低碱度碱矿渣水泥固化放射性废物性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是人类赖以生存和发展的物质基础。随着全球可用石油、天然气和煤炭等资源的日益短缺以及“京都协议”的贯彻执行,核能已被认为是未来最重要、最有潜力的新型能源之一。核能生产过程中必然产生一定的核废料,尤其是核电站及其它核利用在运行中产生大量的高、中、低放射性废物。在这些废物中,中、低放射性废物(ILW、LLW)超过95%。因此,如何安全处置核废物已成为制约核能发展的重要障碍之一。
     研究和应用表明,采用水泥基材料固结核废物是经济、有效的处置方式。使用的胶结材可以是硅酸盐水泥(OPC)、复合硅酸盐水泥等。比较而言,采用复合水泥系统固结核废物具有高效、低水化热、低成本等优点,是目前的主要应用方式。但这种固化体系碱度很高(pH可超过13.0),即使矿渣(Blast Furnace Slag, BFS)取代水泥达到90%,体系碱度仍然维持在12.5左右。高碱度液相易与中、低放射性废物中的活泼金属如镁和铝等发生腐蚀发应,产生大量氢气并导致体系过度膨胀甚至破坏,为放射性废物的处置带来安全隐患。因此,选择碱度更低的固结系统十分必要。
     熟料矿物的水化是硅酸盐水泥系统和复合硅酸盐水泥系统碱度的主要来源。取消熟料的使用是降低系统碱度的有效技术措施。本文采用碱矿渣水泥体系作为固结核废物的固化基体,并使用中性盐Na2SO4和CaSO4激发矿渣(Ground Granulated Blastfurnace Slag, GGBS)的活性以期降低体系的碱度。试验主要研究了该体系(中性盐-矿渣-粉煤灰胶结材体系)的凝结时间及标准稠度用水量、抗压强度、碱度、自由水含量、对金属Al的腐蚀状况及Cs+的浸出率,并对该体系的微观结构进行了分析。试验结果表明:
     ①矿渣-硅酸盐水泥胶结材体系(BFS/OPC)凝结时间短(3~5.5h)。虽然早期强度较高,但后期发展缓慢,60天强度仍低于25.0MPa。该体系对Cs+的滞留能力差,养护至28天龄期时,Cs+浸出率仍高达60%以上。并且体系各龄期碱度高,尤其是新拌浆体,其碱度超过13.0,使得该体系内金属发生显著的腐蚀现象。因此,该体系不宜直接用于固结放射性废物。
     ②中性盐-矿渣-粉煤灰胶结材体系初凝时间可控制在4h以上,终凝时间可控制在48h以内。早期强度发展缓慢,但28天强度可达到20~35.0MPa且后期强度持续增长。各龄期碱度均可控制在12.0以内,并随着PFA掺量的增加,碱度进一步降低,一定条件下可降至11.0以下;体系自由水含量低,可控制在10~15.0%之间,较低的碱度及自由水含量为避免金属发生腐蚀提供了有利条件。
     ③激发剂掺量适当时,中性盐-矿渣-粉煤灰胶结材体系内未发生明显的金属腐蚀现象,且Cs+浸出率低,本研究条件下28天浸出率低于32.0%。因此,该体系能够满足固结核废物的基本要求。
     ④中性盐-矿渣-粉煤灰胶结材的主要水化产物为低碱度水化硅酸钙、钙矾石型水化硫铝酸钙和杆沸石型水化硅铝酸钙钠。三者相互结合,形成致密的结构,提高了固化体的强度及对核素离子的滞留能力。另外,在水化后期,仍残留一定量未参与水化反应的粉煤灰。
     ⑤BFS/OPC胶结材体系在水化期间无明显的钙矾石类和杆沸石类水化产物的生成,水化后期仍有未反应的矿渣残留,结构较疏松,对核素离子滞留能力差。
The energy sources is substantial basic on which human depend to survive and develop. With reduced oil, gas and coal production and the obligation for implementing the Kyoto Protocol, nuclear power is regarded as a kind of most new important potential source. Production of nuclear power must bring some nuclear wastes, especially a mass of high, intermediate and low level radioactive wastes come from nuclear power plants and other nuclear power use. More than 95% of the bulk of the wastes is intermediate and low level radioactive wastes (ILW and LLW). So, how to deal with nuclear wastes safely is one of the importent barriers for promoting nuclear power.
