三江平原湿地生态序列温室气体排放通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地是陆地上巨大的有机碳储库,也是温室气体甲烷的重要来源。三江平原是我国最大的淡水沼泽湿地分布区,受全球变化和人为的原因,水文条件发生改变,植被发生变化。因此在这种背景下,本文主要研究了三江平原湿地生态序列温室气体排放(CO2、CH4、N2O)的动态变化特征,进而分析不同群落三江平原湿地碳汇功能和全球增温潜势的变化趋势。
     随着微地形和水分条件的变化,从环形湿地的边缘到中心,群落由典型草甸逐渐变化为沼泽化草甸和沼泽。不同群落小气候发生动态变化,随着水分的增加,群落内各层次综合表现为温度逐渐降低、湿度逐渐上升和光照强度先降低后升高再降低的趋势,不同层次小气候的变化规律和变化幅度不同。
     随着水分的增加,TER显著降低。不同群落TER的季节变化基本一致,表现为单峰模式,TER月均值最大值为1112.61mg·m-2-h-1。由于气温、降水等因素的影响,TER有着明显的年际变化,生长季累计排放量最大值为31.99t·ha-1。TER日变化规律与温度一致,表现为单峰模式。土壤呼吸的分布特征与季节变化趋势与TER基本一致,日变化趋势略有差异。土壤中的CO2平均浓度为2092ppm,不同群落土层中CO2浓度总体呈上升趋势,并且随着土层位置的加深,CO2浓度逐渐升高。TER与温度和水深之间的关系分别表现为显著指数相关和对数负相关关系。
     随着水分的增加,生态系统CH4排放通量显著升高,并且存在明显的季节变化和年际变化,CH4月均值最大值为72.00mg·m·2·h-1,生长季累计排放量最大值为2296.11kg·ha-1。不同群落的日变化规律存在差异,影响因素比较复杂。土壤CH4排放通量的分布特征与生态系统CH4排放基本一致,但各群落差异显著性下降,并且通量值要小于生态系统CH4通量值,说明植物对CH4的传输作用很强。三江平原湿地土壤中的CH4浓度比较大,平均为217.95ppm,不同群落土壤中CH4浓度逐渐增大。生态系统CH4排放通量与温度和水深之间的关系分别表现为显著指数相关和对数正相关关系。
     三江平原湿地是N2O的弱排放源,不同群落差异不明显,峰值多出现在前两个群落,月均值最大值为0.145mg·m-2·h-1生长季累计排放量最大值为3.90kg·ha-1,位于环形湿地中心的几个群落生态系统N2O通量较低,甚至出现了负值,表现为弱吸收。N2O通量季节变化和年际变化差异不显著,并且无明显的日变化规律。土壤N2O通量略小于与生态系统N2O通量,变化规律基本一致。三江平原湿地土壤中的N2O浓度平均为327.86ppb。生态系统N2O排放通量与温度和水深分别呈正负线性相关,但相关性较低。
     三江平原湿地整个生态序列NEE值为-17.47~-4.78t·ha-1,表现为CO2净吸收。各群落均表现为对碳的净固定,净碳交换量为-0.87~-4.51t·ha-1,并且随着水分的增加,碳汇功能先减小后增大,与NEE的变化规律一致。从20~500a的时间尺度上,三江平原湿地生态序列整体上均表现为随着水分的增加,增温潜力逐渐增大,不同群落GWP的大小主要取决于CH4的排放和CO2的净固定。随着时间尺度的延长,三种温室气体的综合增温潜势开始下降,其中CH4的增温潜势下降最为明显,随着CH4温室效应的减弱,三江平原湿地生态系统从增强全球增温潜势逐渐变化成为抑制全球增温潜势。
The wetland is a huge organic carbon pool and also an important emission source of greenhouse gas CH4. Sanjiang Plain is the largest distribution area of fresh water marsh wetland in China. Due to global climate change and multiple artificial interference, there were great changes in the hydrological conditions and vegetation Succession in the wetland. Therefore, this paper mainly studied the characteristics of greenhouse gases emissions and analyzed the carbon sink function and the change of global warming potential in different successional stages in Sanjiang Plain wetlands.
