生化和分子标记与甘蓝型油菜杂种优势的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜产量和其它农艺性状的杂种优势很明显。本研究用形态学方法、同工酶法、RAPD三种不同水平遗传标记方法分析获得遗传距离,研究甘蓝型油菜杂种优势与亲本遗传距离的关系,探索是否可以构建一套用于筛选亲本的遗传标记体系。
     供试材料为适应黄淮流域气候条件的优良甘蓝型油菜亲本,6个甘蓝型油菜(Brassica napus L.)同质异核雄性不育系(以Shaan 2A为母本,用相应的保持系为父本杂交并连续回交得到)及相应6个保持系,5个恢复系。按NCⅡ的p×q设计配制6个不育系×5个恢复系的30个杂交组合。2001-2003年在陕西杨凌进行杂交种及亲本3重复随机区组设计比较试验。主要结果有:
     1.子叶期油菜显示:酸性磷酸酶同工酶(ACP)近阴极区有9条带,保守条带1条,其余8条在11个亲本间有多态性;过氧化氢酶同工酶(CAT)共显示至少6条带,其中2条保守,4条具有多态性;过氧化物酶同工酶(POD)共显示6条带,2条保守,4条具有多态性;酯酶同工酶(EST)共显示17条带,保守条带3条,14条有多态性。油菜幼芽的α-AMY表现3条带,其中1条保守;谷草转氨酶同工酶(GOT)出现3条带,2条具多态性。油菜亲本种子可溶性蛋白SDS-PAGE电泳可见条带18条以上,但不易分辨,只有7条为多态性条带。总的多态性比率66.13%。用以上所得同工酶和蛋白质数掘进行遗传相似度分析。父本与母本之间遗传距离GD_(Lso),范围为0.143~0.535,平均GD为0.297。可见供试材料基于同工酶和蛋白质标记的遗传相似度较高。
     2.用100条随机引物对亲本DNA扩增,其中34个引物对11个亲本共扩增出251条带,具有明显多态性条带136条,占52.18%,平均每条引物扩赠4条多态性带。基于RAPD扩增结果计算遗传距离GD_(Rapd),6个父本与5个母本间的平均遗传距离是0.434,遗传距离范围是0.309~0.553。基于RAPD遗传相似度比基于同工酶和蛋白质标记的低。
     3.将亲本的20个形态学特征分为55个指标,分析亲本多态性。父本与母本间遗传距离GD_(Mor),范围为0.333~0.812,平均为0.641,相似系数范围0.187~0.667。两组亲本的形态学相似性较小。
     4.三种GD之间相关性不显著,三者信息重叠较少。以遗传距离GD=O.390为阀值,可将参试材料聚为3组。第1组包括6个保持系(B1、B2、B3、B4、B5和B6)和3个
    
    生化和分子标记与甘蓝型油菜杂种优势的关系
    恢复系(Cl、C3和CS);第2组和第3组分别仅有l个恢复系C2和C4。该结果不能
    清楚表明参试的自交系间遗传距离与地理起源关系。
     5.同一亲本的所有组合双亲间遗传距离的平均值,与一般配合力GCA的相关系数
    均未达显著水平。而特殊配合力与产量、产量杂种优势的相关系数分别是0.670和
    0.560,达到极显著水平。特殊配合力与遗传距离的相关性只在2003年存在,SC际。
    与G氏,、‘和阳性标记距离G氏:.1,显著负相关,与GD而pd.极显著正相关,而与GD.、.,负相
    关不显著。
     6.GD、、‘与杂种分枝数、千粒重及初花期分别极显著负相关、极显著负相关和正相
    关。G氏lI,。与株高、分枝数、角果数和角粒数分别显著相关、显著负相关、极显著负
    相关和显著相关。G氏.r与各性状不相关。总遗传距离GD卜,t:与株高、角果数和角粒数
    分别极显著相关、极显著负相关和显著相关,而与产量相关不显著。
     7.GD.、.与杂种千粒重和初花期中亲优势分别显著负相关(一0.475)和显著正相
    关(0.524)。G氏、、.与全株角果数MPH显著负相关(一0.365)。遗传距离与产量杂种优
    势相关关系未达到显著水平(一0.334)。表明不能直接根据基于所有标记的遗传距离
    的大小来预测杂种产量优势。
     8.从55个形态学标一记中筛选出25个对产量因子有显著影响的阳性标记,阳性率
    45.5%;从41个同工酶标一记中筛选出22个阳性标记,阳性率53.7%;从136个RAPD
    标记中筛选出72个阳性标记,阳性率52.9%。基于阳性标记的遗传距离GDt二‘,与农艺
    性状相关性明显增加,但与各农艺性状中亲优势相关性仍不显著,与产量M四相关系
    数为一0.25,未达到显著水平。再次表明不能根据亲本遗传距离的大小预测杂种产量
    及特殊配合力。
     9.从108个阳性标记中共筛选出29个RAPO标记,7个同工酶标记和7个形态标
    记,其杂合互补对产量因子有增效作用,所占比例为39.8ty0。在此基础上计算遗传距
    离GD.,lL、,其与农艺性状的相关性进一步增强。GD.,.L、与产量相关极显著,决定系数为
    0.336。虽然GO二L,、GD..:.,,和GDf’lL、与产量相关性一步步增大,但决定系数小,并不能
    预测杂种产量。7个农艺性状中,GD.,.刀、只与株高的中亲优势达到显著水平,其它相关
    不显著。
     通过基于三种不同水平遗传标记的一般杂合度、特殊杂合度和增效标记杂合度这
    三层统计量与油菜农艺性状及其杂种优势的相关分析,综合性说明了遗传杂合度与甘
    蓝型杂种的一些农艺性状显著相关,而与其杂种优势相关不显著。植物杂种优势机理
    非常复杂,受遗传因素控制外,还受环境条件的影响,用分子遗传距离预测杂种优势
    离实际应用还有一段距离。
In rapeseed(Brassica.napus L)strong heterosis has been reported for seed and agronomic traits. The level of genetic diversity between parents as estimated using isozymic and molecular markers is considered a tool for predicting the hybrid performance and heterosis of crosses. To explore this possibility, GD(genetic distance) on three different level, including morphological, isozymic and RAPD markers, were used to predict the performance of hybrids. Eleven elite rapeseed lines, including 6 maintainer lines to Shaan2A Cytoplasmic Male