连续与搭接螺旋折流板换热器理论分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换热器是在化工、石油、轻工、冶金、能源与动力等许多工业部门中使用的一种通用工艺设备。在各种换热器中,管壳式换热器由于结构简单、制造成本低、可靠性高、适应性强等特点而应用最为广泛。鉴于管壳式换热器在工业领域中的重要作用,通过改进传统的壳程结构以提高其效率成为节能减排的重要途径,螺旋折流板换热器正是基于此而研究开发的一种新型的高效节能换热设备。
     本文从理论分析、数值模拟与实验研究等方面对连续与搭接螺旋折流板换热器的结构设计与性能特点进行研究,开展的研究工作及所取得的主要研究成果如下:
     对连续与搭接螺旋折流板的结构特点进行了分析,推导了螺旋角、搭接量、螺距之间的计算关系,得到了折流板结构参数的计算方法。基于一定的简化与假设,建立了螺旋层流流动的数学模型,对轴向、切向及径向速度分量的特点作了分析,对流体与折流板之间的受力情况作了研究。在此基础上,建立了螺旋折流板换热器壳程实际流动模型,将壳程实际螺旋流动分为螺旋流动主流流路、漏流流路、旁流流路等相互独立的流路,分别对各流路的形成原因、特点及对换热器性能的影响进行了分析。
     在合理简化的基础上,建立连续与搭接螺旋折流板换热器计算区域的物理模型,设置合理的边界条件,使用RNG κ-ε湍流模型对换热器壳程与管程的流动与传热情况进行了数值模拟。提出了一种新的计算螺旋流动雷诺数的方法,能够较好地反映螺旋折流板换热器壳程流体流动状态。
     螺旋角对连续与搭接螺旋折流板换热器各物理量分布及传热与阻力性能等具有相似的影响规律:壳程螺旋通道可分为入口阶段、螺旋流动阶段及出口阶段,螺旋角不同时,各阶段的变化规律不同;轴向速度随着径向距离的增大而降低,螺旋角越大,均匀性越好;同流量下壳程表面传热系数与压降均随螺旋角的增大而降低,而单位压降下的表面传热系数随螺旋角的增大而增加;熵产数随螺旋角的增大而降低,而且螺旋角越大,换热器最佳运行雷诺数越低。
     搭接量是搭接螺旋折流板特有的结构参数。交错搭接时,轴向速度在搭接点前后呈现先减小、后增大的抛物线形分布;同流量下,随搭接量的增大,表面传热系数与压降均增大,而单位压降下的表面传热系数减小;熵产数与换热器最佳运行雷诺数均随搭接量的增大而增加。
     通过连续与搭接螺旋折流板换热器数值模拟结果的对比发现,相邻搭接螺旋折流板之间的三角区与搭接区漏流导致壳程流动偏离连续螺旋流动,增大了流体的轴向反混,加剧了轴向速度在径向分布的不均匀性。存在与螺旋角有关的转折雷诺数,在转折雷诺数前后,连续螺旋折流板换热器与搭接螺旋折流板换热器不可逆损失的相对大小不同。
     在对1/4扇形螺旋折流板换热器进行深入研究的基础上,提出了六分扇形螺旋折流板换热器,其折流板的1个螺距由6块六分扇形螺旋折流板组成。数值模拟结果表明,相邻折流板轴向周边重叠的结构有效地减轻了三角区漏流,轴向速度沿径向的分布更加均匀。与1/4扇形螺旋折流板换热器相比,六分扇形螺旋折流板换热器壳程表面传热系数更高,压降更低,同时熵产数更低,不可逆损失更小。从场协同理论的角度分析,新型搭接螺旋折流板结构使壳程速度场与温度梯度场以及速度场与压力梯度场之间均有着更好的协同性,从而实现高效低阻的强化传热目标。
     拟合得到了连续螺旋折流板换热器、1/4扇形螺旋折流板换热器及六分扇形螺旋折流板换热器壳程努塞尔数关联式与壳程阻力因子关联式,为螺旋折流板换热器的设计与校核提供了参考依据。
     通过搭建实验平台,对六分扇形螺旋折流板换热器进行了实验研究。结果表明,与弓形折流板换热器相比,六分扇形螺旋折流板换热器具有更好的壳程综合性能,通过实验值与模拟值的对比,验证了数值计算方法的可靠性。
The heat exchanger is the universal process equipment which is applied in various industrial sectors, such as chemical industry, petroleum, light industry, metallurgy, energy and power, etc. Shell-and-tube heat exchanger (STHX) has been the most comprehensive heat exchanger due to its simple construction, low manufacturing cost, high reliability, and excellent adaptability, etc. In view of the important role in industrial areas of STHX, to increase its efficiency by improving traditional shell-side structures becomes a crucial way for energy saving and emission reduction. On the basis of this way, shell-and-tube heat exchanger with helical baffles (STHXHB) is invented as novel energy efficient heat transfer equipment.
