镥团簇、内嵌过渡金属硅插合物和铕内嵌富勒烯膜的结构与性能预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有纳米尺度的团簇,碳富勒烯,以及自旋电子学材料具有独特的几何结构,新颖的电子结构和磁特性,自从被发现以来便得到了人们的广泛关注。它们在小型电子器件的研制等方面是最有潜力的材料。近年来,随着密度泛函理论的不断改进和完善以及计算机性能的高速发展,基于密度泛函理论的第一性原理计算被广泛的应用于新材料的预测和研发。在本论文中,利用密度泛函理论计算对Lu_n(n=2-20)团簇,3d过渡金属掺杂第一类Si插合物MSi_(46)(M=Mn,Fe,Co,Ni)以及Ag(111)面Eu@C_(60)单分子层吸附的几何结构,电子结构以及磁性进行了系统的研究。研究结果如下:
     (1)对于Lu_n(n=2-20)团簇,原子数小于16时Lu_n(n<16),它们的生长模式都是基于八面体的结构;当原子数大于16时,Lu_n(16≤n≤20)团簇出现了一个新的基于十面体的生长模式。Lu_4,Lu_8,Lu_(13)和Lu_(18)团簇具有较高的稳定性,它们的结合能比相应的相邻原子数Lu团簇的结合能要低。Lu_n(n=2-20)团簇的磁矩较小,都不超过4.00μB。当原子数n=2-8时,Lu_n团簇的磁矩交替增大,随原子数的增大,当n=9-20时,Lu_n团簇的磁矩出现了在0.00μB和1.00μB之间的奇偶交替现象。在原子数n=5处,Lu团簇的磁序发生转变,从铁磁性转变为亚铁磁性。这些结果为研究过渡金属从团簇转变到大块固体的结构演化,以及过渡金属团簇的磁性和电子结构提供了理论依据。
     (2)在第一类Si插合物的硅二十笼子或者硅二十四笼子中心掺入单个3d过渡金属原子M(M=Mn,Fe,Co和Ni)后,硅插合物在电子结构和磁性上都出现了明显的变化。与未掺杂的Si_(46)插合物单胞相比,掺杂后MSiα46和MSiβ46的晶格常数均变小。当在硅二十笼子中心掺入Mn或者Co,以及在硅二十四笼子中心掺入Mn,Fe或者Ni原子后,形成的新的插合化合物都表现出half-metallic性质,并且均具有较大的磁矩。Mn,Fe,Co和Ni掺杂后,自旋磁矩分别为5.00μB,4.00μB,3.00μB和2.00μB。而当在硅二十笼子中心掺入Fe或者Ni,以及在硅二十四笼子中心掺入Co原子后,形成的新的插合化合物都表现出了semi-metallic性质,且具有较大的磁矩。Fe,Co和Ni掺杂后分别具有4.00μB,3.00μB和2.00μB的自旋磁矩。以上结果表明,MnSi_(46)是一个较好的半金属材料,将来可能被用于自旋电子学材料。
     (3)当Eu@C_(60)单分子层吸附在Ag(111)面上时,我们发现Eu@C_(60)单分子层引起了Ag(111)表面的重构,Eu@C_(60)和Ag(111)之间的垂直距离要比C_(60)和Ag(111)之间的垂直距离要小0.05。在Ag(111)面上Eu@C_(60)单分子层的几何结构和C_(60)单分子层吸附在Ag(111)面上的几何结构相一致。其稳定结构为Eu@C_(60)的一个六边形的面朝向基底,而和这个六边形面相对的另外一个六边形面平行于基底。Eu@C_(60)/Ag(111)单胞具有较大的自旋磁矩,其大小为6.80μB,通过密立根电荷分析我们知道这个较大磁矩主要来源于Eu原子。Eu@C_(60)和Ag(111)之间没有形成较强的化学键,只有0.55e大小的电荷从Ag(111)中转移到了Eu@C_(60)之上。我们的研究结果为C_(60)富勒烯内包物的应用提供了理论依据。
Clusters with nano-scale, fullerenes and spintronics materials have attracted considerableinteresting, for there special geometry structure, novel electronic structure and magnetismproperties. They are promising materials for applications in small spintronics materials. Withthe improvement of density functional theory and the performanc of computer, the firstprinciples calculations based on density functional theory have been applied to the study ofnew materials. In this paper, using density functional theory, we have calculated the structure,electronic and magnetism properties of Lu_n(n=2-20) cluster,3d transition metal-doped type ISi clathrates MSi_(46)(M=Mn,Fe,Co,Ni) and Eu@C_(60)monolayer adsorbed on the surface ofAg(111). The results are as follows:
     (1) For Lu_n(n=2-20) cluster, when the number of atoms are smaller than16, the growthpattern of Lu_n(n<16) cluster are based on octahedral; when the number of atoms are morethan16, the Lu_n(16≤n≤20) cluster have a new growth pattern that based on decahedral. TheLu_4,Lu_8,Lu_(13)and Lu_(18)clusters have higher stability, their binding energise are lower thenthat of their neighbors. All the Lu_n(n=2-20) clusters has small spin magnetic moments, theyare not more than4.00μB. At the same time, we found that for the clusters with the atomnumber from2to8, the magnetic moments increase in an alternating fashion. As the numberof the atom increase, an even-odd alternation between0.00μBand1.00μBwas found over therange n=9to n=20for the Lu_ncluster. A shift from ferromagnetic to ferrimagnetic orderingappears at n=5. These results provide theory assist for study the structure evolution fromcluster to bulk solids, and the magnetism and electronic properties of transition metal cluster.
     (2) After doping with single3d transition metal atom M (M=Mn,Fe,Co and Ni) in thetype I Si clathrates, the electronic structure and magnetic properties have changed evident.Compared with pure Si_(46), the constant of crystal lattice in unit cell ofMSiα46andMSiβ46have a decrescence tend. Some of the silicon clathrates with a Mn or Co dopant at the centersite of a Si20cage, or a Mn, Fe or Ni dopant at the center site of a Si24cage are found to behalf-metallic materials with large magnetic moments. For Mn,Fe,Co and Ni dopant, theyhave5.00μB,4.00μB,3.00μBand2.00μBmagnetic moment, respectively. For the silicon clathrates with a Fe or Ni dopant at the center site of a Si20cage or a Co dopant at the centersite of a Si24cage display semi-metallic characters. They also have large magnetic moments.For Fe,Co and Ni dopant, they have4.00μB,3.00μBand2.00μBmagnetic moment,respectively. These results show that MSi_(46)is a fine spintronics material.
     (3) When the Eu@C_(60)monolayer adsorbed on the Ag(111) surface, the Eu@C_(60)monolayer induces a substrate reconstruction, the perpendicular distances between theEu@C_(60)and Ag(111) surface is smaller than that between C_(60)and Ag(111) surface by0.05.The Eu@C_(60)monolayer has the same geometry structure as that of C_(60)monolayer on Ag(111)surface. The stable structure with one hexagon of Eu@C_(60)face down and its mirror plane faceparallels to the substrate. The Eu@C_(60)/Ag(111) in unit cell has a big magnetic moment of6.80μB, which mainly come from the Eu atom according to the Mülliken charge populationanalysis. There is no chemical bonds formed between the Eu@C_(60)and Ag (111), only0.55echarge transferred from Ag (111) to Eu@C_(60). These results provide theory assist for study theendohedral fullerenes.
引文
[1] Becker E W. Strahlen aus kondensierten Atomen und Molekeln im Hochvakuum [J]. Z.Phys.,1956,146(3):333-338.
    [2] Schmid G, B umle M, Geerkens M, et al. Current and future applications of nanoclusters[J]. Chem. Soc. Rev.,1999,28:179-185.