     With the changes of microtopography and moisture conditions, vegetation succession occurred from typical meadow and swamp meadow in the edge of the ring wetland to swamp communities in the center wetland. Microclimate climate was changed dynamically in different successional stages. With succession proceeding, temperature decreased and humidity increased gradually. The light intensity had a changing trend of first decrease and then increase and further decrease. There were significant difference in the changing trends and intensities for the different levels of microclimate climates.
     With succession proceeding, TER was reduced significantly. The seasonal variations of TER in different successional stages show a single peak pattern, with the maximum monthly averaged values of1112.61mg-m"2-h-1. TER has obvious interannual changes due to the impact of environmental factors such as temperature and precipitation. In the growing season, maximum cumulative emissions was31.99t-ha-1. The diurnal variation of both TER and temperature showed a single peak pattern. Distribution characteristics and seasonal trends of TER was consistent with that of soil respiration, with a slight difference in diurnal variation. The average concentration of CO2in the soil was2092ppm. In different successional stages, soil CO2concentration was gradually increased with the increasing soil layer. There was a significant exponential relationship between the TER and temperature and logarithmic negative relationship between the TER and water depth.
     With succession proceeding, CH4flux showed obvious seasonal and interannual variation. The maximum monthly averaged values of CH4flux was72.00mg-m-2·h-1. In growing season, maximum cumulative emissions was2296.11kg·ha-1. There were significant differences in diurnal variation of CH4flux of the wetlands in different succession stages; the impact factors were more complex. Distribution characteristics and seasonal trends of soil CH4flux were consistent with that of the ecosystem CH4flux, but the significance was decreased. The CH4flux of soil was less than CH4flux of, it show that plant has strong shuttle effect for CH4. The average concentration of CH4in the soil was217.95ppm. Soil CH4concentration of different successional stages gradually increased with the increasing soil layer. There was a significant exponential relationship between the CH4flux and temperature and a logarithmic positive correlation between the CH4flux and water depth.
     Sanjiang Plain wetland was a weak emission source for N2O and there was no significant difference in N2O emission between different successional stages. The maximum emission often occurred at the first two successional stages, with the maximum monthly averaged value of0.145mg·m-2·h-1. In growing season, maximum cumulative emission of N2O was3.90kg·ha-1. The N2O flux was lower in the center of the ring wetlands, or even negative emission, showing a weak absorption. The seasonal, interannual and diurnal variability of N2O fluxes was not significant. Soil N2O fluxes were slightly less than the ecosystem N2O fluxes, with a consistent variation trend. The average concentration of N2O fluxes in the soil was327.86ppb. Ecosystem N2O emission flux was positive and negative linear correlation with temperature and water depth, respectively, but with a low correlation.
     NEE of Sanjiang Plain wetland ranged from-17.47to-4.78t-ha-1in different succession stages, showing the net uptake of CO2. In the whole successional stages, the wetland showed a net fixed carbon, with the amount of net carbon exchange of-0.87~-4.51t-ha-1, and the carbon sink function was firstly decreased and then increased with the sucession, showing a similar change with that of NEE. From20~500a time scale, GWP in Sanjiang Plain wetland was increased gradually with succession proceeding. GWP in the different successional stages mainly depends on the CH4emissions and the net fixed CO2. With the extension of the time scale, the warming potential of the three greenhouse gases began to decline, of which the warming potential of CH4showed the most obvious decline. As CH4greenhouse effect is weakened gradually, global warming potential was also decreased gradually.