     This paper adopts theoretical analysis, numerical simulation and experimental study to research structure design and performance of STHX with continuous helical baffles and STHX with overlapped helical baffles. Researches and main results are as follows:
     The structural characteristics of STHX with continuous helical baffles and STHX with overlapped helical baffles are analyzed. The relationship among helix angle, overlap size and helix pitch is derived, and also the calculation method of geometric parameters of baffles is obtained. The mathematic model of shell-side laminar continuous helical flow is established based on certain simplifications and assumptions. The characteristics of velocity components of axial, tangential and radial are analyzed. The study of forces between fluid and baffles is made. Based on above researches, the model of shell-side actual flow is established. The shell-side actual helical flow can be divided into several independent flow channels, such as helical mainstream flow channel, leakage flow channel and bypass flow channel. The formation causes, characteristics and impacts on heat exchanger of each flow channel are studied respectively.
     The physical models of computation domain of STHX with continuous helical baffles and STHX with overlapped helical baffles are established based on certain reasonable simplifications, and boundary conditions are properly defined. RNG k-ε turbulence model is applied to numerical simulate shell-side and tube-side flow and heat transfer of heat exchanger. New calculation method of shell-side Reynolds number is put forward which can better reflect the state of shell-side flow fluid.
     The effects of helix angle on distributions of physical quantities and heat transfer and resistance characteristics are similar in STHX with continuous helical baffles and in STHX with overlapped helical baffles.Shell-side helical channel consists of inlet region, helical flow region and outlet region, and the variations of each region vary with helix angle. Axial velocity decreases along radial direction, and the larger helix angle is, the more uniform distribution is. Both shell-side heat transfer coefficient and pressure drop decrease with the increase of helix angle, whereas heat transfer coefficient per unit pressure drop increases with the increase of helix angle at certain mass flow rate. Entropy generation number decreases with the increase of helix angle, and the larger helix angle is, the lower optimum operation shell-side Reynolds number is.
     Overlap size is the peculiar structural parameter of overlapped helical baffles. When baffles are connected in an overlapped manner, the variation trends of axial velocity are different before and after the overlap point, and it is parabolic distribution which first decreases and then increases. Both shell-side heat transfer coefficient and pressure drop increase with the increase of overlap size, whereas heat transfer coefficient per unit pressure drop decreases with the increase of overlap size at certain mass flow rate. Both entropy generation number and optimum operation shell-side Reynolds number increase with the increase of overlap size.
     Comparing the simulation results between STHX with continuous helical baffles and STHX with overlapped helical baffles, it is found that the leakages from triangle zone and overlapped zone between two adjacent baffles cause shell-side flow deviates from continuous helical flow, which increases flow back mixing along radial direction, and exacerbates the non-uniform of radial distribution of axial velocity. There exists transition shell-side Reynolds number which is related with helix angle, and the relative size of irreversible loss in STHX with continuous helical baffles and in STHX with overlapped helical baffles is different before and after the transition shell-side Reynolds number.
     A novel STHX with overlapped helical baffles is proposed based on thorough researches on STHX with quarter sector helical baffles, which consists of six sixth sector helical baffles one helix pitch. Simulation results show that the axial peripheral overlapped structure between two adjacent baffles can effectively reduce the leakage from triangle zone, which makes radial distribution of axial velocity more uniform. Shell-side heat transfer coefficient is higher, shell-side pressure drop is lower and entropy generation number is lower, so irreversible loss is also lower in STHX with sixth sector helical baffles compared with in STHX with quarter sector helical baffles. The novel overlapped structure makes both the synergy between velocity field and pressure gradient field and the synergy between velocity field and temperature gradient field better in shell-side from point of field synergy principle analysis.
     Shell-side Nusselt number correlations and shell-side resistance factor correlations of STHX with continuous helical baffles, STHX with quarter sector helical baffles and STHX with sixth sector helical baffles are fitted, which can provide references for the heat exchanger design calculations.