    [3] Aiken J D III, and Finke R G. A review of modern transition-metal nanoclusters: theirsynthesis, characterization, and applications in catalysis [J]. J. Mol. Catal. A: Chem.,1999,145:1-44.
    [4] Stellacci F. Nanoscale materials: A new season [J]. Nat. Mater.,2005,4:113-114.
    [5] Bansmann J, Baker S H, Binns C, et al. Magnetic and structural properties of isolated andassembled clusters [J]. Surf. Sci. Rep.,2005,56:189-275.
    [6] Billas I M L, Chatelain A, Heer W A D. Magnetism from the Atom to the Bulk in Iron,Cobalt, and Nickel Clusters [J]. Science,1994,265:1682-1684.
    [7] Cox D M, Trevor D J, Whetten R L, et al. Magnetic behavior of free-iron and iron oxideclusters [J]. Phys. Rev. B,1985,32:7290-7298.
    [8] Bucher J P, Douglass D C, Bloomfield L A. Magnetic Properties of Free Cobalt Clusters[J]. Phys. Rev. Lett.,1991,66:3052-3055.
    [9] Apsel S E, Emmert J W, Deng J, et al. Surface-Enhanced Magnetism in Nickel Clusters [J].Phys. Rev. Lett.,1996,76:1441-1444.
    [10] Billas I M L, Chatelain A, Heer W A D. Magnetism of Fe, Co and Ni clusters inmolecular beams [J]. J. Magn. Magn. Mater.,1997,168:64-84.
    [11] Xu X S, Yin S Y, Moro R, et al. Magnetic Moments and Adiabatic Magnetization of FreeCobalt Clusters [J]. Phys. Rev. Lett.,2005,95:237209-1-4.
    [12] Moseler M, H kkinen H, Barnett R N, et al. Structure and Magnetism of Neutral andAnionic Palladium Clusters [J]. Phys. Rev. Lett.,2001,86:2545-2548.
    [13] Bae Y C, Kumar V, Osanai H, et al. Cubic magic clusters of rhodium stabilized witheight-center bonding: Magnetism and growth [J]. Phys. Rev. B,2005,72:125427-1-6.
    [14] Xie Z, Ma Q M, Liu Y, et al. First-principles study of the stability and Jahn–Tellerdistortion of nickel clusters [J]. Phys. Lett. A,2005,342:459-467.
    [15] Ma Q M, Xie Z, Wang J, et al. Structures, stabilities and magnetic properties of small Coclusters [J]. Phys. Lett. A,2006,358:289-296.
    [16] Ma Q M, Xie Z, Wang J, et al. Structures, binding energies and magnetic moments ofsmall iron clusters: A study based on all-electron DFT [J]. Solid State Commun,2007,142:114-119.
    [17] A G F, G F A, Vega A. Comparative ab initio study of the structural, electronic, andmagnetic trends of isoelectronic late3d and4d transition metal clusters [J]. Phys. Rev. B,2008,78:134425-1-9.
    [18] Singh R, Kroll P. Structural, electronic, and magnetic properties of13-,55-, and147-atom clusters of Fe, Co, and Ni: A spin-polarized density functional study [J]. Phys. Rev.B,2008,78:245404-1-12.
    [19] Igarashi R N, Klautau A B, Muniz R B, et al. First-principles studies of complexmagnetism in Mn nanostructures on the Fe(001) surface [J]. Phys. Rev. B,2012,85:014436-1-8.
    [20] Mokkath J H, Pastor G M. First-principles study of structural, magnetic, and electronicproperties of small Fe-Rh alloy clusters [J]. Phys. Rev. B,2012,85:054407-1-7.
    [21] Wang J L. Structural, electronic, and magnetic properties of Scn(n=2–18) clusters fromdensity functional calculations [J]. Phys. Rev. B,2007,75:155422-1-9.
    [22] Yuan H K, Chen H, Ahmed A S, et al. Density-functional study of Scn(n=2–16) clusters:Lowest-energy structures, electronic structure, and magnetism [J]. Phys. Rev. B,2006,74:144434-1-12.
    [23] Yuan H K, Chen H, Kuang A L, et al. Density-functional calculations of the structure andelectronic and magnetic properties of small yttrium clusters Yn(n=2–17)[J]. Phys. Rev. B,2007,75:174412-1-11.
    [24] Kasper J S, Hagenmuller P, Pouchard M, et al. Clathrate Structure of Silicon Na8Si46andNaxSi136(x <11)[J]. Science,1965,150:1713-1714.
    [25] Cros C, Pouchard M, Hagenmuller P, et al.[J]. Sci. Paris,1965,260:4764.
    [26] Cros C, Pouchard M, Hagenmuller P, et al. Sur une nouvelle famille de clathratesminéraux isotypes des hydrates de gaz et de liquides. Interprétation des résultats obtenus [J]. J.Solid State Chem.,1970,2:570-581.
    [27] Adams G B, O'Keeffe M, Demkov A A, et al. Wide-hand-gap Si in openfourfold-coordinated clathrate structures [J]. Phys. Rev. B,1994,49:8048-8053.
    [28] Kawaji H, Horie H O. Superconductivity in the Silicon Clathrate Compound(Na,Ba)xSi46[J]. Phys. Rev. Lett.,1995,74:1427-1429.
    [29] Noat Y, Cren T, Toulemonde P, et al. Two energy gaps in the tunneling-conductancespectra of the superconducting clathrate Ba8Si46[J]. Phys. Rev. B,2010,81:104522-1-8.
    [30] Machon D, Toulemonde P, McMillan P F, et al. High-pressure phase transformations,pressure-induced amorphization, and polyamorphic transition of the clathrate Rb6.15Si46[J].Phys. Rev. B,2009,79:184101-1-13.
    [31] Kume T, Koda T, Sasaki S, et al. High-pressure Raman study of the potassium-dopedsilicon clathrate K8Si46[J]. Phy. Rev. B,2004,70:052101-1-4.
    [32] Ramachandran G K, McMillan P F, Dong J J,et al. K7.62(1)Si46and Rb6.15(2)Si46: TwoStructure I Clathrates with Fully Occupied Framework Sites [J]. J. Solid State Chem.,2000,154:626-634.
    [33] Wosylus A, Veremchuk I, Schnelle W, et al. Cs8-xSi46: A Type-I Clathrate with ExpandedSilicon Framework [J]. Chem. Eur. J.,2009,15:5901-5903.
    [34] Tse J S, Flacau R, Desgreniers S, et al. Electron density topology of high-pressureBa8Si46from a combined Rietveld and maximum-entropy analysis [J]. Phy. Rev. B,2007,76:174109-1-8.
    [35] Shimizu H, Kume T, Kuroda T, et al. High-pressure Raman study of the iodine-dopedsilicon clathrate I8Si44I2[J]. Phy. Rev. B,2003,68:212102-1-4.
    [36] Tsujii N, Roudebush J H, AlexZevalkink, et al. Phase stability and chemical compositiondependence of the thermoelectric properties of the type-I clathrate Ba8AlxSi46-x(8≤x≤15)[J]. J.Solid State Chem.,2011,184:1293-1303.
    [37] Stefanoski S, Martin J, G S Nolas. Low temperature transport properties and heatcapacity of single-crystal Na8Si46[J]. J. Phys.: Condens. Matter,2010,22:485404-1-5.
    [38] Li Y, Zhang R H, Liu Y, et al. Superconductivity in gallium-substituted Ba8Si46clathrates[J]. Phy. Rev. B,2007,75:054513-1-8.
    [39] Yang L, Ma Y M, Iitaka T, et al. Pressure-induced phase transformations in the Ba8Si46clathrate [J]. Phy. Rev. B,2006,74:245209-1-6.
    [40] Connétable D. Structural and electronic properties of p-doped silicon clathrates [J]. Phy.Rev. B,2007,75:125202-1-10.
