京:高等教育出版社,2008:124~132.
    [95]尹义斌.WG—1A微波密度计的试验与研究[J].选煤技术,2005,2:10~13.
    [96]王莹.LabVIEW:20年的创新与坚持[J].电子产品世界,2007,01:20.
    [97]姜丽,周凤星.基于LabVIEW的故障监测诊断系统的研究与应用[J].冶金设备.2009,04:29~32.
    [98]宋剑波,李迅,李威.基于LabVIEW的测控应用程序远程界面发布方法讨论[J].计测技术.2009,04:46~48.
    [99]徐爱卿.MCS-51单片机原理及应用[M].北京:北京航空航天大学出版社,1998:45~67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700