有机胺废水处理技术实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机胺废水总氨含量很高,且废水中还含有一些难生物降解和生物抑制性的物质,未经处理不能直接排入自然水体。目前国内外对该种废水的处理还没有很好的解决办法。本文对有机胺及其衍生产品生产过程中所产生的混和废水进行生化处理研究,在实验的基础上提出一套有效的组合工艺,即葡萄糖共代谢基质下两相厌氧处理—磷酸铵镁化学沉淀—SBR组合工艺,并对各个工艺各阶段的选择和特性做出了深入的分析。
     研究结果表明:添加葡萄糖作为共代谢基质的两相厌氧处理可以明显提高废水的可生化性,较佳反应工艺条件为:葡萄糖溶液(COD=2000 mg·L-1)与废水体积比为1:5时,水解酸化段的HRT为12h,厌氧段的HRT为24h,出水COD稳定在550 mg·L-1左右,氨氮浓度稳定在600 mg·L-1。厌氧处理后的出水经磷酸铵镁沉淀(pH=10,n(Mg2+):n(NH4+)=1.2,n(PO43-):n(NH4+)=1.1,t=10min)后满足了SBR反应器处理要求,整套工艺处理后出水COD稳定在230mg·L-1左右,氨氮稳定在15 mg·L-1以下。组合工艺系统总COD去除率可达89%左右,氨氮去除率可达79%左右,说明该组合工艺处理有机胺废水是可行的。
     紫外光谱扫描表明:有机胺废水中主要的显色物质为含氮杂环,两相厌氧预处理和SBR反应器中的缺氧环境破坏了废水中含氮杂环的发色基团,使得紫外吸收光谱最大吸收峰红移,吸收强度减弱。通过初步分析,认为在厌氧和缺氧条件下通过环上的羟基化过程使得含氮杂环的结构被打破,被分解为简单化合物。
Total nitrogen content is high in organic amine wastewater which contains some difficult biodegrading and bio-inhibitory compounds. If this kind of wastewater was not treated effectively, it can not discharge into natural waters directly. At present, we have not proper method to solve the difficult problem at home and abroad. Wastewater which was discharged during the production of organic amine and its derivatives was studied by biochemical treatment in this paper. Based on the experiment, a new combined process of“a Co metabolism two-phase anaerobic—magnesium ammonium phosphate(MAP) chemical precipitation—SBR process”was applied to treat the organic amine wastewater. Also the technology and property of each process stage were analyzed deeply.
     The results of the experiment indicated that the addition of glucose in two-phase anaerobic process can improve the biodegradability of the wastewater evidently. It also suggested that COD removal rate and the transformation rate of ammonia nitrogen were both highest when the volume ratio between glucose solution (COD=2000 mg·L-1) and wastewater was 1:1.5, the acid pond HRT 12h and the anaerobic reactor HRT 24h. The outflow COD maintained 550 mg·L-1 and the outflow ammonium nitrogen was about 600 mg·L-1 when the inflow COD was around 2300mg·L-1 and the inflow ammonium nitrogen was about 70 mg·L-1. Then the effluent that had been treated by two-phase anaerobic was disposed by MAP chemical precipitation method. In actual operation, it is appropriate to control the operation conditions of pH=10, n(Mg2+):n(NH4+)=1.2, n(PO43-):n(NH4+)=1.1, t=10min. At last, the effluent was treated by SBR reactor. The outflow COD maintained 230mg·L-1 and ammonium nitrogen maintained below 15mg·L-1. The total COD and ammonium nitrogen removal rate of the combined process was 89% and 79% respectively. The results showed that the combined process is feasible to treat the organic amine wastewater.
     In this paper we try to explain the mechanism of organic compound by using UV spectrophotometer that scanning wavelength in and out water. The experiment also indicated that the main colourated substances were heterocyclic compounds. The results showed that the Coloring Structure Unit can be broke in anaerobic and anoxia condition. The most absorb wavelength excursed to long wave in UV light extent and the absorption strength reduced. It was considered that the structure of nitrogen heterocyclic compound was broken by hydroxylation. Then the intermediate product was degraded into simple compounds.