    [41] Iitaka T. Pressure-induced isostructural phase transition of metal-doped silicon clathrates[J]. Phy. Rev. B,2007,75:012106-1-4.
    [42] Conesa J C, Tablero C, Wahnón P. First principles calculations of electronic structuresand metal mobility of NaxSi46and NaxSi34clathrates [J]. J. Chem. Phys.,2004,120:6142-1-10.
    [43] Connétable D, Timoshevskii V, Masenelli B, et al. Superconductivity in Doped sp3Semiconductors: The Case of the Clathrates [J]. Phys. Rev. Lett.,2003,91:247001-1-4.
    [44] San M A, Mélinon P, Connétable D, et al. Pressure stability and low compressibility ofintercalated cagelike materials: The case of silicon clathrates [J]. Phy. Rev. B,2002,65:054109-1-4.
    [45] Reny E, S M A, Guyot Y, et al. Vibrational modes in silicon clathrate compounds: Akey to understanding superconductivity [J]. Phy. Rev. B,2002,66:014532-1-7.
    [46] Conńetable D, Timoshevskii V, Artacho E, et al. Tailoring Band Gap and Hardness byIntercalation: An ab initio Study of I8Si46and Related Doped Clathrates [J]. Phy. Rev. Lett.,2001,87:206405-1-4.
    [47] Moriguchi K, Yonemura M, Shintani A, et al. Electronic structures of Na8Si46and Ba8Si46[J]. Phys. Rev. B,2000,61:9859-9862.
    [48] Menon M, Richter E, Subbaswamy K R. Structural and vibrational properties of Siclathrates in a generalized tight-binding molecular-dynamics scheme [J]. Phys. Rev. B,1997,56:12290-12295.
    [49] Yamanaka S, Enishi E, Fukuoka H, et al. High-Pressure Synthesis of a New SiliconClathrate Superconductor, Ba8Si46[J]. Inorg. Chem.,2000,39:56-58.
    [50] Reny E, Yamanaka S, Cros C, et al. High pressure synthesis of an iodine doped siliconclathrate compound [J]. Chem. Commun.,2000,24:2505-2506.
    [51] Li Y, Ross J J H. Ferromagnetism in Fe-doped Ba6Ge25chiral clathrate [J]. Appl. Phys.Lett.,2003,83:2868-2870.
    [52] Yang C K, Zhao J J, Lu J P. Calculations of electronic structure of Ge44Mn2Ba8andGe42Mn4Ba8clathrates [J]. Phys. Rev. B,2004,70:073201-1-4.
    [53] Kawaguchi T, Tanigaki K, Yasukawa M. Ferromagnetism in germanium clathrate:Ba8Mn2Ge44[J]. Appl. Phys. Lett.,2000,77:3438-3440.
    [54] Johnsen S, Bentien A, Madsen G K H, et al. Crystal structure and transport properties ofnickel containing germanium clathrates [J]. Phys. Rev. B,2007,76:245126-1-9.
    [55] Bentien A, Johnsen S, Iversen B B. Strong phonon charge carrier coupling inthermoelectric clathrates [J]. Phys. Rev. B,2006,73:094301-1-4.
    [56] Li Y, Ross J J H, Larrea J A, et al. Study of superconducting Ba–Ge–Co compounds [J].Physica C,2004,408–410:869–871.
    [57] Candolfi C, Aydemir U, Ormeci A, et al. Low-temperature magnetic, galvanomagnetic,and thermoelectric properties of the type-I clathrates Ba8NixSi46x[J]. Phys. Rev. B,2011,83:205102-1-14.
    [58] Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckminsterfullerene [J]. Nature,1985,318:162-163.
    [59] Heath J R, O’Brien S C, Zhang Q, et al. Lanthanum Complexes of Spheroidal CarbonShells [J]. J. Am. Chem. Soc.,1985,107:7779-7780.
    [60] Bethune D S, Johnson R D, Salem J R, et al. Atoms in carbon cages: the structure andproperties of endohedral fullerenes [J]. Nature,1993,366:123-128.
    [61] Brown R M, Tyryshkin A M, Porfyrakis K, et al. Coherent State Transfer between anElectron and Nuclear Spin in15N@C60[J]. Phys. Rev. Lett.,2011,106:110504-1-4.
    [62] Stró ecka A, Muthukumar K, Larsson J A, et al. Electron-induced excitation ofvibrations of Ce atoms inside a C80cage [J]. Phys. Rev. B,2011,83:165414-1-5.
    [63] Aoyagi S, Nishibori E, Sawa H, et al. A layered ionic crystal of polar Li@C60superatoms[J]. Nat. Chem.,2010,2:678-683.
    [64] Kilcoyne A L D, Aguilar A, Müller A, et al. Confinement Resonances in Photoionizationof Xe@C60+[J]. Phys. Rev. Lett.,2010,105:213001-1-4.
    [65] Tkalya E V, Bibikov A V, Bodrenko I V. Electron capture β decay of7Be encapsulated inC60: Origin of increased electron density at the7Be nucleus [J]. Phys. Rev. C,2010,81:024610-1-6.
    [66] Horsewill A J, Rols S, Johnson M R, et al. Inelastic neutron scattering of a quantumtranslator-rotator encapsulated in a closed fullerene cage: Isotope effects andtranslation-rotation coupling in H2@C60and HD@C60[J]. Phys. Rev. B,2010,82:081410(R)-1-4.
    [67] Ludlow J A, Lee T G, Pindzola M S. Time-dependent close-coupling calculations of thedouble photoionization of He@C60[J]. Phys. Rev. A,2010,81:023407-1-5.
    [68] Weck P F, Kim E, Czerwinski K R, et al. Structural and magnetic properties of Tcn@C60endohedral metalofullerenes: First-principles predictions [J]. Phys. Rev. B,2010,81:125448-1-5.
    [69] Stró ecka A, Muthukumar K, Dybek A, et al. Modification of the conductance of singlefullerene molecules by endohedral doping [J]. Appl. Phys. Lett.,2009,95:133118-1-3.
    [70] Kohama Y, Rachi T, Jing J, et al. Rotational Sublevels of an Ortho-Hydrogen MoleculeEncapsulated in an Isotropic C60Cage [J]. Phys. Rev. Lett.,2009,103:073001-1-4.
    [71] Yu Z G. Microscopic theory of electron spin relaxation in N@C60[J]. Phys. Rev. B,2008,77:205439-1-6.
    [72] Lu J, Mei W N, Gao Y, et al. Structural and electronic properties of Gd@C60: All-electronrelativistic total-energy study [J]. Chem. Phys. Lett.,2006,425:82-84.
    [73] Suzuki S, Kushida M, Amamiya S, et al. Density functional study on geometry andelectronic structure of Eu@C60[J]. Chem. Phys. Lett.,2000,327:291-298.
    [74] Harneit W. Fullerene-based electron-spin quantum computer, Fullerene-basedelectron-spin quantum computer [J]. Phys. Rev. A,2002,65:032322-1-6.
    [75] Twamley J. Quantum-cellular-automata quantum computing with endohedral fullerenes,Phys. Rev. A [J].2003,67:052318-1-12.
    [76] Ju C Y, Suter D, Du J F. Two-qubit gates between noninteracting qubits inendohedral-fullerene-based quantum computation [J]. Phys. Rev. A,2007,75:012318-1-5.
    [77] Harneit W, Huebener K, Naydenov B, et al. N@C60quantum bit engineering [J]. Phys.Stat. Sol.(b),2007,244:3879-3884.
    [78] Mortona J J L, Tyryshkin A M, Ardavan A, et al. Electron spin relaxation of N@C60inCS2[J]. J. Chem. Phys.,2006,124:014508-1-5.