引文
[1]Mearns L O, Katz R W, Schneider S H. Changes in the probabilities of extreme high temperature events with changes in globalmean temperature. J Clim Appl Meteorol,1984,23(12):1601-1613
    [2]IPCC. Climate Change 2007:Synthesis Report. Contribution of Working Groups Ⅰ,Ⅱ and Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 2007, pp 104
    [3]IPCC (Intergovernmental Panel on Climate Change). Climate Change Synthesis Reports: Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press,2001
    [4]Matthews E Fung I. Methane emission from natural wetlands:global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles,1987,1:61-86
    [5]Aselmann I, Crutzen P J. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. Journal of atmospheric chemistry,1989,8(4):307-358
    [6]Bartlett KB, Harriss RC. Review and assessment of methane emissions from wetlands. Chemosphere,1993,26:261-320
    [7]刘兴土,马学慧.三江平原自然环境变化与生态保育.北京:科学出版社,2002
    [8]闫敏华,邓伟,马学慧.大面积开荒扰动下的三江平原近45年气候变化.地理学报,2001,56(2):159-170
    [9]周旺明,王金达,刘景双,等.三江平原不同土地利用方式对区域气候的影响.水土保持学报,2005,19(5):156-158
    [10]孙帆,赵红音,吕宪国,等.三江平原沼泽生态系统(疏干)演替对土壤动物的影响.生态学杂志,1994,13(2):30-33
    [11]Hansen J E, Lacis A A. Sun and dust versus greenhouse gases:An assessment of their relative roles in global climate change. Nature,1990,346:713-719
    [12]IPCC. Special Report on Emissions Scenarios, Working Group Ⅲ, Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,2000
    [13]Butterbach-Bahl K, Gasche R, Breuer L, et al. Fluxes of NO and N2O from temperate forest soils:Impact of forest type, N deposition, and of liming on the NO/N2O emissions. Nutrition Cycle of Agroecosystem,1997,48:79-90
    [14]Kiehl J T, Trenberth K E. Earth's annual global mean energy budget. Bulletin of the American Meteorological Society,1997,78 (2):197-208
    [15]罗光强,耿元波.羊草草原和贝加尔针茅草原生态系统呼吸的差异分析.环境科学,2010,31(11):2732-2739
    [16]付刚,周宇庭,沈振西,等.不同海拔高寒放牧草甸的生态系统呼吸与环境因子的关系,生态环境学报,2010,19(12):2789-2794
    [17]石兰英,牟长城,田新民.小兴安岭典型沼泽湿地生态系统呼吸及其影响因子.生态学杂志,2009,28(12):2477-2482
    [18]于贵瑞,温学发,李庆康,等.中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征.中国科学(D辑)地球科学,2004,34(增刊Ⅱ):84-94
    [19]张法伟,刘安花,李英年,等.青藏高原高寒湿地生态系统CO2通量.生态学报,2008,28(2):454-462
    [20]宋长春,王毅勇.湿地生态系统土壤温度对气温的响应特征及对C02排放的影响.应用生态学报,2006,17(4):625-629
    [21]Bubier Jill L., Crill Patrick, Mosedale Andrew, Frolking Steve, Linder Ernst..Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers.Global Biogeochemistry Cycles,2003 a,17(2):1066-1081
    [22]Bubier Jill L., Bhatia Gaytri, Moore Tim R., Roulet Nigel T., Lafleur Peter M. Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystem,2003b,6:353-367
    [23]Larmola T., Jukka A., Sari J., Jari T.H., Pertti J.M., Jouko S. Contribution of vegetated littoral zone to winter fluxes of carbon dioxide and methane from boreal lakes. Journal of Geophysical Research,2004,109.D19102,doi:10.1029/2004JD004875