引文
[1]尤向阳.甲胺及下游产品二甲基甲酰胺概述和发展前景探讨[J].化工中间体, 2005, 12: 5-7
    [2]李丽,邵百祥.甲醇气相胺化制甲胺的工艺技术[J].精细与专用化学品, 2004, 12(24): 7-9
    [3]杨德琴.甲胺技术新进展[J].精细化工原料及中间体, 2007, 11: 8-10
    [4]谢国剑.甲胺生产过程的优化[J].湖南化工, 1999, 29(3): 39-44
    [5]樊森,刘秀伟,赵怡丽.甲胺合成催化剂的研究现状[J].河南化工, 2000, (1): 5-6
    [6]安静,黄凤兴,刘晓红等.高选择性合成二甲胺催化剂中试研究[J], 2001, 30(6): 437-440
    [7]姜向东,林遇春,方志德等.甲胺择形催化剂的研究[J].河南化工, 2002, (5): 11-14
    [8]许锡恩,张革利,田松江.合成二甲胺高选择性催化剂的研究[J], 1997, 26: 13-16
    [9]张福来,王日杰.合成胺的工业化过程[J].天津化工, 2003, 17(3): 23-27
    [10]褚睿智,崔群,姚虎卿. NaHM催化合成甲胺反应的工艺[J].南京工业大学学报, 2004, 26(2): 43-47
    [11]葛新泉. N,N—二甲基甲酰胺的生产技术与市场分析[J].化学工业与工程技术, 2002, 23(4):10-13
    [12]王东.二甲基甲酸胺的合成应用及发展建议[J].化工中间体, 2002, (22): 17-19
    [13]刘兴泉,唐毅,戴汉松等. N,N—二甲基甲酰胺的生产与应用[J].化工科技, 2002, 10(1): 46-49
    [14]肖锦平. N,N—二甲基乙酰胺合成路线与市场前景[J].化工之友, 2006, (2): 28-29
    [15]张亚利.二甲基乙酰胺的合成进展及应用[J].河北化工, 2006, (1): 41-42
    [16]钱松.二甲基乙酰胺的产能和市场[J].精细化工原料及中间体, 2006, (2): 36-37
    [17]张晓阳.乙酸与二甲胺合成N,N—二甲基乙酰胺的研究[J]. 2006, 44(2): 15-17
    [18] Imamura S. Catalytic and noncatalytic wet oxidation. Ind EngChem. Res., 1999, 38: 1743-1753
    [19]钱易,米祥友.现代废水处理新技术[M].北京:中国科学技术出版社. 1993. 463-464
    [20]聂永平,邓正栋,袁进.苯胺废水处理技术研究进展[J]. 2003, 4(3): 77-80
    [21]邱艳华,赵剑强,刘卫东.常温条件下UASB+SBR工艺处理甲胺、甲醇废水的试验研究[J].上海环境科学, 2008, 27(2): 56-59
    [22]王会芳.化学沉淀法脱氮工艺条件和甲胺废水中氨氮去除的研究[J].当代化工, 2008, 37(3): 268-272
    [23] Kim, S.G., Bae, H.S., Lee, S.T.. A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways[J]. Arch.Microbiol. 2001, 176: 271-277
    [24] Kim, S.G., Bae, H.S., Oh, H.M., Lee, S.T.. Isolation and characterization of novel halotolerant and/or halophilic denitrifying bacteria with versatile metabolic pathways for the degradation of trimethylamine [J]. FEMS Microbiol. Lett. 2003, 225: 263-269
    [25]宋珊珊,张林生. N,N一二甲基甲酞胺(DMF)废水处理研究进展[J].江苏环境科技, 2007, 20(3): 67-70
    [26]王毅军,张振家. EGSB工艺处理DMF废水的试验研究[J].工业水处理, 2007,27(7): 30-32
    [27]王毅军,张振家. EGSB—接触氧化工艺处理DMF废水[J].工业用水与废水, 2007, 38(1): 94-95
    [28] F. J. O'NEILL, K. C. A. BROMLEY-CHALLENOR, R. J. GREENWOOD and J. S. KNAPP: Bacterial growth on aniline: implications for the biotreatment of industrial wastewater[J], wat.res. 2000, (34)18: 4397-4409
    [29]潘燕燕,刑国平,颜玲等.缺氧折流板反应器处理苯胺废水的研究[J].环境保护科学, 2002,28(1): 24-25
    [30]邢国平,张云霞,朱文亭等.生物膜法处理2,3-二甲基苯胺废水试验研究[J].河南化工, 2003,(1): 20—22