     Research and application indicate that it is economical and effective to immobilise nuclear wastes by using cementitious materials, which can be Porland cement or composite Porland cement. Using composite cement system to immobilise nuclear wastes is a primary manner now, which has several advantages of higher efficiency, lower heat of hydration and inexpensive price comparatively. Nonetheless, the high internal pH (typically above 13) will bring security hidden trouble, because it can cause the corrosion of metals such as aluminium and magnesium in ILW and LLW, excess generation of hydrogen and leading to expansion. Although replacement of OPC with up to 90% blast furnace slag (BFS) is used, the pH still remains about 12.5. So, it’s very important to choose an immobility system have lower internal alkalinity.
     The hydration of cinker minerals is primary alkalinity source of Porland cement system and composite cement system, so it’s an effectual technique measure to reduce alkalinity by avoiding cinker use. The alkali-activated slag cement (AASC) system being immobility concretion have been used in this paper, and reduce system’s alkalinity by using neutral salt Na2SO4 and CaSO4 to activate ground granulated blastfurnace slag (GGBS). In this paper, the setting time and Water for standard consistency,compressive strength, alkalinity, free water content, Al corrosion and Cs+ leaching rate of neutral salt-slag-fly ash cementitious materials were studied, and microcosmic structure of this system was analysed. The result of testing shows:
     ①The setting time of BFS/OPC is short (3~5.5h). Although this system could get to a higher early strength, evening strength increased slowly and the strength at 60 days is lower than 25.0MPa. The system’s ability to immobilising Cs+ was weak, which at 28 days curing age, the Cs+ leaching rate was more than 60% all the same. On the other hand, because the alkalinity were high of this system at every age, which alkalinity of fresh paste was more than 13.0 especially, marked metal corrosion happened in system. So, this system didn’t adapt to immobilise nuclear wastes directly.
     ②The initial setting time of neutral salt-slag-fly ash binding materials could be controlled more than 4h and the final setting time could be controlled within 48h. Early strength developed slowly, but compressive strength could get to 20~35.0 MPa at 28 days ages and evening strength increased continuously. The alkalinity could be controlled within 12.0 at every age, and with an increase of the PFA content, the alkalinity decreased much more, less than 11.0 indeed under certain condition. The free water content of this system was low and could controled between 10.0 and 15.0 percent. The lower alkalinity and free water content became to an advantage to avoid metal corrosion.
     ③In the neutral salt-slag-fly ash binding materials, there didn’t happen metal corrosion evidently under proper activator content and Cs+ leaching rate was low, which is less than 32.0% at 28 days under this researching condition. So this system can satisfy the basic demand of immobilising nuclear wastes.
     ④The main hydration products of the neutral salt-slag-fly ash binding materials are low-alkali hydrous calcium silicate, ettringite and calcium sodium sillo-aluminate hydrate similar to thomsonite, and due to these products combining one another to form compact structure, the strength and immovable ability for nuclear ion of concretions increases. In addition, some quantity of PFA are remained in concretions at hydration evening however.
     ⑤During hydration, there didn’t have ettringite and thomaonite products in BFS/OPC binding material and BFS are remained in concretions at hydration evening however. The immobilising ability for nuclear ion was weak due to looser structure.