    [24]Joiner D.W., Lafleur P.M., Mc Caughey J.H., Bartlett P.A. Interannual variability in carbon dioxide exchanges at a boreal wetland in the BOREAS northern study area. J. Geophys. Res.,1999,104:27,663-672
    [25]Liebig M.A., Doran J.W., Gardner J.C. Evaluation of a field test kit for measuring selected soil quality indicators. Agronomy Journal,1996,88(4):683-686
    [26]Moore T.R. Carbon dioxide evolution from subarctic peatlands in eastern Canada. Arctic Alpine Res.,1986,18,189-193
    [27]Raich J.W., Nadelhoffer K.J. Belowground carbon allocation in forest ecosystems:global trends. Ecology,1989,70:1346-1354
    [28]蒋延玲,周广胜,赵敏,等.长白山阔叶红松林生态系统土壤呼吸作用研究.植物生态学报,2005,29(3):411-414
    [29]卢妍,宋长春,王毅勇.三江平原毛苔草沼泽C02排放通量日变化研究.湿地科学,2008,6(1):69-74
    [30]杨继松,刘景双,孙丽娜.三江平原草甸湿地土壤呼吸和枯落物分解的CO2释放.生态学报,2008,(28)2:805-810
    [31]程建中,李心清,周志红,等.土壤CO2浓度与地表CO2通量的季节变化及其相互关系.地球与环境,2011,39(2):196-202
    [32]李兆富,吕宪国,杨青,等.三江平原小叶章湿地土壤的C02通量.南京林业大学学报,2003,27(3):51-54
    [33]丁维新,蔡祖聪.沼泽产甲烷能力和途径差异的机制.农村生态环境,2002b,18:53-57
    [34]Strayer R.F. and Tiedje J.M. Kinetic parameters of the conversion of methane precursors to methane in a hypereutrophic lake sediment. Applied and environmental microbiology,1978,36(2):330
    [35]Chanton JP, Whiting GJ, Showers WJ, Crill PM. Methane flux from Peltandra virginica: Stable isotope tracing and chamber effects. Global Biogeochemical Cycles,1992,6:15-31
    [36]Schutz H, Seiler W, Conrad R. Processes involved in formation and emission of methane in rice paddies. Biogeochemistry,1989,7:33-53
    [37]Banker BC, kludze HK, Alford DP, Delaune RD, Lindau CW. Methane sources and sinks in paddy rice soils:relationship to emissions. Agriculture Ecosystems and Environment,1995,553:243-251
    [38]Denier van der Gon HAC and Neue HU. Oxidation of methane in the rhizosphere of rice plants. Biol.Fertil.Soils,1996,22:359-366
    [39]Le Mer J. and P. Roger. Production, oxidation, emission and consumption of methane by soils:a review. European Journal of Soil Biology,2001,37(1):25-50
    [40]王明星.中国稻田甲烷排放.北京:科学出版社,2001
    [41]黄国宏,李玉祥,陈冠雄,等.环境因素对芦苇湿地CH4排放的影响.环境科学,2001a,22(1):1-5
    [42]Macdonald J.A., Fowler D., Hargreaves K.J., et al. Methane emission rates from a northern wetland; response to temperature, water table and transport. Atmospheric Environment,1998,32(19):3219-3227
    [43]Singh S.N., Kulshreshtha K., Agnibotri S. Seasonal dynamics of methane emission from wetlands. Chemosphere:Global Change Science,2000,2:39-46
    [44]Chang T.C. and Yanga S.S. Methane emission from wetlands in Taiwan. Atmospheric Environment,2003,37:4551-4558
    [45]Ding W X, Cai Z C, Wang D X. Preliminary budget of methane emissions from natural wetlands in China. Atmospheric Environment,2004,38(5):751-759
    [46]Gisela W., Sabine F., Kornelia Z., et al. Variability of soil methane production on the micro-scale:spatial association with hot spots of organic material and Archaeal populations. Soil Biology & Biochemistry,2000,32:1121-1130