     STHX with sixth sector helical baffles is experimental studied by setting up experimental apparatus. Results show that STHX with sixth sector helical baffles has better shell-side comprehensive performance than STHX with segmental baffles. The reliability of numerical method is verified by comparing experimental values and numerical values.
引文
[1]黄素逸,高伟.能源概论[M].北京:高等教育出版社,2004.
    [2]钱颂文.换热器设计手册[M].北京:化学工业出版社,2002.
    [3]吴金星,韩东方,曹海亮.高效换热器及其节能应用[M].北京:化学工业出版社,2009.
    [4]Kays W M, London A L. Compact heat exchanger[M].3rd ed. New York:McGrawHill, 1984.
    [5]Bell K J. Heat exchanger design for the process industries[J]. Journal of Heat Transfer, 2004,126(6):877-885.
    [6]Master B I, Chunangad K S, Boxma A J, et al. Most frequently used heat exchangers from pioneering research to worldwide applications[J]. Heat Transfer Engineering, 2006,27(6):4-11.
    [7]Emerson W H. Shell-side pressure drop and heat transfer with turbulent flow in segmentally baffled shell-and-tube heat exchangers[J]. International Journal of Heat and Mass Transfer,1963,6(8):649-668.
    [8]Gaddis E S, Vogelpohl A. On the effectiveness and the mean temperature difference of shell and tube Heat exchangers with segmental baffles and two tube passes[J]. Chemical Engineering and Processing:Process Intensification,1984,18(5):269-273.
    [9]Roetzel W, Lee D. Experimental investigation of leakage in shell-and-tube heat exchangers with segmental baffles[J]. International Journal of Heat and Mass Transfer, 1993,36(15):3765-3771.
    [10]Eryener D. Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers[J]. Energy Conversion and Management,2006,47(11-12):1478-1489.
    [11]Li H, Kottke V. Visualization and determination of local heat transfer coefficients in shell-and-tube heat exchangers for staggered tube arrangement by mass transfer measurements[J]. Experimental Thermal and Fluid Science,1998,17(3):210-216.
    [12]Li H, Kottke V. Analysis of local shellside heat and mass transfer in the shell-and-tube heat exchanger with disc-and-doughnut baffles[J]. International Journal of Heat and Mass Transfer,1999,42(18):3509-3521.
    [13]程林.换热器内流体诱导振动[M].北京:科学出版社,2001.
    [14]Small W M, Young R K. The RODbaffle heat exchanger[J]. Heat Transfer Engineering, 1979,1(2):21-27.
    [15]汪淑奇,黄素逸.纵流式换热器壳侧支撑方式的数值研究[J].化工学报,2007,58(5):1097-1103.
    [16]马雷,王英双,杨杰,等.折流杆换热器的数值模拟及优化设计[J].工程热物理学报,2011,32(3):462-464.
    [17]邓先和.空心环管壳式换热器工业应用概况[J].化工进展,1997,(5):35-38,52.
    [18]罗小平,邓先和,邓颂九.空心环支承轴流式换热器壳程流体阻力系数[J].化工学报,1999,50(1):130-135.
    [19]周理,安福,徐越平.刺孔膜片式高效管壳换热器的壳方特性研究[J].化工学报, 1992,43(5):599-608.
    [20]Lutcha J, Nemcansky J. Performance improvement of tubular heat exchangers by helical baffles[J]. Chemical Engineering Research and Design,1990,68(Compendex): 263-270.
    [21]Master B I, Chunangad K S, Pushpanathan V. Fouling mitigation using helixchanger heat exchangers[C]. Proceedings of the ECI Conference on Heat Exchanger Fouling and Cleaning:Fundamentals and Applications, Santa Fe, NM, USA,2003:317-322.
    [22]南京炼油厂换热器试制组,螺旋形折流板管壳式换热器的研究[J].化工炼油机械,1983,12(1):32-35.
    [23]陈世醒,张克铮,张强.螺旋折流板换热器的开发与研究(Ⅰ)——高粘度流体下的中试研究[J].抚顺石油学院学报,1998,18(3):31-35.
    [24]张克铮,陈世醒,张强.螺旋折流板换热器的开发与研究(Ⅱ)——低粘度流体的中试研究[J].抚顺石油学院学报,1998,18(3):36-38.