引文
[1] 国际原子能机构世界核电现状[J].国际原子弹子能通报.1999,41(2)
    [2] 徐及明.关于我国核能发展技术之我见[J].Nuclear PHysics Review,1997,14(1): 59-61
    [3] 赵仁恺.中国核电的可持续发展[J].中国工程科学,2000,2(10): 33-41
    [4] Nirex. Radioactive Wastes in the UK: A summary of the 2001 inventory, Nirex Report N/041, October, 2002, 14pp
    [5] Department for Trade and Industry, U.K.. Energy White Paper: our energy future – creating a low carbon economy. published by TSO (The Stationery Office), ISBN: 0-10-157612-9, February, 2003, 138pp
    [6] 王宝贞.《放射性废水处理》(上册).科学出版社,1979
    [7] 江藤秀雄等.辐射防护[M].崔朝晖译.原子能出版社,1986
    [8] Gordon D E. Solid radiation waste form development in the United States[M].CONF-8005107, 1980
    [9] F.P.Glasser. Progress in the immobilization of radioactive wastes in cement[J]. Cem Concr Res, 1992; 22(2/3):201-216
    [10] G.V.Mcvag. Sci basis for Nucl Waste ManagementⅧ [M].MRS Proc. Elsevies, NY, 1983:575-582
    [11] Weeren H O, Moon J G, McDaniel E W. Waste disposal by shale fracturing at ORNL[J]. In: Sci Basis for Nucl Waste ManagementⅠ , Plenum Press, NY, 1979:257-278
    [12] Stinton D P, McDaniel E W, Weeren H O. Partitioning of cesium in pHases by grouted waste injection[J]. In:Mater Res Symp Proc, Vol 26, North Holland, NY, 1984:521
    [13] 王显德,孙明生.十年来低、中水平放射性废液处理技术德研究和发展[J].核化学与放射化学. 1990;12(3):65-67
    [14] C R. Wilding. The performance of cement based systems[J]. Cem Concr Res, 1992; 22(2/3):299-300
    [15] R. Koster. Cementation of radioactive waste in the Federal Republic of Germany[J]. In: Waste Management 85, Am Nucl Soc,1985:487-491
    [16] D. Mangin, M. Guerin, C. Lattand, et al. Immobilization into concrete of liquid radwaste, nuclear, and hazardous waste management[J]. In: Spectrum 88, Am Nucl Soc, LaGrange Park, IL, 1988:264-267
    [17] 程理,杜大海,龚立.模拟中低放废物水泥固化体在地下水中浸出性能德研究[J].辐射防护,2000,20(5):299-303
    [18] 李玉香,易发成,钱光人等.新型放射性废物固化胶凝材料的研究[J].西南工学院学报,1999,14(2):25-30
    [19] 赵怀红.中低放废液大体积浇注水泥固化及铯固化机理[D].南京大学,2002
    [20] Roy D M. Binding materials in nuclear waste management. In: Proc 9th Int Cong chem., Vol VI, New Delhi, India, 1992: 88
    [21] Wu Xuequan, Yan Sheng, Shen Xiaodong, et al. Alkali-activated slag cement based radioactive waste forms. Cem Concr Res, 1991,21(1): 16
    [22] 沈晓冬,严生,吴学权等.碱矿渣水泥固化模拟高放废液的研究.核科学工程,1992,12(4): 364
    [23] 史才军,傅国飞,唐明述等.SrO.SiO2 的水热合成.硅酸盐通报,1991,10(2): 15
    [24] 严生,沈晓冬,吴学权等.高放废液碱矿渣水泥固化体性能的研究.第五届全国水泥化学及测试方法学术会议论文集,南京,1992: 224
    [25] Yanaqisawa, Nishioka M, Yamasaki, N Immobilization of radioactive wastes by hydrothermal hot pressing. Amceram Soc Bull, 1985,64(12):1563
    [26] Yamasaki M, et al. Immobilization of radioactive wastes in hydrothermal synthetic rock: hydrothermal synthesis of pullucite. J Nucl Sci Technol, 1984,21(7): 558
    [27] 史才军等.水泥固化高放射性废物的科学基础[J].南京化工学院报,1990,12(4)
    [28] 严生等.高放废液碱矿渣水泥固化体性能的研究.第六届水泥化学及测试方法学术会议论文集,1992,78-85
    [29] D. M. Roy. Advanced cement system, including CBC, DSP, DMF. In: 9th Int Cong Chem Cem, Vol I, Newe Dehli, India, 1992:357-365
    [30] Broderson K, Nilddon K. Pores and cracks in cemented waste and concrete[J]. Cem Concr Res, 1992, 22(2/3): 405-418
    [31] Talling B. Clinker-free concrete based on alkali-activated slag. Partek Corporation[J]. SF-21600 Pargas, Finland