    [47]黄国宏,肖笃宁,李玉祥,等.芦苇湿地温室气体甲烷(CH4)排放研究.生态学报,2001b,21(9):1494-1497
    [48]杨文燕,宋长春,栾兆擎,等.干旱年份三江平原沼泽甲烷(CH4)排放及影响因子.生态学杂志,2006,25(4):423-427
    [49]牟长城,刘霞,孙晓新,等.小兴安岭阔叶林沼泽土壤CO2、CH4和N20排放规律及其影响因子.生态学报,2010,30(17):4598-4608
    [50]宋长春,王毅勇,王跃思,等.季节性冻融期沼泽湿地CO2、CH4和N20排放动态.环境科学,2005,26(4):7-12
    [51]王玲玲,孙志高,牟晓杰,等.黄河口滨岸潮滩湿地CO2、CH4和N20通量特征初步研究.草业学报,2011,20(3):52-60
    [52]王毅勇,赵志春,宋长春.三江平原毛果苔草湿地CH4排放研究.湿地科学,2005,3(1):37-41
    [53]Prather M., Derwent R., Ehhalt D. et al. Other trace gases and atmospheric chemistry. In: Climate Change 1994, Cambridge University Press,1995
    [54]朱兆良,文启孝.中国土壤氮素.南京:江苏科学技术出版社,1992
    [55]Davidson E.A. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers J.E., Whitman W.B. (Eds.).Microbial production and consumption of greenhouse gases:Methane, nitrous oxides and halomethanes. American Society for Microbiology, Washington D.C.1991:219-235
    [56]莫江明,方运霆,林而达.鼎湖山主要森林土壤N20排放及其对模拟N沉降的响应.植物生态学报,2006,30(6):901-910
    [57]杨继松,刘景双,王金达,等.三江平原生长季沼泽湿地CH4、N2O排放及其影响因素.植物生态学报,2006,30(3):432-440
    [58]孙志高,刘景双,王金达,等.三江平原小叶章湿地开垦前后N20通量特征与影响因素分析.山东农业大学学报(自然科学版),2007,38(3):443-449
    [59]卢妍,宋长春,徐洪文.三江平原小叶章草甸N20通量日变化特征研究.干旱区资源与环境,2010,24(7):166-180
    [60]卢妍,宋长春,王毅勇,等.植物对沼泽湿地生态系统N20排放的影响.生态与农村环境学报,2007,23(4):72-75,94
    [61]Clements FE. Plant Succession:An Analysis of the Development of Vegetation. Washington, DC:Carnegie Institution of Washington,1916:1-512
    [62]付为国,李萍萍,卞新民,吴沿友.镇江内江湿地植物群落演替动态研究.长江流域资源与环境,2007,16(2):163-168
    [63]候本栋,马风云,邢尚军,宋玉民,刘艳.黄河三角洲不同演替阶段湿地群落的土壤和植被特征.浙江林学院学报,2007,24(3):313-318
    [64]李永亮,岳明,杨永林,薄乖民.新疆喀纳斯湖北端河漫滩湿地植物群落演替.生态学杂志,2010,29(8):1519-1525
    [65]吴统贵,吴明,萧江华.杭州湾滩涂湿地植被群落演替与物种多样性动态.生态学杂志,2008a,27(8):1284-1289
    [66]姚成,万树文,孙东林,钦佩.盐城自然保护区海滨湿地植被演替的生态机制.生态学报,2009,29(5):2203-2210
    [67]张韬,刘佳慧,王炜,布仁托娅,梁存柱,王立新.内蒙古东部湿地植被演替的初步研究.干旱区资源与环境,2008,22(6):145-151
    [68]李英年,赵新全,赵亮,等.祁连山海北高寒湿地气候变化及植被演替分析.冰川冻土,2003,25(3):243-249
    [69]倪志英,毛子军,孙龙,等.黑龙江省东部山地湿地主要植被类型及其演替规律的研究.植物研究,2003,23(3):356-362
    [70]葛继稳,蔡庆华,李建军,等.梁子湖水生植被1955-2001年间的演替.北京林业大学学报,2004,26(1):14-20
    [71]Czerepko J. A long-term study of successional dynamics in the forest wetlands. Forest Ecology and Management,2008,255:630-642
    [72]Arvid Odland. Development of vegetation in created wetlands in western Norway. Aquatic botany,1997,59(1):45-62
    [73]梅雪英,张修峰.崇明东滩湿地自然植被演替过程中储碳及固碳功能变化.应用生态学报,2007,18(4):933-936
    [74]贾建伟,王磊,唐玉姝,李艳丽,张文佺,王红丽,付小花,乐毅全.九段沙不同演替阶段湿地土壤微生物呼吸的差异性及其影响因素.生态学报,2010,30(17):4529-4538
    [75]付为国,李萍萍,吴沿友,卞新民.镇江内江湿地不同演替阶段植物群落小气候日动态.应用生态学报,2006,17(9):1699-1704
    [76]吴统贵,吴明,萧江华.杭州湾湿地不同演替阶段优势物种光合生理生态特性.西北植物学报,2008b,28(8):1683-1688
    [77]闫芊,何文珊,陆健健.崇明东滩湿地植被演替过程中生物量与氮含量的时空变化.生态学杂志,2006,25(9):1019-1023
    [78]Morris J., Kjerfve B., Dean J. Dependence of estuarine productivity on anomalies in mean sea level. Limnology and Oceanography,1990,35:781-988
    [79]刘子刚.湿地生态系统碳储存和温室气体排放研究.地理科学,2001,24(5):634-639.