    [25]曾敏,彭波涛,喻澎清,等.连续螺旋折流板换热器传热与阻力性能实验研究[J].核动力工程,2006,27(1):102-106.
    [26]Zhang J F, He Y L, Tao W Q.3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles—Part II: Simulation results of periodic model and comparison between continuous and noncontinuous helical baffles[J]. International Journal of Heat and Mass Transfer,2009, 52(23-24):5381-5389.
    [27]汲水.螺旋折流板管壳式换热器壳程流动与传热机理分析与性能研究[D].山东大学博士学位论文,2011.
    [28]吴峰,王秋旺,陈秋炀,等.连续螺旋折流板换热器动态特性研究[J].热科学与技术,2006,5(3):222-226.
    [29]吴峰,王秋旺,陈秋炀,等.连续螺旋折流板管壳式换热器动态特性研究及预测[J].热能动力工程,2007,22(2):190-196.
    [30]Wang Q W, Chen G D, Xu J, et al. Second-law thermodynamic comparison and maximal velocity ratio design of shell-and-tube heat exchangers with continuous helical baffles[J]. Journal of Heat Transfer,2010,132(10):101801,1-9.
    [31]陈贵冬,高强,曾敏,等.连续螺旋折流板蒸发器壳侧流动换热数值模拟研究[J].工程热物理学报,2011,32(1):104-106.
    [32]王春玲.连续螺旋折流板换热器的数值模拟研究[D].天津大学硕士学位论文,2008.
    [33]Lei Y G, He Y L, Li R, et al. Effects of baffle inclination angle on flow and heat transfer of a heat exchanger with helical baffles[J]. Chemical Engineering and Processing:Process Intensification,2008,47(12):2336-2345.
    [34]汲水,杜文静,程林.连续螺旋折流板换热器壳侧传热与流动特性的数值研究[J].中国电机工程学报,2009,29(32):66-70.
    [35]宋义鑫.连续型螺旋折流板换热器的结构及热工性能研究[D].哈尔滨工业大学硕士学位论文,2009.
    [36]吴国辉,黄渭堂,孙中宁.断续螺旋折流板在管壳式换热器中的应用[J].应用科技, 2005,32(4):45-47.
    [37]李大为,沈人杰,高晓东,等.螺旋折流板换热器数值模拟及入口结构改进研究[J].高校化学工程学报,2005,19(5):699-702.
    [38]何军民,沈人杰,冯霄.螺旋折流板换热器壳侧结构改进及模拟研究[J].化工装备技术,2006,27(5):37-42.
    [39]Peng B, Wang Q W, Zhang C, et al. An experimental study of shell-and-tube heat exchangers with continuous helical baffles[J]. Journal of Heat Transfer-Transactions of the Asme,2007,129(10):1425-1431.
    [40]Wang Q W, Xie G N, Peng B T, et al. Experimental study and genetic-algorithm-based correlation on shell-side heat transfer and flow performance of three different types of shell-and-tube heat exchangers[J]. Journal of Heat Transfer-Transactions of the Asme, 2007,129(9):1277-1285.
    [41]Xie G N, Wang Q W, Zeng M, et al. Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach[J]. Applied Thermal Engineering,2007,27(5-6):1096-1104.
    [42]Wang Q W, Chen Q Y, Chen G D, et al. Numerical investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles[J]. International Journal of Heat and Mass Transfer,2009,52(5-6):1214-1222.
    [43]Wang Q W, Chen G D, Zeng M, et al. Shell-side heat transfer enhancement for shell-and-tube heat exchangers by helical baffles[J]. Chemical Engineering,2010,21: 217-222.
    [44]汲水,杜文静,程林.双壳程连续螺旋折流板换热器的数值模拟[J].工程热物理学报,2010,31(4):651-654.
    [45]崔海亭,彭佩英.强化传热新技术及其应用[M].北京:化学工业出版社,2006.
    [46]Bergles A E. Heat transfer enhancement—the maturing of second-generation heat transfer technology[J]. Heat Transfer Engineering 1997,18(1):47-55.
    [47]赵晓曦,邓先和,陆恩锡.两种不同管束的螺旋折流板换热器的性能对比[J].石油炼制与化工,2002,33(8):52-55.
    [48]赵晓曦,邓先和,陆恩锡.螺旋折流板菱形翅片管换热器的传热与流阻性能[J].化工学报,2003,54(3):388-391.