    [32] 沈威等.水泥工艺学[M].武汉工业大学出版社,1991
    [33] F. P. Glasser, J. Marr. The alkali binding potential of OPC and blended cements[J]. Cem, 1985, 2: 85-89
    [34] S. Komaneni, D. M. Roy, R. Roy. Al-substituted tobermorite: shows cation exchange[J]. Cem Concr Res, 1982, 12(6): 773
    [35] J. M. Lameille, et al. Retention of Cobalt, Cesium, and Strontium in the Hydrates of C3S, C3A, and Gypsum[J]. J. Am. Soc. Vol.70, No.8, 1987
    [36] 芦令超,沈晓冬,严生等.模拟高放废物碱矿渣水泥基固化体的性能研究[J].硅酸盐学报,1997, 25(2): 139
    [37] 沈晓冬.南京化工大学博士论文.1994
    [38] Talling B, Brandstetr J. Present state and future of alkali-activated slag concretes. Trondheim Con, 1989: 1519
    [39] 吴中伟.高技术混凝土.硅酸盐通报,1994,1:41
    [40] 袁润章,高琼英,欧阳世翕.矿渣结构与水硬活性及其激发机理.武汉工业大学学报,1987,3:297
    [41] 吴学权.矿渣水泥水化动力学研究.硅酸盐学报,1988,16(5):423
    [42] 孙家英,诸培南,吴初航.矿渣在碱性溶液激发下的水化机理探讨.硅酸盐通报,1988,7(6):16
    [43] 禹尚仁,王悟繁.无熟料硅酸盐矿渣水泥的水化机理.硅酸盐学报,1990,18(2):104
    [44] Roy DM, Silsbee MR. Alkali activated cementitous materials: An overview In: Mat Res Soc Symp Proc, 245, 1992, 153
    [45] Teoreanu I. The interaction mechanism of blast-furnace slag with water-the role of the activating agents. iL Cemento, 1991, 2: 91
    [46] Zhou Huanhai, Wu Xuequan, Xu Zhongzi, et al. Kinetic study on hydration of alkali-activated slag. Cem Concr Res, 1993, 23: 1253
    [47] 蒲心诚,甘昌成,何桂等.碱矿渣混凝土耐久性研究.混凝土.1991,5:13
    [48] Krivenko P V. Alkaline cements. In: 9th Int Cong Chem Cem, Vol IV, New Dehli, India, 1992: 482
    [49] 石川敏彦,高木哲夫,河木洋二等.Na2O-CaO-SiO2 ガラスのァルカリ溶液にょゐ侵食.窑业协会志.1979,87(1):57
    [50] A.Kumar, D.M.Roy. Retardation of Cs+ and CI+ Using Blend Cement Admixture[J]. J.M.Ceram.Soc. 1980, 69(4)
    [51] 沈晓冬.高放废物的水泥固化.硕士学位论文.南京化工学院.1985
    [52] Sharp, J. H., Milestone, N. B., Hill, J. and Miller, E. W. Binding systems for encapsulation of intermediate level waste, The 9th International Conference on Radioactive Waste Management and Environmental Remediation. September 21-25, 2003, Oxford, England, 10pp
    [53] Hayes, M. RAT 0754: To Review Previous Experience with Respect to Corrosion Rates of Aluminium on Immobilisation in BFS/OPC grouts. BNFL reference, 2000
    [54] Deja, J. Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cement and Concrete Research 32 (2002), pp. 1971-1979
    [55] Qian, G., Li, Y., Yi, F. and Shi, R. Improvement of metakaolin on radioactive Sr and Cs immobilization of alkali-activated slag matrix. Journal of Hazardous Materials B92 (2002), pp. 289-300
    [56] Wang, S.D., Scrivener, K.L. and Pratt, P.L. Factors affecting the strength of alkali-activated slag. Cement and Concrete Research, Vol. 24, No. 6, pp. 1033-1043, 1994
    [57] 杨长辉,蒲心诚.JK 水泥与混凝土缓凝剂研究.化学建材,1996, 12, (6):262-263
    [58] 徐彬,蒲心诚.固态碱组分矿渣水泥水化过程研究.混凝土与水泥制品,Vol.3,1998
    [59] 陈友治,蒲心诚,张华.新型碱矿渣混凝土技术.建筑技术, Vol.1,1999
    [60] 陈友治,蒲心诚.中性钠盐碱矿渣水泥水化动力学研究.重庆建筑大学学报,Vol.4,1999
    [61] 张华,蒲心诚.碱矿渣水泥基铬渣固化体的性能研究.重庆环境科学,Vol.3,1999
    [62] Y. Bai , C.H. Yang and N.B. Milestone. The Potential Use of Low pH Alkali Salts Activated GGBS to Immobilise Nuclear Wastes. Containing Reactive Metals

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700