Sterility and 5 restorer lines espectively, were selected on the basis of different geographic origin, and the corresponding male sterile lines were crossed with restorer lines in a 6x5 NC II model to produce 30 Fl hybrids which were evaluated for seven agronomically important traits in a replicated field trials in Yangling. General combining ability (GCA) and specific combining ability (SCA) for seed yield and mid-parent heterosis (MPH) estimates were calculated on the basis of
     hybrid performance during the two year. Genetic distances (GD) for pairs of the 11 genotypes were calculated with diversity information based on morphological, isozymic and RAPD, and correlated with MPH estimates.The objectives of this paper were to (i) estimate heterosis for agronomic traits in rapeseed (Brassica napus L.) adapted to the region near Huanghe river and Huaihe river of China, and (ii) predict heterosis by means of morphological character, isozyme and RAPD as genetic distance measures.The results were described as follow:
    1. In cotyledonal stage of rapeseed, isozymes of ACP, CAT, POD, and EST showed nine, six, six, seventeen bands in PAGE respectively. In sprouted rapeseed both GOT and a -AMY showed three bands. Eighteen soluble protein bands of seed were detected in SDS-PAGE. The biochemical polymorphic ratio was 66.13%
    2. The eleven parents were assayed for random amplified polymorphic DNA (RAPD) with thirty-four primers, which generated 136 polymorphic bands and the polymorphic.ratio was 52.18%.
    3. The parental lines were assayed for polymorphisms using three classes of markers. GD(genetic distance) estimates were computed using Nei's similarity coefficient based on these data considering each molecular marker set separately (GDIso, GDRapd, GDMor). Range of GDMor was 0.333-0.812, average GDMor was 0.641. Range of GDIso was 0.143-0.535, the average value of GD was 0.297. GDRapd between parents ranged from 0.309-0.553, the average value of GDRapd was 0.434. Genetic similarity among the eleven parents based on isozymes and soluble proteins was higher. The three measurements were not significantly correlated.
    4. Diversity in morphology, isozyme loci and RAPD were evaluated using UPGMA cluster. The eleven parents can be clustered into three groups by a threshold value equal to 0.390: group I including six maintainer lines and 3 restorer lines; group II and group III including one restorer line C2 and C4 respectively. The result cannot show
    
    
    the relationship of the materials origination.
    5. Significant heterotic effects were detected for seed yield and other traits.. Highly significant GCA and SCA effects were observed for yield. Correlation between parents' average GD and GCA was not significant.Meanwhile, the correlation between SCA and yield, and yield MPH were significant coefficent was 0.670 and 0.560). In 2002 and average of two year data , SCA did not correlate with GD though it did in 2003.