    [79] Feng M, Twamley J. Selective pulse implementation of two-qubit gates for spin-32-basedfullerene quantum-information processing [J]. Phys. Rev. A,2004,70:032318-1-7.
    [80] Takeda A, Yokoyama Y, Ito S, et al. Superconductivity of doped Ar@C60[J]. Chem.Commun.,2006,912:912-914.
    [81] Chakravarty S, Gelfand M P, Kivelson S. Electronic Correlation Effects andSuperconductivity in Doped Fullerenes [J]. Science,1991,254:970-974.
    [82] Chakraborty H S, Madjet M E, Rost J M, et al. Dynamical effects of confinement onatomic valence photoionization in Mg@C60[J]. Phys. Rev. A,2008,78:013201-1-4.
    [83] Potter A, McCune M A, De R, et al. Probing photoelectron multiple interferences viaFourier spectroscopy in energetic photoionization of Xe@C60[J]. Phys. Rev. A,2010,82:033201-1-8.
    [84] Roch N, Vincent R, Elste F, et al. Cotunneling through a magnetic single-moleculetransistor based on N@C60[J]. Phys. Rev. B,2011,83:081407(R)-1-4.
    [85] Chai Y, Cuo T, Jin C M, et al. Fullerenes with Metals Inside [J]. J. Phys. Chem.,1991,95:7564-7568.
    [86] Tellgmann R, Krawez N, Lin S H, et al. Endohedral fullerene production [J]. Nature,1996,382:407-408.
    [87] Inoue T, Kubozono Y, Kashino S, et al. Electronic structure of Eu@C60studied byXANES and UV–VIS absorption spectra [J]. Chem. Phys. Lett.,2000,316:381-386.
    [88] Shinohara H. Endohedral metallofullerenes [J]. Rep. Prog. Phys.,2000,63:843-892.
    [89] Saunders M, Jimenez-Vazquez H A, Cross R J, et al. Incorporation of helium, neon,argon, krypton, and xenon into fullerenes using high pressure [J]. J. Am. Chem. Soc.,1994,116(5):2193-2194.
    [90] Peng R F, Chu S J, Huang Y M, et al. Preparation of He@C60and He2@C60by anexplosive method [J]. J. Mater. Chem.,2009,19:3602-3605.
    [91] Campbell E E B, Tellgmann R, Krawez N, et al. PRODUCTION AND LDMSCHARACTERISATION OF ENDOHEDRAL ALKALI-FULLERENE FILMS [J]. J. Phys.Chem Solids,1997,58:1763-1769.
    [92] Ohtsuki T, Ohno K, Shiga K, et al. Systematic study of foreign-atom-doped fullerenes byusing a nuclear recoil method and their MD simulation [J]. J. Chem. Phys.,2000,112:2834-2842.
    [93] Wang L S, Alforda J M, Chai Y, et al. The electronic structure of Ca@C60[J]. Chem.Phys. Lett.,1993,207:354-359.
    [94] Kubozono Y, Noto T, Ohta T, et al. Extractions of Ca@C60and Sr@C60with Aniline [J].Chem. Lett.,1996,25:453-454.
    [95] Kubozono Y, Maeda H, Takabayashi Y, et al. Extractions of Y@C60, Ba@C60, La@C60,Ce@C60, Pr@C60, Nd@C60, and Gd@C60with Aniline [J]. J. Am. Chem. Soc.,1996,118:6998-6999.
    [96] Li H I, Pussi K, Hanna K J, et al. Surface Geometry of C60on Ag(111)[J]. Phys. Rev.Lett.,2009,103:056101-1-4.
    [97] Dutton G J, Dougherty D B, Jin W, et al. Superatom orbitals of C60on Ag(111):Two-photon photoemission and scanning tunneling spectroscopy [J]. Phys. Rev. B,2011,84:195435-1-9.
    [98] Hamada I, Tsukada M. Adsorption of C60on Au(111) revisited: A van der Waals densityfunctional study [J]. Phys. Rev. B,2011,83:245437-1-5.
    [99] Wade A C, Lizzit S, Petaccia L, et al. Metallization of the C60/Rh(1000interface revealedby valence photoelectron spectroscopy and density functional theory calculations [J]. J. Chem.Phys.,2010,132:234710-1-6.
    [100] Liu C D, Qin Z H, Chen J, et al. Molecular orientations and interfacial structure of C60on Pt(111)[J]. J. Chem. Phys.,2011,134:044707-1-6.
    [101] Fanetti M, Gavioli L, Cepek C, et al. Orientation of C60molecules in the(33×33)R30and (13×13)R14phases of C60/Ge(111) single layers [J]. Phys. Rev. B,2008,77:085420-1-7.
    [102] Shi X Q, Pang A B, Man K L, et al. C60on the Pt(111) surface: Structural tuning ofelectronic properties [J]. Phys. Rev. B,2011,84:235406-1-6.
    [103] Torrelles X, Langlais V, Santis M D, et al. Nanostructuring surfaces: Deconstruction ofthe Pt(110)-(1×2) surface by C60[J]. Phys. Rev. B,2010,81:041404(R)-1-4.
    [104] Daughton D R, Gupta J A. Orientation dependence of charge transfer for C60on Cu(100)[J]. Appl. Phys. Lett.,2011,98:133303-1-3.
    [105] Yamada Y, Satake Y, Watanabe K, et al. Hydrogen adsorption on electron-doped C60monolayer on Cu(111) studied by He atom scattering [J]. Phys. Rev. B,2011,84:235425-1-6.
    [106] Hou J G, Yang J L, Wang H Q, et al. Topology of twodimensional C60domains [J].Nature,2001,409:304-305.
    [107] Matetskiy A V, Gruznev D V, Zotov A V, et al. Modulated C60monolayers onSi(111)3×3-Au reconstructions [J]. Phys. Rev. B,2011,83:195421-1-7.
    [108] Gruznev D V, Matetskiy A V, Zotov A V, et al. Interplay between adsorbed C60fullerenes and point defects on a Si(111)3×3-In reconstructed surface [J]. Surf. Sci.,2011,605:2050-2054.
    [109] Nimmrich M, Kittelmann M, Rahe P, et al. Influence of charge transfer doping on themorphologies of C60islands on hydrogenated diamond C(100)-(2×1)[J]. Phys. Rev. B,2012,85:035420-1-5.
    [110] Qin Z H, Liu C D, Chen J, et al. Molecular orientation and lattice ordering of C60molecules on the polar FeO/Pt(111) surface [J]. J. Chem. Phys.,2012,136:024701-1-5.
    [111] Bozhko S I, Krasnikov S A, Lübben O, et al. Rotational transitions in a C60monolayeron the WO2/W(110) surface [J]. Phys. Rev. B,2011,84:195412-1-8.
    [112] Delley B. An all-electron numerical method for solving the local density functional forpolyatomic molecules [J]. J. Chem. Phys.,1991,92:508-517.
    [113] Delley B. From molecules to solids with the DMol3approach [J]. J. Chem. Phys.,2000,113:7756-7764.
    [114] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett.,1996,77:3865-3868.
    [115] Delley B. Hardness conserving semilocal pseudopotentials [J]. Phys. Rev. B,2002,66:155125-1-9.
    [116] Hedberg K, Lu Y J, Kappes M M. The Structure of the C60Molecule: X-Ray CrystalStructure Determination of a Twin at110K [J]. Science,1991,254:408-410.
    [117] Wang L L, Cheng H P. Density functional study of the adsorption of a C60monolayer onAg(111) and Au(111) surfaces [J]. Phys. Rev. B,2004,69:165417-1-12.
    [1] Thomas H. The calculation of atomic fields [J]. Proc. Camb. Phil. Soc.23:542-548(1927).