    [31] Kuo-Ling Ho, Ying-Chien Chung, Yueh-Hsien Lin, Ching-Ping Tseng. Biofiltration of trimethylamine, dimethylamine, and methylamine by immobilized Paracoccus sp.CP2 and Arthrobacter sp.CP1[J]. CHEMOSPHERE, 2008, 22: 1-7
    [32]古杏红,耿书良,李峰.厌氧水解—生物接触氧化法处理苯胺类化工废水[J].给水排水, 2002, 28(1): 69—70
    [33] Giti Emtiazi Mohamad Satarii, Fatemeh Mazaherion. The utilization of aniline, chlorinated aniline and aniline blue as the only source of nitrogen by fungi in water[J]. Wat.Res., 2001,35(5):1219)1224
    [34] Hyung-Yeel Kahng, Jerome J. Kukor, Kye-Heon Oh. Characterization of strainHY99, a novel microorganism capable of aerobic and anaerobic degradation of aniline[J]. FEMS Microbiology Letters, 2000, 190: 215-221
    [35]胡虹,王一男,施力.硝基苯、苯胺混合废水的生化处理实践[J].上海化工, 2006, 31(11): 1-3
    [36]黄明,朱云,肖锦等.高浓度难降解有机工业废水的处理技术评价[J].工业水处理, 2004,24(4): 1-5
    [37]潘志彦,王泉源,包贞等.高浓度毛发染料中间体废水的处理[J].浙江工业大学学报, 2002, 30(2): 129-133
    [38] Serikawa R M, Isaka M, Su Q, et al. Wet electrolytic oxidation of organic pollutants in wastewater treatment[J]. Journal of Applied Electrochemistry,2000, 30: 875-883
    [39]何苗.焦化废水中有机污染物经厌氧酸化后对好氧生物降解性的影响[J].中国环境科学, 1998, 18(3): 276-279
    [40]郭书海,张海荣,曲久辉等.稠油乳化段废水厌氧处理过程中COD和BOD的协同变化及可生化降解性研究[J].环境科学学报, 2002, 22(1): 29-33
    [41]周万鹏,汪弋.无机膜—厌氧水解—SBR好氧工艺在油脂洗涤废水中的应用[J].岳阳师范学院学报, 2002, 15(1): 49-52
    [42]胡小兵,钟海英.过滤式厌氧折流反应器处理焦化废水研究[J].工业水处理, 2002, 22(1): 31-33
    [43]王健. A2/O2工艺在焦化废水处理中的应用[J].环境科学与管理, 2008, 33(8): 112-114
    [44]何苗.厌氧-缺氧/好氧工艺与常规活性污泥法处理焦化废水的比较[J].给水排水, 1997, 2(6): 31-33
    [45]夏玉龙.对含己内酰胺综合废水的生化处理[J].污染防治技术, 2007, 20(6): 82-84
    [46]相会强,张杰,于尔捷等.水解酸化-生物接触氧化工艺处理制药废水[J].给水排水, 2002, 28(1): 54-56
    [47]何苗,张晓健,瞿福平.杂环化合物及多环芳烃厌氧酸化降解性能的研究[J].中国给水排水, 1997, 13(3): 13-16
    [48]任南琪,高郁.两相厌氧-好氧工艺处理中药生产废水中国给水排水[J]. 2003, 19(6): 72-73
    [49]李东伟,袁雪,李斗等.二相厌氧处理有机废水过程特性及生物相研究[J].重庆建筑大学学报, 2006, 28(2): 83-85
    [50]孙文杰,刘勇弟.微生物共代谢作用的研究进展[J].安阳师范学院学报, 2003, (6):23-25
    [51] H.V.Hendiriksen, B.K.Ahring. Anaerobic Dechlori-nation of Pentachlorophenol in Fixed-Film and Upflow Anaerobic Sludge Blanket Reactors Using Different In-ocula[J]. Biodegradation, 1992, 3: 339
    [52] J.W.Grave, T.W.Joyce. A Critical Review of the Ability of Biological Treatment Systems to Remove Chlo-rinated Organics Discharged by the Paper Industry[J]. WaterSA., 1994, 20: 155-160