    [49]张正国,方晓明,林培森.螺旋隔板花瓣管换热器的传热强化研究[J].工程热物理学报,2001,22(5):618-620.
    [50]张正国,林培森,王世平,等.螺旋隔板花瓣管油冷却器的传热强化[J].化工学报,2001,52(6):482-484.
    [51]朱冬生,蒋翔.管壳式换热器壳程高黏度流体的传热强化[J].化工学报,2005,56(8):1451-1455.
    [52]李建华,孙中宁,吴国辉.螺旋折流板波槽管换热器换热与阻力实验研究[J].应用科技,2006,33(8):65-67.
    [53]蒋翔,朱冬生,李元希.螺旋折流板冠形翅片管油冷器性能的研究[J].化学工程,2006,34(12):13-16.
    [54]Stehlik P, Nemcansky J, Kral D, et al. Comparison of correction factors for shell-and-tube heat exchangers with segmental or helical baffles[J]. Heat Transfer Engineering,1994,15(Compendex):55-65.
    [55]Kral D, Stehlik P, van der Ploeg H J, et al. Helical baffles in shell-and-tube heat exchangers, Part I:Experimental verification[J]. Heat Transfer Engineering,1996, 17(Compendex):93-101.
    [56]刘宗宽.螺旋折流板换热器传热与阻力性能研究[D].西安交通大学硕士学位论文,2000.
    [57]Wang S L. Hydrodynamic studies on heat exchangers with helical baffles[J]. Heat Transfer Engineering,2002,23(3):43-49.
    [58]Jafari Nasr M R, Shafeghat A. Fluid flow analysis and extension of rapid design algorithm for helical baffle heat exchangers [J]. Applied Thermal Engineering,2008, 28(Compendex):1324-1332.
    [59]He Y L, Lei Y G, Tao W Q, et al. Second-law based thermodynamic analysis of a novel heat exchanger[J]. Chemical Engineering and Technology,2009,32(1):86-92.
    [60]Zhang J F, He Y L, Tao W Q.3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles—Part I: Numerical model and results of whole heat exchanger with middle-overlapped helical baffles[J]. International Journal of Heat and Mass Transfer,2009,52(23-24): 5371-5380.
    [61]Zhang J F, Li B, Huang W J, et al. Experimental performance comparison of shell-side heat transfer for shell-and-tube heat exchangers with middle-overlapped helical baffles and segmental baffles [J]. Chemical Engineering Science,2009,64(8):1643-1653.
    [62]张剑飞,李斌,黄文江,等.螺旋折流板换热器流动与换热特性的试验分析[J].工程热物理学报,2009,30(1):147-149.
    [63]彭杰,应启戛,王树立.一种新型换热器流动特性的实验研究[J].节能,2004,(3):15-17.
    [64]孙琪,陈佳佳,朱莹,等.搭接螺旋折流板换热器壳程流动特性研究[J].化工机械,2008,35(1):10-13.
    [65]王晨,桑芝富.不同螺旋折流板换热器壳侧流动的数值研究[J].石油机械,2008,36(10):12-15.
    [66]陈亚平,王伟晗,李彦晴,等.三分螺旋折流板换热器壳侧传热特性研究[J].工程热物理学报,2010,31(11):1905-1908.
    [67]刘化瑾,陈亚平,李彦晴,等.当量螺旋角对三分螺旋折流板换热器性能的影响[J].化学工程,2010,38(7):22-25.
    [68]汲水,杜文静,王鹏,等.交错搭接螺旋折流板换热器壳程流动与传热的场协同分析[J].中国电机工程学报,2011,31(20):75-80.
    [69]Andrews M J, Master B I.3-D modeling of the ABB Lummus Heat Transfer "Helixchanger(TM)" using CFD[C]. International Conference Compact Heat Exchangers, Banff, Canada,1999:167-173,519.
    [70]Andrews M J, Master B I. Three-dimensional modeling of a Helixchanger(R) heat exchanger using CFD[J]. Heat Transfer Engineering,2005,26(6):22-31.
    [71]王良.螺旋折流板换热器传热与阻力性能的实验研究[D].西安交通大学硕士学位论文,2001.
    [72]王素华,王树立,赵志勇.螺旋折流板换热器流动特性研究[J].石油化工高等学校学报,2001,14(1):64-67.
    [73]王晨,桑芝富.螺旋折流板换热器壳程流动特性研究[J].实验流体力学,2010,24(2):19-23.