    [2] Hartree D R. The wave mechanics of an atom with a non-coulomb central field. I. Theoryand methods [J]. Phil. Soc.24:89-110(1928).
    [3] Fock V. N herungsmethode zur L sung des quantenmechanischen Mehrk rperproblems[J]. Z. Physik,61:126-148(1930).
    [4] Dirac P A M. Quantum mechanics of many-electron systems [J]. Proc. R. Soc. Lond. Ser.A,1929,123:714-733.
    [5] Schleyer P R. Encyclopaedia of computational chemistry [J]. New York:John Wiley&Sons,1998.
    [6] Hehre W J, Radom L, Schleyer P R, et al. Ab initio molecular orbital theory [J]. NewYork:John Wiley&Sons,1996.
    [7] Hohnberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev. B,1964,136:864-871.
    [8] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev. A,1965,140:1133-1138.
    [9] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gascorrelation energy [J]. Phys. Rev. B,1992,45:13244-13249.
    [10] Wigner E. On the interaction of electrons in metals [J]. Phys. Rev.,1934,46:1002-1011.
    [11] Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method [J].Phys. Rev. Lett.,1980,45:566-569.
    [12] Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlationenergies for local spin density calculations: a critical analysis [J]. Canadian J. Phys.,1980,58:1200-1211.
    [13] Filatov M, Thiel W. A new gradient-corrected exchange-correlation density functional [J].Mol. Phys.,1997,91:847-859.
    [14] Perdew J P, Chevary J A, Vosko S H, et al. Atomic, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation [J]. Phys.Rev. B,199246,6671-6687.
    [15] Perdew J P, Burke K, Wang Y. Generalized gradient approximation for theexchange-correlation hole of a many-electron system [J]. Phys. Rev. B,1996,54:16533-16539.
    [16] Becke A D. Density functional calculations of molecular-bond energies [J]. J. Chem.Phys.,1986,84:4524-4529.
    [17] Perdew J P, Wang Y. Accurate and simple density functional for the electronic exchangeenergy: Generalized gradient approximation [J]. Phys. Rev. B,1986,33:8800-8802.
    [18] Lacks D J, Gordon R G. Pair interactions of rare-gas atoms as a test ofexchange-energy-density functionals in regions of large density gradients [J]. Phys. Rev. A,1993,47:4681-4690.
    [19] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett.,1986,77:3865-3868.
    [20] Perdew J P. Denstity-functional approximation for the correlation energy of theinhomogeneous electron gas [J]. Phys. Rev. B,1986,33:8822-8824.
    [21] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formulainto a functional of the electron density [J]. Phys. Rev. B,1988,37:785-789.
    [22] Becke A D. A new mixing of Hartree-Fock and local density-functional theories [J]. J.Chem. Phys.,1993,98:1372-1377.
    [23] Becke A D. Density-functional thermochemistry. III. The role of exact exchange [J]. J.Chem. Phys.,1993,98:5648-5652.
    [24] Devlin F J, Finley J W, Stevens P J, et al. Ab initio calculation of vibrational absorptionand circular dichroism spectra using density functional force fields: A Comparison of Local,Nonlocal, and Hybrid Density Functionals [J]. J. Chem. Phys.,1995,99:16883-16902.
    [25] Perdew J P, Zunger A. Self-interaction correction to density functional approximationsfor many-electron systems [J]. Phys. Rev. B,1981,23:5048-5079.
    [26] Cole L A, Perdew J P. Calculated electron affinities of the elements [J]. Phys. Rev. A,1982,25:1265-1271.
    [27] Jones RO. Introduction to Density Functional Theory and Exchange-Correlation EnergyFunctionals [J]. NIC Series,2006,31:45-70.
    [28] Mattsson A E, Schultz P A, Desjarlais M P, et al. Designing meaningful densityfunctional theory calculations in materials science—a primer [J]. Modelling Simul. Mater. Sci.Eng.,2005,13:R1-R31.
    [1] Schmid G, B umle M, Geerkens M, et al. Current and future applications of nanoclusters[J]. Chem. Soc. Rev.,1999,28:179-185.
    [2] Aiken J D III, Finke R G. A review of modern transition-metal nanoclusters: their synthesis,characterization, and applications in catalysis [J]. J. Mol. Catal. A: Chem.,1999,145:1-44.
    [3] Stellacci F. Nanoscale materials: A new season [J]. Nat. Mater.,2005,4:113-114.
    [4] Bansmann J, Baker S H, Binns C, et al. Magnetic and structural properties of isolated andassembled clusters [J]. Surf. Sci. Rep.,2005,56:189-275.
    [5] Billas I M L, Chatelain A, Heer W A D, Magnetism from the Atom to the Bulk in Iron,Cobalt, and Nickel Clusters, Science,1994,265:1682-1684.
    [6] Cox D M, Trevor D J, Whetten R L, et al. Magnetic behavior of free-iron and iron oxideclusters [J]. Phys. Rev. B,1985,32:7290-7298.
    [7] Bucher J P, Douglass D C, Bloomfield L A. Magnetic Properties of Free Cobalt Clusters[J]. Phys. Rev. Lett.,1991,66:3052-3055.
    [8] Apsel S E, Emmert J W, Deng J, et al. Surface-Enhanced Magnetism in Nickel Clusters [J].Phys. Rev. Lett.,1996,76:1441-1444.
    [9] Billas I M L, Chatelain A, Heer W A D. Magnetism of Fe, Co and Ni clusters in molecularbeams [J]. J. Magn. Magn. Mater.,1997,168:64-84.
    [10] Xu X S, Yin S Y, Moro R, et al. Magnetic Moments and Adiabatic Magnetization of FreeCobalt Clusters [J]. Phys. Rev. Lett.,2005,95:237209-1-4.
    [11] Moseler M, H kkinen H, Barnett R N, et al. Structure and Magnetism of Neutral andAnionic Palladium Clusters [J]. Phys. Rev. Lett.,2001,86:2545-2548.
    [12] Bae Y C, Kumar V, Osanai H, et al. Cubic magic clusters of rhodium stabilized witheight-center bonding: Magnetism and growth [J]. Phys. Rev. B,2005,72:125427-1-6.
    [13] Xie Z, Ma Q M, Liu Y, et al. First-principles study of the stability and Jahn–Tellerdistortion of nickel clusters [J]. Phys. Lett. A,2005,342:459-467.
    [14] Ma Q M, Xie Z, Wang J, et al. Structures, stabilities and magnetic properties of small Coclusters [J]. Phys. Lett. A,2006,358:289-296.
    [15] Ma Q M, Xie Z, Wang J, et al. Structures, binding energies and magnetic moments ofsmall iron clusters: A study based on all-electron DFT [J]. Solid State Commun,2007,142:114-119.
    [16] Aguilera G F, García F A, Vega A. Comparative ab initio study of the structural,electronic, and magnetic trends of isoelectronic late3d and4d transition metal clusters [J].Phys. Rev. B,2008,78:134425-1-9.
    [17] Singh R, Kroll P. Structural, electronic, and magnetic properties of13-,55-, and147-atom clusters of Fe, Co, and Ni: A spin-polarized density functional study [J]. Phys. Rev.B,2008,78:245404-1-12.
    [18] Wang J L. Structural, electronic, and magnetic properties of Scn(n=2–18) clusters fromdensity functional calculations [J]. Phys. Rev. B,2007,75:155422-1-9.
    [19] Yuan H K, Chen H, Ahmed A S, et al. Density-functional study of Scn(n=2–16) clusters:Lowest-energy structures, electronic structure, and magnetism [J]. Phys. Rev. B,2006,74:144434-1-12.
    [20] Yuan H K, Chen H, Kuang A L, et al. Density-functional calculations of the structure andelectronic and magnetic properties of small yttrium clusters Yn(n=2–17)[J]. Phys. Rev. B,2007,75:174412-1-11.