    6. It was significant negative, negative and positive that the correlation were tested between GDIso and number of branch, 1000-seed-weight and flowering respectively(P=0.01, P=0.01,P=0.05). Significant positive, positive, negative and negative correlation were checked out between GDaapd and plant height, number of branch, number of silique, mumber seed per silique respectively(P=0.05, P=0.05, P=0.01, P=0.05). Significant positive, positive, and negative correlation were checked out between GDTotal and plant height, mumber of s
引文
[1] 安贤惠.陈宝元,傅廷栋等.利用RAPD标记研究中国芥菜型油菜遗传多样性.华中农业大学学报.1999,18(6):524~527
    [2] 程宁辉.杨金水,高燕萍等.玉米杂种一代与亲本基因表达差异的初步研究.科学通报.1996.41(5):451-454
    [3] 戴景瑞.罗美中.韩雅姗.玉米过氧化物酶和酯酶同工酶与杂种产量的关系作物学报.1989.15(3):193-201
    [4] 丁巨波.邹琦,付焕延等.作物杂种优势预测及其它性状的生化遗传基础研究.山东农学院学报,1980.
    [5] 段发平,粱承邺.黎垣庆.水稻杂种优势预测方法的现状、问题与对策.杂交水稻.2000,15,(2):1~3
    [6] 段皖生,刘平武,杨光圣.甘蓝型油菜杂交种亲本指纹图谱分析.中国油料作物学报.2002.24(2):5-9
    [7] 甘莉,王新.油菜种子贮藏蛋白的遗传多样性分析.华中农业大学学报,1999,18(6):528-532
    [8] 干滟.曾凡亚.赵云.杂交油菜“蜀杂6号”特异序列扩增标记(SCAR)的建立及其在杂种优势鉴定中的作用.作物学报.2001,27(6)722-728
    [9] 郭平仲.张金栋.甘为牛等.距离分析方法与杂种优势.遗传学报.1989 16.2:97-104
    [10] 范志忠.作物杂种优势预测原理与方法述评怍物研究 1995.09(2)1-2
    [11] 方宣钧.吴为人.唐纪良 著.作物DNA标记辅助育种.北京.科学出版社.2000
    [12] 方宣均,黄育民.陈启锋 等.若干水稻品种(组合)的等位酶和RAPD遗传分析.中国农业科学.1999.32(2):1-8
    [13] 何光华.侯磊,李德谋.利用分子标记预测杂交水稻产量及其构成因素.遗传学报,2002,29(50:138-444
    [14] 胡建广.杨金水,陈金婷.作物杂种优势的遗传学基础.遗传 1999,21(2)47-50
    [15] 胡能书.万国贤编.同工酶技术及其应用.湖南科学技术出版社.1985
    [16] 胡胜武.赵惠贤.于澄宇等.用RAPD标记分析中国和捷克甘蓝型油菜的遗传多样性[J].中国油料作物学报.2001.23(1):1-6
    [17] 黄永芬.汪清胤.王海廷.番茄芽期过氧化物酶同工酶酶型与杂种优势的关系.园艺学报 1983,10:258-237
    [18] 黄原.分子系统学—原理疗法及应用[M].北京:中国农业出版社.1998 255-270
    [19] 姜廷波 孙传清 李任华等.RFLP标记两系杂交水稻及其亲本的分类分析.中国农业科学.1999,32(6):8-15
    [20] 李春丽.应用分子标记差异性预测作物杂种优势的研究进展.遗传,1997,19(1):46-48
    [21] 李殿荣.王保仁.同工酶谱分析鉴定杂交油菜秦油2号种子纯度技术研究.陕西农垦科技“杂交油菜专辑”,1992,22:2-8
    [22] 李竞雄.周洪生.作物雄性不育及杂种优势研究进展(1).北京中国农业出版社 1996.