    [74]王良,罗来勤,王秋旺,等.螺旋折流板换热器中阻流板对换热及沿程压降的影响[J].工程热物理学报,2001,22(增刊):173-176.
    [75]陈世醒,张振华.一种特殊形式的螺旋折流板换热器[J].辽宁石油化工大学学报,2005,25(1):61-63.
    [76]王秋旺,罗来勤,曾敏,等.交错螺旋折流板管壳式换热器壳侧传热与阻力性能[J].化工学报,2005,56(4):598-601.
    [77]宋小平,裴志中.防短路螺旋折流板管壳式换热器[J].石油化工设备技术,2007,28(3):13-17.
    [78]程治方,路辉.高效拼装式连续型螺旋折流板换热器的开发[J].石油和化工设备,2008,(10):9-13.
    [79]陈亚平.适合于正三角形排列布管的螺旋折流板换热器[J].石油化工设备,2008,37(6):1-5.
    [80]陈亚平,董聪,操瑞兵,等.周向重叠三分螺旋折流板换热器壳侧性能试验研究[J].工程热物理学报,2012,33(7):1193-1196.
    [81]王斯民,文键.无短路区新型螺旋折流板换热器换热性能的实验研究[J].西安交通大学学报,2012,46(9):12-15,42.
    [82]Jafari Nasr M R, Shafeghat A. Rapid design algorithm for new technology:shell and tube heat exchangers with helical baffles[J]. Research on Science and Engineering of Petroleum, Bulletin of the Iranian Institute of Petroleum Industry, RIPI,2006,15(52).
    [83]Shafeghat A. Design and simulation of shell and tube heat exchangers with helical baffles[D]. Sahand University of Technology,2006.
    [84]Zhang J F, He Y L, Tao W Q. A design and rating method for shell-and-tube heat exchangers with helical baffles[J]. Journal of Heat Transfer-Transactions of the Asme, 2010,132(5):051802,1-8.
    [85]沈维道,蒋智敏,童钧耕.工程热力学[M].第三版.北京:高等教育出版社,2001.
    [86]McClintock F A. The design of heat exchangers for minimum irreversibility[J]. ASME Paper,1951, No.51-A-108.
    [87]Bejan A. Second law analysis in heat transfer[J]. Energy,1980,5(8-9):720-732.
    [88]Bejan A. Second-law analysis in heat transfer and thermal design[J]. Advances in Heat Transfer,1982,15:1-58.
    [89]Guo J F, Cheng L, Xu M T. Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm[J]. Applied Thermal Engineering,2009,29:2954-2960.
    [90]Bejan A. Entropy generation minimization[M]. New York:CRC Press,1995.
    [91]Bejan A. Entropy generation through heat and fluid flow[M]. New York:Wiley,1982.
    [92]Yilmaz M, Sara O N, Karsli S. Performance evaluation criteria for heat exchangers based on second law analysis[J]. Exergy, An International Journal,2001,1(4):278-294.
    [93]Naphon P. Second law analysis on the heat transfer of the horizontal concentric tube heat exchanger[J]. International Communications in Heat and Mass Transfer,2006, 33(8):1029-1041.
    [94]郭江峰.换热器的热力学分析与优化设计[D].山东大学博士学位论文,2011.
    [95]Guo Z Y, Tao W Q, Shah R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J]. International Journal of Heat and Mass Transfer,2005,48(9):1797-1807.
    [96]过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004.
    [97]李志信,过增元.对流传热优化的场协同理论[M].北京:科学出版社,2010.
    [98]Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer,1998,41(14): 2221-2225.
    [99]过增元,魏澍,程新广.换热器强化的场协同原则[J].科学通报,2003,48(22):2324-2327.
    [100]Wu J M, Tao W Q. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A:Verification of field synergy principle[J]. International Journal of Heat and Mass Transfer,2008,51(5-6): 1179-1191.
    [101]Guo J F, Xu M T, Cheng L. The application of field synergy number in shell-and-tube heat exchanger optimization design[J]. Applied Energy,2009,86:2079-2087.
    [102]Chen G M, Tso C P, Hung Y M. Field synergy principle analysis on fully developed forced convection in porous medium with uniform heat generation[J]."International Communications in Heat and Mass Transfer,2011,38(9):1247-1252.
    [103]Yu Y S, Li Y, Lu H F, et al. Performance improvement for chemical absorption of CO2 by global field synergy optimization[J]. International Journal of Greenhouse Gas Control,2011,5(4):649-658.