    [21] Wang J L, Wang Y B, Wu G F, et al. Ab initio study of the structure and magnetism ofatomic oxygen adsorbed Scn(n=2–14) clusters [J]. Chem. Chem. Phys.,2009,11:5980-5985.
    [22] PYYKK P. Relativistic Effects in Structural Chemistry [J]. Chem. Rev.,1988,88:563-594.
    [23] Shi J S, Zhang S Y, Wu Z J. Ground state of lutetium dimer by density functionalmethods [J]. J. Mol. Struc.: THEOCHEM,2004,677:55-58.
    [24] Wu Z J, Zhang H J, Meng J, et al. Structural stability and electronic state of transitionmetal trimers [J]. J. Chem. Phys.,2004,121:4699-4704.
    [25] Zhang X Y, Yang C L, Gao F, et al. MRCI study on the ground and low-lying excitedstates of lutetium dimer [J]. J. Mol. Struc.: THEOCHEM,2007,816:97-102.
    [26] See http://www-wales.ch.cam.ac.uk/CCD.html.
    [27] Wang J, Ning H, Ma Q M, et al. Au42: A possible ground-state noble metallic nanotube[J]. J. Chem. Phys.,2008,129:134705-1-4.
    [28] Wang J, Ma Q M, Xu R P, et al.3d transition metals: Which is the ideal guest for Sin(n=15,16) cages?[J]. Phys. Lett. A,2009,373:2869-2875.
    [29] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gascorrelation energy [J]. Phys. Rev. B,1992,45:13244-13249.
    [30] Becke A D. Density-functional exchange-energy approximation with correct asymptoticbehavior [J]. Phys. Rev. A,1988,38:3098-3100.
    [31] Delley B. Hardness conserving semilocal pseudopotentials [J]. Phys. Rev. B,2002,66:155125-1-9.
    [32] Delley B. An all-electron numerical method for solving the local density functionalfor polyatomic molecules [J]. J. Chem. Phys.,1990,92:508-517.
    [33] Mülliken R S. Electronic Population Analysis on LCAO-MO Molecular Wave Function.II. Overlap Population, Band Orders, and Covalent Bond Energies [J]. J. Chem. Phys.,1955,23:1841-1846.
    [34] Delley B. From molecules to solids with the DMol3approach [J]. J. Chem. Phys.,2000,113:7756-7764.
    [35] Verhaegen G, Smoes S, Drowart J. Mass-Spectrometric Determination of theDissociation Energy of the Molecules Sc2, Y2, La2and YLa [J]. J. Chem. Phys.,1964,40:239-241.
    [36] Walch S P, Bauschlicher C W, Jr. On3d bonding in the transition metal trimers: Theelectronic structure of equilateral triangle Ca3, Sc3Sc3+, and Ti3+[J]. J. Chem. Phys.,1985,83:5735-5742.
    [37] Pápai I, Castro M. A density functional study of Sc2and Sc3[J]. Chem. Phys. Lett.,1997,267:551-556.
    [38] Papas B N, Schaefer H F III. Homonuclear transition-metal trimers [J]. J. Chem. Phys.,2005,123:074321-1-12.
    [1] Kasper J S, Hagenmuller P, Pouchard M, et al. Clathrate Structure of Silicon Na8Si46andNaxSi136(x <11)[J]. Science,1965,150:1713-1714.
    [2] Cros C, Pouchard M, Hagenmuller P.[J]. C. R. Acad, Sci. Paris,1965,260:4764.
    [3] Cros C, Pouchard M, Hagenmuller P. Sur une nouvelle famille de clathrates minérauxisotypes des hydrates de gaz et de liquides. Interprétation des résultats obtenus [J]. J. SolidState Chem.,1970,2:570-581.
    [4] Machon D, Toulemonde P, McMillan P F, et al. High-pressure phase transformations,pressure-induced amorphization, and polyamorphic transition of the clathrate Rb6.15Si46[J].Phys. Rev. B,2009,79:184101-1-13.
    [5] Kume T, Koda T, Sasaki S, et al. High-pressure Raman study of the potassium-dopedsilicon clathrate K8Si46[J]. Phy. Rev. B,2004,70:052101-1-4.
    [6] Ramachandran G K, McMillan P F, Dong J J,et al. K7.62(1)Si46and Rb6.15(2)Si46: TwoStructure I Clathrates with Fully Occupied Framework Sites [J]. J. Solid State Chem.,2000,154:626-634.
    [7] Noat Y, Cren T, Toulemonde P, et al. Two energy gaps in the tunneling-conductancespectra of the superconducting clathrate Ba8Si46[J]. Phy. Rev. B,2010,81:104522-1-8.
    [8] Wosylus A, Veremchuk I, Schnelle W, et al. Cs8-xSi46: A Type-I Clathrate with ExpandedSilicon Framework [J]. Chem. Eur. J.,2009,15:5901-5903.
    [9] Tse J S, Flacau R, Desgreniers S, et al. Electron density topology of high-pressure Ba8Si46from a combined Rietveld and maximum-entropy analysis [J]. Phy. Rev. B,2007,76:174109-1-8.
    [10] Shimizu H, Kume T, Kuroda T, et al. High-pressure Raman study of the iodine-dopedsilicon clathrate I8Si44I2[J]. Phy. Rev. B,2003,68:212102-1-4.
    [11] Tsujii N, Roudebush J H, Zevalkink A, et al. Phase stability and chemical compositiondependence of the thermoelectric properties of the type-I clathrate Ba8AlxSi46-x(8≤x≤15)[J].J. Solid State Chem.,2011,184:1293-1303.
    [12] Stefanoski S, Martin J, Nolas G S. Low temperature transport properties and heatcapacity of single-crystal Na8Si46[J]. J. Phys.: Condens. Matter,2010,22:485404-1-5.
    [13] Li Yang, Zhang R H, Liu Y, et al. Superconductivity in gallium-substituted Ba8Si46clathrates [J]. Phy. Rev. B,2007,75:054513-1-8.
    [14] Yang L, Ma Y M, Iitaka T, et al. Pressure-induced phase transformations in the Ba8Si46clathrate [J]. Phy. Rev. B,2006,74:245209-1-6.
    [15] Connétable D. Structural and electronic properties of p-doped silicon clathrates [J]. Phy.Rev. B,2007,75:125202-1-10.
    [16] Iitaka T. Pressure-induced isostructural phase transition of metal-doped silicon clathrates[J]. Phy. Rev. B,2007,75:012106-1-4.
    [17] Conesa J C, Tablero C, Wahnón P. First principles calculations of electronic structuresand metal mobility of NaxSi46and NaxSi34clathrates [J]. J. Chem. Phys.,2004,120:6142-1-10.
    [18] Connétable D, Timoshevskii V, Masenelli B, et al. Superconductivity in Doped sp3Semiconductors: The Case of the Clathrates [J]. Phys. Rev. Lett.,2003,91:247001-1-4.
    [19] San M A, Mélinon P, Connétable D, et al. Pressure stability and low compressibility ofintercalated cagelike materials: The case of silicon clathrates [J]. Phy. Rev. B,2002,65:054109-1-4.
    [20] Reny E, San M A, Guyot Y, et al. Vibrational modes in silicon clathrate compounds: Akey to understanding superconductivity [J]. Phy. Rev. B,2002,66:014532-1-7.
    [21] Conńetable D, Timoshevskii V, Artacho E, et al. Tailoring Band Gap and Hardness byIntercalation: An ab initio Study of I8Si-46and Related Doped Clathrates [J]. Phy. Rev. Lett.,2001,87:206405-1-4.
    [22] Moriguchi K, Yonemura M, Shintani A, et al. Electronic structures of Na8Si46and Ba8Si46[J]. Phys. Rev. B,2000,61:9859-9862.