    [80]Piceka T, Hana C, Duseka J. Greenhouse gas emissions from a constructed wetland-plants as important sources of carbon. Ecological engineering,2007,31:98-106
    [81]Hans B, Brian K S, Bent L. Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany,2001,69:313-324
    [82]Saleska S, Miller S D, Matross D M, et al. Carbon in Amazon forests:unexpected seasonal fluxes and disturbance-induced losses. Science,2003,302:1554-1557
    [83]Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary production caused by heat and drought in 2003. Nature,2005,437:529-533
    [84]Koehler A K, Sottocornola M, Kiely G. How strong is the current carbon sequestration of an Atlantic blanket bog? Global Change Biology,2010,17(1):309-319
    [85]Waddington J M and Roulet N T. Carbon balance of a boreal patterned peatland. Global Change Biology,2000,6(1):87-97
    [86]Oechel W C, George L V, Steven J H, et al. Change in arctic CO2 flux over two decades: effects of climate change at Barrow, Alaska. Ecol Appl,1995,5(3):846-855
    [87]Mitsch W J, Gosselink J G. Wetlands (Fourth Edition). John Wiley & Sons Inc.:Hoboken, New Jersey, USA,2007
    [88]Zona D, Oechel W C, Kochendorfer J, et al. Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra. Global Biogeochem Cycles,2009,23(2):2013
    [89]张丽华,宋长春,王德宣.氮输入对沼泽湿地碳平衡的影响.环境科学,2006,27(7)1257-1263
    [9O]郝庆菊,王跃思,宋长春,江长胜.垦殖对沼泽湿地CH4和N20排放的影响.生态学报,2007,27(8):3417-3426
    [91]展茗,曹凑贵,汪金平,蔡明历,袁伟玲.复合稻田生态系统温室气体交换及其综合增温潜势.生态学报,2008,28(11):5461-5468
    [92]孟祥楠,赵雨森,郑磊等.嫩江沙地不同年龄樟子松人工林种群结构与林下物种多样性动态.应用生态学报,2012,23(9):2332-2338
    [93]Koops J G, Oenem A O, Van Beusichem M L. Denitrification in the top and sub soil of grassland on peat soils. Plant and Siol,1996,184(1):1-10
    [94]于克伟,陈冠雄,杨思河,等.几种旱地农作物在农田N2O释放中的作用及环境因素的影响.应用生态学报,1995,6(4):387-391
    [95]王毅勇,郑循华,宋长春,赵志春.三江平原典型沼泽湿地氧化亚氮通量.应用生态学报,2006,17(3):493-497
    [96]Backstrand K, Crill P M, Jackowicz-Korczynski M, et al. Annual carbon gas budget for a subarctic peatland, Northern Sweden. Biogeosciences,2010,7(1):95-108
    [97]Lund M, Lindroth A, Christensen T R, et al. Annual CO2 balance of a temperate bog. Tellus B,2007,59(5):804-811
    [98]Rinne J, Riutta T, Pihlatie M, et al Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus B,2007,59(3):449-457
    [99]Jackowicz K Marcin, Christensen T R, Bakstrand K, et al. Annual cycle of methane emission from a subarctic peatland. Journal of Geophysical Research,2010,115(G2): G02009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700