    [23] 李荣改.孟祥祯,王玉珍.等.水稻遗传距离与杂种优势,杂种产量的关系.河北农业大学学报 1993.16.1:3-19
    [24] 李汝刚,王莉.伍宁丰 等.我国芥菜型油菜品种遗传多样性初探.生物技术通报.1997.23(4):26-31
    [25] 刘垂玗.主编.作物数量遗传得多元遗传分析.农业出版社.1991.295-296
    [26] 刘春林.官春云.李怐 等.植物RAPD标记的可靠性研究.生物技术通报。1999.15(2):31-34
    [27] 刘春林.官春云.李怐 等.油菜分子图谱构建及抗菌核病性状的QTL.定位.遗传学报,2000.27(10):918-921
    [28] 刘新文.曾孟潜.应用同工酶标记区分玉米多细胞质的研究[J].中国农业科学.2000.33(4):9-19
    [29] 马育华 编著 植物育种的数量遗传学基础.江苏科学技术出版社.南京1982:426~436
    [30] 孟金陵.Sharp A.用RFLP标记分析甘蓝型油菜的遗传多样性.遗传学报 1996.23(4):293-206
    [31] 孟祥祯,王玉珍.利用过氧化物酶同工酶预测梗稻杂种优势的研究.河北农业大学学报 1992 15.2 15-49
    [32] 倪中福.孙其信.吴利民 普通小麦不同优势杂交种及其亲本之间基因表达差异比较.中国农业大学学报,2000.5(1):1-8
    [33] 钱前,朱立煌等.籼、梗、中间型水稻杂种F1的生物优势,经济优势与RFLP的关系研究,作物学报,1998,24(1):71-77
    [34] 乔春贵.李树强.单利民.遗传距离分析在向日葵产量杂种优势预测中的应用.中国油料.1996 18,3:23-26
    [35] 沈金雄,陆光远,傅廷栋 等.甘蓝型油菜遗传多样性及其与杂种表观的关系.作物学报.2002.28(5):622-627
    [36] 孙传清,吴长明.水稻杂种优势与遗传分化关系的研究.作物学报 2000,26(6) 641-649
    [37] 孙国荣.朱鹏.刘文芳.谷氨酰胺合成酶活性与水稻杂种优势预测.武汉植物学研究 1994,12.2:149-152
    [38] 孙其信.倪中福.小麦杂种优势群研究1:利用RAPD标记研究小麦品种间遗传差异,农业生物技术学报,1996,6(1).103-110
    [39] 田曾元.戴景瑞.玉米杂种与亲本穗分化期功能叶基因差异表达与杂种优势.遗传学报2003, 30(2):154-162
    [40] 涂金星.博廷栋.杨光圣.等.甘蓝型油菜隐性核不育遗传标记的初步研究Ⅱ,P6-9紫杆基因与可育基因连锁的分子证据[J].作物学报.1999,25(6):669-673
    [41] 王保仁.常桂菊,胡能书.湘矮型油菜“三系”及其杂种过氧化物酶同工酶的初步研究.湖南农业科技.1980(6):16-21
    [42] 王俊霞,杨光圣,博廷栋.等甘蓝型油菜Pol CMS育性恢复基因的RAPD标记[J].作物学报.2000,26(5):575-578
    [43] 王晓武,方智远.孙培田.等. 一个甘蓝显性雄性不育基因的RAPD标记[J].园艺学报.1998,25(2):197-198.
    [44] 上晓武,方智远,孙培田.等.一个用于甘蓝显性雄性不育基因辅助选择的SCAR标记[J].园艺学报.2000,27(2):113-144
    [45] 王玉兰.乔春贵.王庆钰.爆裂玉米距离分析与杂种优势.作物学报 Vol.20,No.2,1994 223-228
    [46] 王中仁.编著.植物等位酶分析北京:科学出版社.1996
    [47] 危文亮.赵应忠.分子标记在作物育种中的应用.生物技术通报.2000.22(2):12~16
    [48] 吴卫.郑有良,魏育明.利用RAPD技术分析小麦强优势组合亲本遗传差异.四川农业大学学报 1999.17,2:123-129
    [49] 吴卫.郑有良.魏良明.利用醇溶蛋白分析小麦强优势组合亲本遗传差异.四川农业大学学报 1999. 17,2:130-135
    [50] 吴卫.郑有良.魏育明.利用谷蛋白分析小麦强优势组合亲本遗传差异.四川农业大学学报 1999.17,2,141-145
    [51] 吴利民.倪中福,王章奎等.小麦杂种及其亲本苗期叶片家族基因差异表达及其与杂种优势的初步研究.遗传学报.2001,28(3):256-266
    [52] 席章营,陈彦惠,李玉玲等.作物同功酶与杂种优势预测的关系.河南农业大学学报 1996.30,1:342-34
    [53] 杨福愉.陈文雯.邢(?)如,用匀浆互补法测试杂种优势的研究.生物化学与生物物理进展.1981.(6).35-37
    [54] 杨光圣,傅廷栋.Brown GG.甘监型同菜细胞质雄性不育的遗传分析研究[J].中国农业科学,1998.31(1):27-31
    [55] 杨金水.杂种优势机理探讨.作物雄性不育及杂种优势研究进展(1)北京.中国农业出版社,1996,1-12
    [56] 杨太兴,段章雄.郭乐群 等 同工酶与玉米杂种产量优势预测的研究.植物学报.1995,37(6):43-436