    [23] Menon M, Richter E, Subbaswamy K R. Structural and vibrational properties of Siclathrates in a generalized tight-binding molecular-dynamics scheme [J]. Phys. Rev. B,1997,56:12290-12295.
    [24] Kawaji H, Horie H O, Yamanaka S, et al. Superconductivity in the Silicon ClathrateCompound (Na,Ba)xSi46[J]. Phys. Rev. Lett.,1995,74:1427-1429.
    [25] Yamanaka S, Enishi E, Fukuoka H, et al. High-Pressure Synthesis of a New SiliconClathrate Superconductor, Ba8Si46[J]. Inorg. Chem.,2000,39:56-58.
    [26] Reny E, Yamanaka S, Cros C, et al. Pouchard, High pressure synthesis of an iodinedoped silicon clathrate compound [J]. Chem. Commun.,2000,24:2505-2506.
    [27] Li Y, Ross J H, Jr. Ferromagnetism in Fe-doped Ba6Ge25chiral clathrate [J]. Appl. Phys.Lett.,2003,83:2868-2870.
    [28] Yang C K, Zhao J J, Lu J P. Calculations of electronic structure of Ge44Mn2Ba8andGe42Mn4Ba8clathrates [J]. Phys. Rev. B,2004,70:073201-1-4.
    [29] Kawaguchi T, Tanigaki K, Yasukawa M. Ferromagnetism in germanium clathrate:Ba8Mn2Ge44[J]. Appl. Phys. Lett.,2000,77:3438-3440.
    [30] Johnsen S, Bentien A, Madsen G K H, et al. Crystal structure and transport properties ofnickel containing germanium clathrates [J]. Phys. Rev. B,2007,76:245126-1-9.
    [31] Bentien A, Johnsen S, et al. Strong phonon charge carrier coupling in thermoelectricclathrates [J]. Phys. Rev. B,2006,73:094301-1-4.
    [32] Li Y, Jr J H R, Larrea J A, et al. Study of superconducting Ba–Ge–Co compounds [J].Physica C,2004,408–410:869–871.
    [33] Candolfi C, Aydemir U, Ormeci A, et al. Low-temperature magnetic, galvanomagnetic,and thermoelectric properties of the type-I clathrates Ba8NixSi46x[J]. Phys. Rev. B,2011,83:205102-1-14.
    [34] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gascorrelation energy [J]. Phys. Rev. B,1992,45:13244-13249.
    [35] Becke A D. Density-functional exchange-energy approximation with correct asymptoticbehavior [J]. Phys. Rev. A,1988,38:3098-3100.
    [36] Delley B. Hardness conserving semilocal pseudopotentials [J]. Phys. Rev. B,2002,66:155125-1-9.
    [37] Delley B. An all-electron numerical method for solving the local density functional forpolyatomic molecules [J]. J. Chem. Phys.,1990,92:508-517.
    [38] Delley B. From molecules to solids with the DMol3approach [J]. J. Chem. Phys.,2000,113:7756-7764.
    [39] Saito S, Oshiyama A. Electronic structure of Si46and Na2Ba6Si46[J]. Phys. Rev. B,1995,51:2628-2631.
    [40] Shaughnessy M, Fong C Y, Snow R, et al. Structural and magnetic properties of singledopants of Mn and Fe for Si-based spintronic materials [J]. Phys. Rev. B,2010,82:035202-1-10.
    [41] Li J C, Wang C L, Wang M X, et al. A study of the vibrational and thermoelectricproperties of silicon type I and II clathrates [J]. J. Appl. Phys.,2009,105:043503-1-7.
    [42] Connétable D, Blasé X. Electronic and superconducting properties of silicon and carbonclathrates [J]. Appl. Surf. Sci.,2004226:289-297.
    [1] Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckminsterfullerene [J]. Nature,1985,318:162-163.
    [2] Heath J R, O’Brien S C, Zhang Q, et al. Lanthanum Complexes of Spheroidal CarbonShells [J]. J. Am. Chem. Soc.,1985,107:7779-7780.
    [3] Bethune D S, Johnson R D, Salem J R, et al. Atoms in carbon cages: the structure andproperties of endohedral fullerenes [J]. Nature,1993,366:123-128.
    [4] Brown R M, Tyryshkin A M, Porfyrakis K, et al. Coherent State Transfer between anElectron and Nuclear Spin in15N@C60[J]. Phys. Rev. Lett.,2011,106:110504-1-4.
    [5] Stró ecka A, Muthukumar K, Larsson J A, et al. Electron-induced excitation of vibrationsof Ce atoms inside a C80cage [J]. Phys. Rev. B,2011,83:165414-1-5.
    [6] Aoyagi S, Nishibori E, Sawa H, et al. A layered ionic crystal of polar Li@C60superatoms[J]. Nat. Chem.,2010,2:678-683.
    [7] Kilcoyne A L D, Aguilar A, Müller A, et al. Confinement Resonances in Photoionizationof Xe@C60+[J]. Phys. Rev. Lett.,2010,105:213001-1-4.
    [8] Tkalya E V, Bibikov A V, Bodrenko I V. Electron capture β decay of7Be encapsulated inC60: Origin of increased electron density at the7Be nucleus [J]. Phys. Rev. C,2010,81:024610-1-6.
    [9] Horsewill A J, Rols S, Johnson M R, et al. Inelastic neutron scattering of a quantumtranslator-rotator encapsulated in a closed fullerene cage: Isotope effects andtranslation-rotation coupling in H2@C60and HD@C60[J]. Phys. Rev. B,2010,82:081410(R)-1-4.
    [10] Ludlow J A, Lee T G, Pindzola M S. Time-dependent close-coupling calculations of thedouble photoionization of He@C60[J]. Phys. Rev. A,2010,81:023407-1-5.
    [11] Weck P F, Kim E, Czerwinski K R, et al. Structural and magnetic properties of Tcn@C60endohedral metalofullerenes: First-principles predictions [J]. Phys. Rev. B,2010,81:125448-1-5.
    [12] Stró ecka A, Muthukumar K, Dybek A, et al. Modification of the conductance of singlefullerene molecules by endohedral doping [J]. Appl. Phys. Lett.,2009,95:133118-1-3.
    [13] Kohama Y, Rachi T, Jing J, et al. Rotational Sublevels of an Ortho-Hydrogen MoleculeEncapsulated in an Isotropic C60Cage [J]. Phys. Rev. Lett.,2009,103:073001-1-4.
    [14] Yu Z G. Microscopic theory of electron spin relaxation in N@C60[J]. Phys. Rev. B,2008,77:205439-1-6.
    [15] Lu J, Mei W N, Gao Y, et al. Structural and electronic properties of Gd@C60: All-electronrelativistic total-energy study [J]. Chem. Phys. Lett.,2006,425:82-84.
    [16] Suzuki S, Kushida M, Amamiya S, et al. Density functional study on geometry andelectronic structure of Eu@C60[J].Chem. Phys. Lett.,2000,327:291-298.
    [17] Harneit W. Fullerene-based electron-spin quantum computer, Fullerene-basedelectron-spin quantum computer [J]. Phys. Rev. A,2002,65:032322-1-6.
    [18] Twamley J. Quantum-cellular-automata quantum computing with endohedral fullerenes[J]. Phys. Rev. A,2003,67:052318-1-12.
    [19] Ju C Y, Suter D, Du J F. Two-qubit gates between noninteracting qubits inendohedral-fullerene-based quantum computation [J]. Phys. Rev. A,2007,75:012318-1-5.
    [20] Harneit W, Huebener K, Naydenov B, et al. N@C60quantum bit engineering [J]. Phys.Stat. Sol.(b),2007,244:3879-3884.