    [53]付莉燕,文湘华,钱易.厌氧条件下活性翠蓝生物降解性能研究[J].上海环境科学, 2001, 20(6): 274-276
    [54]朱文亭,郭东敏,潘艳艳.好氧共基质代谢条件下处理制药废水的实验研究[J].环境保护科学, 2003, 29(12): 15-17
    [55]赵文玉,王启山,赵孟亮.白糖为共基质处理有机磷农药废水的试验研究[J].环境污染与防治, 2004, 26(5): 375-378
    [56]董春鹃,吕炳南,陈志强等.处理生物难降解物质的有效方式—共代谢[J].化工环保, 2003, 23(2): 82-85
    [57]姜燕,马毅,吴桂峰等.添加不同共代谢基质处理苯胺废水的研究[J].上海化工, 2007, 32(11): 1-3
    [58]王璟,张志杰,孙先锋.应用生物强化技术处理焦化废水难降解有机物[J].城市环境与城市生态, 2000, 13(6): 42-44
    [59] Chang, C.T., Chen, B.Y., Shiu, I.S., Jeng, F.T.. Biofiltration of trimethylamine-containing waste gas by entrapped mixed microbial cells [J]. Chemosphere. 2004, 55: 751-756.
    [60] Ding, Y., Shi, J.Y., Wu, W.X., Yin, J., Chen, Y.X.. Trimethylamine(TMA) biofiltration and transformation in biofilters[J]. J. Hazard. Mater, 2007, 143: 341-348.
    [61]沈耀良,王宝贞.废水生物处理技术[M].北京:中国环境科学出版社, 2006
    [62]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社, 1998
    [63] Rajeshwar K, et al1 Electrochemistry and the environment [J ] . J Appl Electrochem , 1994 , 24 : 1077-1091
    [64]李少婷,张青,汤亚飞等.电催化氧化处理难降解废水技术研究进展[J].四川环境, 2005,24(5): 83-87
    [65] Rajeshwar K, Ibanez J G1Environmental Electrochemistry: Fun–damentals and Applications in Pollution Abatement[M]. San Diego ,CA : Academic Press , 1997. Chapter 51
    [66]冯玉杰,李晓岩,尤宏等.电化学技术在环境工程中的应用[M].北京:化学工业出版社, 2002
    [67]李天成,朱慎林.电催化氧化技术处理苯酚废水研究[J].电化学, 2005 ,11(1): 101-104
    [68]文艳芬,唐建军,周康根. MAP化学沉淀法处理氨氮废水的工艺研究[J].工业用水与废水,2008,39(6): 33-36
    [69]刘文辉,武奇,刘增超等.化学沉淀/Fenton法处理垃圾渗滤液的研究[J].工业安全与环保, 2008, 34(5): 43-45
    [70]晏波,胡成生,朱凡等.磷酸铵镁沉淀法去除NH3-N的影响因素及应用研究[J].环境化学, 2005, 24(6): 685-688
    [71] Boon A G. Sequencing batch reactors: A review [J]. Journal of the Chartered Instit-ution of Water and Environmental Management, 2003, 17(2):68-73
    [72]邓良伟.水解—SBR工艺处理规模化猪场粪污研究[J].中国给水排水, 2001, 17(3): 8-11
    [73] Bertin L,Majone M.et.al. Anaerobic fixed—Phase biofilm reactor system for the degradation of the low—molecular weight aromatic compounds occurring in theeffluents of anaerobic digesters treating olive mill wastewaters. Journal of Biotechnology, 2001, 87(2): 161—177
    [74]孙剑辉,魏瑞霞,杨明耀.缺氧/好氧+SBR工艺去除亚铵法造纸废水中的氨氮[J].水处理技术, 2005, 31(1): 53-56
    [75] Sims G K, Sommers L E , Konopka A. Degradation of pyridine by Micrococcus lutens isolated from soil[J]. Appl. Environ.Microbiol., 1986, 51(5): 963-968.