    [104]Zeng M, Tao W Q. Numerical verification of the field synergy principle for turbulent flow[J]. Journal of Enhanced Heat Transfer,2004,11(4):451-457.
    [105]Chen Q, Ren J X, Meng J A. Field synergy equation for turbulent heat transfer and its application[J]. International Journal of Heat and Mass Transfer,2007,50(25-26): 5334-5339.
    [106]Liu W, Liu Z C, Huang S Y. Physical quantity synergy in the field of turbulent heat transfer and its analysis for heat transfer enhancement[J]. Chinese Science Bulletin, 2010,55(23):2589-2597.
    [107]Wu L B, Li Z X, Song Y Z. Field synergy principle of heat and mass transfer[J]. Chinese Science Bulletin,2009,54(24):4604-4609.
    [108]Chen Q, Wang M R, Guo Z Y. Field synergy principle for energy conservation analysis and application[J]. Advances in Mechanical Engineering,2010, Article ID 129313.
    [109]何雅玲,雷勇刚,田丽亭,等.高效低阻强化换热技术的三场协同性探讨[J].工程 热物理学报,2009,30(11):1904-1906.
    [110]刘伟,刘志春,马雷.多场协同原理在管内对流强化传热性能评价中的应用[J].科学通报,2012,57(10):867-874.
    [111]陈贵冬,陈秋场,曾敏,等.组合式多壳程螺旋折流板管壳式换热器数值模拟研究[J].工程热物理学报,2009,30(8):1357-1359.
    [112]张少维.螺旋折流板换热器的结构及性能研究[D].南京工业大学硕士学位论文,2005.
    [113]Zhukauskas A A换热器内的对流传热[M].马昌文,居滋泉,肖宏才译.北京:科学出版社,1986.
    [114]Tinker T, Buffalo N Y. Shell side characteristics of shell and tube heat exchangers:a simplified rating system for commercial heat[J]. Trans. ASME (Jan.),1958,36-52.
    [115]Bell K J. Delaware method for shell side design, Heat exchangers—thermal hydraulic fundamentals and design [M]. Washington, D. C.:Hemisphere/McGraw-Hill,1981.
    [116]Lei Y G, He Y L, Chu P, et al. Design and optimization of heat exchangers with helical baffles[J]. Chemical Engineering Science,2008,63(17):4386-4395.
    [117]Gaddis E S, Gnielinski V. Pressure drop on the shell side of shell-and-tube heat exchangers with segmental baffles[J]. Chemical Engineering and Processing,1997, 36(2):149-159.
    [118]金跃,王学,李明义.连续型螺旋折流板式换热器的制造[J].炼油与化工,2004,(3):37.
    [119]Yakhot V, Orszag S A. Renormalization group analysis of turbulence I Basic theory[J]. Journal of Scientific Computing,1986,1(1):3-51.
    [120]Yakhot V, Orszag S A, Thangam S, et al. Development of turbulence models for shear flows by double expansion technique[J]. Physics of Fluids A:Fluid 1992,4(7): 1510-1521.
    [121]张少维,桑芝富.螺旋折流板换热器壳程流体流动的数值模拟[J].南京工业大学学报,2004,36(2):81-84.
    [122]王秋旺.螺旋折流板管壳式换热器壳程传热强化研究进展[J].西安交通大学学报,2004,38(9):881-886.
    [123]杨世铭,陶文铨.传热学[M].第二版.北京:高等教育出版社,1998.
    [124]Paoletti S, Rispoli F, Sciubba E. Calculation of exergetic losses in compact heat exchanger passagers[J]. ASME AES,1989,10:21-29.
    [125]周俊杰.紧凑式换热器表面的强化换热节能机理及其优化研究[D].西安交通大学博士学位论文,2006.
    [126]何雅玲,陶文铨.强化单相对流换热的基本机制[J].机械工程学报,2009,45(3):27-38.
    [127]冷学礼,张冠敏,田茂诚,等.场协同原理在对流换热中的应用方法[J].热能动力工程,2009,24(3):352-354.
    [128]Kern D Q. Process heat transfer[M]. New York:McGraw-Hill International Book Company,1984.
    [129]Kline S J, McClintock F A. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering,1953,75(1):3-8.
    [130]Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science,1988,1(1):3-17.
    [131]Kuppan T. Heat exchanger design book[M]. New York: Marcel Dekker Inc.,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700