    [21] Mortona J J L, Tyryshkin A, Ardavan A, et al. Electron spin relaxation of N@C60in CS2[J]. J. Chem. Phys.,2006,124:014508-1-5.
    [22] Feng M, Twamley J. Selective pulse implementation of two-qubit gates for spin-32-basedfullerene quantum-information processing [J]. Phys. Rev. A,2004,70:032318-1-7.
    [23] Takeda A, Yokoyama Y, Ito S, et al. Superconductivity of doped Ar@C60[J]. Chem.Commun.,2006,912:912-914.
    [24] chakravarty S, Gelfand M P, Kivelson S. Electronic Correlation Effects andSuperconductivity in Doped Fullerenes [J]. Science,1991,254:970-974.
    [25] Chakraborty H S, Madjet M E, Rost J M, et al. Dynamical effects of confinement onatomic valence photoionization in Mg@C60[J]. Phys. Rev. A,2008,78:013201-1-4.
    [26] Potter A, McCune M A, De R, et al. Probing photoelectron multiple interferences viaFourier spectroscopy in energetic photoionization of Xe@C60[J]. Phys. Rev. A,2010,82:033201-1-8.
    [27] Roch N, Vincent R, Elste F, et al. Cotunneling through a magnetic single-moleculetransistor based on N@C60[J]. Phys. Rev. B,2011,83:081407(R)-1-4.
    [28] Chai Y, Cuo T, Jin C M, et al. Fullerenes with Metals Inside, J. Phys. Chem.[J].1991,95:7564-7568.
    [29] Tellgmann R, Krawez N, Lin S H, et al. Endohedral fullerene production [J]. Nature,1996,382:407-408.
    [30] Inoue T, Kubozono Y, Kashino S, et al. Electronic structure of Eu@C60studied byXANES and UV–VIS absorption spectra [J]. Chem. Phys. Lett.,2000,316:381-386.
    [31] Shinohara H. Endohedral metallofullerenes [J]. Rep. Prog. Phys.,2000,63:843-892.
    [32] Saunders M, Jimenez V H A, Cross R J, et al. Incorporation of helium, neon, argon,krypton, and xenon into fullerenes using high pressure [J]. J. Am. Chem. Soc.,1994,116(5):2193-2194.
    [33] Peng R F, Chu S J, Huang Y M, et al. Preparation of He@C60and He2@C60by anexplosive method [J]. J. Mater. Chem.,2009,19:3602-3605.
    [34] Campbell E E B, Tellgmann R, Krawez N, et al. PRODUCTION AND LDMSCHARACTERISATION OF ENDOHEDRAL ALKALI-FULLERENE FILMS [J]. J. Phys.Chem Solids,1997,58:1763-1769.
    [35] Ohtsuki T, Ohno K, Shiga K, et al. Systematic study of foreign-atom-doped fullerenes byusing a nuclear recoil method and their MD simulation [J]. J. Chem. Phys.,2000,112:2834-2842.
    [36] Wang L S, Alforda J M, Chai Y, et al. The electronic structure of Ca@C60[J]. Chem.Phys. Lett.,1993,207:354-359.
    [37] Kubozono Y, Noto T, Ohta T, et al. Extractions of Ca@C60and Sr@C60with Aniline [J].Chem. Lett.,1996,25:453-454.
    [38] Kubozono Y, Maeda H, Takabayashi Y, et al. Extractions of Y@C60, Ba@C60, La@C60,Ce@C60, Pr@C60, Nd@C60, and Gd@C60with Aniline [J]. J. Am. Chem. Soc.,1996,118:6998-6999.
    [39] Li H I, Pussi K, Hanna K J, et al. Surface Geometry of C60on Ag(111)[J]. Phys. Rev.Lett.,2009,103:056101-1-4.
    [40] Dutton G J, Dougherty D B, Jin W, et al. Superatom orbitals of C60on Ag(111):Two-photon photoemission and scanning tunneling spectroscopy [J]. Phys. Rev. B,2011,84:195435-1-9.
    [41] Hamada I, Tsukada M. Adsorption of C60on Au(111) revisited: A van der Waals densityfunctional study [J]. Phys. Rev. B,2011,83:245437-1-5.
    [42] Wade A C, Lizzit S, Petaccia L, et al. Metallization of the C60/Rh(100) interface revealedby valence photoelectron spectroscopy and density functional theory calculations [J]. J. Chem.Phys.,2010,132:234710-1-6.
    [43] Liu C D, Qin Z H, Chen J, et al. Molecular orientations and interfacial structure of C60onPt(111)[J]. J. Chem. Phys.,2011,134:044707-1-6.
    [44] Fanetti M, Gavioli L, Cepek C, et al. Orientation of C60molecules in the(33×33)R30and (13×13)R14phases of C60/Ge(111) single layers [J]. Phys. Rev. B,2008,77:085420-1-7.
    [45] Shi X Q, Pang A B, Man K L, et al. C60on the Pt(111) surface: Structural tuning ofelectronic properties [J]. Phys. Rev. B,2011,84:235406-1-6.
    [46] Torrelles X, Langlais V, Santis M D, et al. Nanostructuring surfaces: Deconstruction ofthe Pt(110)-(1×2) surface by C60[J]. Phys. Rev. B,2010,81:041404(R)-1-4.
    [47] Daughton D R, Gupta J A. Orientation dependence of charge transfer for C60on Cu(100)[J]. Appl. Phys. Lett.,2011,98:133303-1-3.
    [48] Yamada Y, Satake Y, Watanabe K, et al. Hydrogen adsorption on electron-doped C60monolayer on Cu(111) studied by He atom scattering [J]. Phys. Rev. B,2011,84:235425-1-6.
    [49] Hou J G, Yang J L, Wang H Q, et al. Topology of twodimensional C60domains [J].Nature,2001,409:304-305.
    [50] Matetskiy A V, Gruznev D V, Zotov A V, et al. Modulated C60monolayers onSi(111)3×3-Au reconstructions [J]. Phys. Rev. B,2011,83:195421-1-7.
    [51] Gruznev D V, Matetskiy A V, Zotov A V, et al. Interplay between adsorbed C60fullerenesand point defects on a Si(111)3×3-In reconstructed surface [J]. Surf. Sci.,2011,605:2050-2054.
    [52] Nimmrich M, Kittelmann M, Rahe P, et al. Influence of charge transfer doping on themorphologies of C60islands on hydrogenated diamond C(100)-(2×1)[J]. Phys. Rev. B,2012,85:035420-1-5.
    [53] Qin Z H, Liu C D, Chen J, et al. Molecular orientation and lattice ordering of C60molecules on the polar FeO/Pt(111) surface [J]. J. Chem. Phys.,2012,136:024701-1-5.
    [54] Bozhko S I, Krasnikov S A, Lübben O, et al. Rotational transitions in a C60monolayer onthe WO2/W(110) surface [J]. Phys. Rev. B,2011,84:195412-1-8.
    [55] Delley B. An all-electron numerical method for solving the local density functional forpolyatomic molecules [J]. J. Chem. Phys.,1991,92:508-517.
    [56] Delley B. From molecules to solids with the DMol3approach [J]. J. Chem. Phys.,2000,113:7756-7764.
    [57] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett.,1996,77:3865-3868.
    [58] Delley B. Hardness conserving semilocal pseudopotentials [J]. Phys. Rev. B,2002,66:155125-1-9.
    [59] Hedberg K, Lu Y J, Kappes M M, et al. The Structure of the C60Molecule: X-RayCrystal Structure Determination of a Twin at110K [J]. Science,1991,254:408-410.
    [60] Wang L L, Cheng H P. Density functional study of the adsorption of a C60monolayer onAg(111) and Au(111) surfaces [J]. Phys. Rev. B,2004,69:165417-1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700