    [76] Sideropoulos A S , Secht S M. Evaluation of microbial testingmethods for the mutagenicity of quinoline and its derivatives[J]. Wat.Res., 1984, 11 : 59—66
    [77]孙丽娟,李咏梅,顾国维.含氮杂环化合物的生物降解研究进展[J].四川环境, 2005, 24(1): 61-73
    [78]李咏梅,李文书,顾国维.缺氧条件下含氮杂环化合物吲哚和吡啶的共代谢研究[J].环境科学, 2006, 27(2): 300-304.
    [79] Fetzner S. Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions[J]. Appl. Microbiol. Biotechno, 1998, 49: 237-250.
    [80] Li Y M, Gu G W, Zhao J F ,et al. Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated sludge[J]. Process Biochemistry, 2001, 37(1): 81-86
    [81]李咏梅,顾国维,赵建夫.焦化废水中几种含氮杂环化合物缺氧降解机理[J].同济大学学报(自然科学版), 2001, 29(6): 720-723.
    [82]申海虹.含氮杂环化合物的缺氧生物降解研究[D].上海:同济大学硕士论文,2002
    [83]李咏梅,顾国维等.焦化废水中几种含氮杂环化合物缺氧降解机理[J].同济大学学报, 2001, 29(6): 720-723.
    [84]马娜.几种含氮杂环化合物生物降解研究[D].上海:同济大学工程硕士学位论文, 2003
    [85]郑广宏.含氮杂环有机化合物缺氧生物降解特性及机理研究[D].上海:同济大学博士学位论文, 2003
    [86]黄量,于德泉.紫外光谱在有机化学中的应用[M].北京:科学出版社, 1988
    [87]洪山海.光谱解析法在有机化学中的应用[M].北京:科学出版社, 1980
    [88]张自杰,马若冰,刘玉川.某些化学物质的分子结构对生物降解的影响[J].中国给水排水,1999, 15(5): 22-24
    [89]全向春等.喹啉与葡萄糖共基质条件下生物降解的动力学分析[J].环境科学学报, 2001, 21(4): 416-419.
    [90]何苗,张晓健,瞿福平等.杂环化合物好氧生物降解性能与其化学结构相关性的研究[J].中国环境科学,1997, 17(3): 199-202
    [91] Yongmei Li.Anoxic degradation of nitrogenous heterocyclic compounds by activatedsludge.Process Biochemistry, 2001, (37): 81-86
    [92]申海虹,顾国维,李咏梅.缺氧反硝化去除难降解杂环化合物吡啶研究[J].上海环境科学, 2001, 20(11): 530-533
    [93]牛苏莲,李咏梅,周琪.含氮杂环化合物吡啶缺氧降解过程中硝酸还原酶活性研究[J].上海环境科学,2003, 22(12): 898-902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700