    [57] 余四斌.张启发 遗传图谱与育种.见 洪国藩.水稻基因组工程.北京.科学出版社.2001:103-115
    [58] 袁力行.傅骏毕.刘新芝等.利用分子标记预测玉米杂种优势的研究.中国农业科学,2000.33(6):6-12
    [59] 袁有禄.杂种优势利用原理.见 张天真.靖深蓉.金林 等 编著 杂种棉选育的理论与实践.科学出版社,1998,10-31
    [60] 张鲁刚,王鸣,陈杭等.中国白菜RAPO分子遗传图谱的构建[J].植物学报.2000.42(5):485-489
    [61] 张培江.才宏伟.RAPD分子标记水稻遗传距离及其与杂种优势的关系.安徽农业科学.2000 28(6).697-700
    [62] 张启发等.水稻杂种优势的遗传和分子生物学基础的研究进展、全国作物育种学术讨论会文集.北京:中业出版社,1998,1~11
    [63] 张启华.油菜自交不亲和系杂种酯酶同工酶的研究初报.中国油料.1981(1):28-32
    
    
    [64] 张士文.王海廷.汪清胤,酯酶同工酶与番茄杂种优势关系的研究.园艺学报 1987 14.2:108-114
    [65] 张淑芬.甘蓝型单、双低由才细胞质雄性不育杂种优势的基础研究 华中农业大学农学系硕士论文.1992
    [66] 张维强.张纯慎.唐秀芝.高粱的杂种优势与同工酶.植物学报,1981.23:507-510
    [67] 张祖新.郑用琏,李建生.玉米地方品种同工酶的遗传多样性及其与数量性状的关系.湖北农学院学报.1996.16(1):1-8
    [68] 赵坚义.H.C.Becker同工酶分子标记研究中国和欧洲栽培油菜的遗传差异.作物学报1998.24(2)213-220
    [69] 郑晓鹰.李丽,李秀清.大白菜品种同工酶及水溶性蛋白的遗传多样性分析.园艺学报1997.24(3):244-248
    [70] 周蓉.段乃雄 花生野生种的酯酶同工酶与种间杂种优势关系的研究.中国油料1995.7.3:9-3
    [71] 朱鹏.刘文芳.肖翊华.杂交水稻苗期叶绿体希尔反应活性研究.武汉植物学研究 1987.5.3:57-266
    [72] 朱作峰.孙传清.姜廷波 等.水稻品种与及其与杂种优辨的关系比较研究.遗传学报.2001,28(8):738-745
    [73] 俎桂芹.孙国荣.万青林.水稻苗期几种酶活性及生理性状与杂种优辨的早期预测研究.黑龙江农业科学.1992 4:6-10
    [74] Arús P, T.J.Orton Inheritance and linkage relationships of isozyme loci in Brassica olerocea. The Journal of Heridity. 1982, 74:405-412
    [75] A Raiz. G.Li. Z.Quresh et al. Genetic diversity of oilseed Brassica inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breeding.20O1. 120:411-415
    [76] Ajmone, M.P.P.P Castiglioni. F.Fusari,et al. Genetic diversity and its relationship to hybrid performance in maiz as revealed by RFLP and AFLP markers. Theor. AppI.Genet.2000, 96: 219-227.
    [77] Ali. M., L O. Copeland. and S.G: Elias, Relationship between genetic distance and heterosis for yield and morphological traits in winter canola (Brassica napus L.). Theor. AppL Genet. 1995, 91:118-121.
    [78] Bernardo.R.Relationship between single-cross performance and molecular marker heterozygosity.Theor Appl Genet 1992, 83:628-634
    [79] Barret P. Deloumme R, Foisset N,et al Development of a SCAR (sequence characterised amplified region) marker for molecular tagging of the dwarf BREZH(Bzh) gene in Brassica napus L. Theor Appl Genet 1998,97(5/6): 828-833
    [80] Cema FJ, Cianzio SR. Rafalski A, et al. Relationship between seed yield heterosis and molecular marker heterozygosity in soybean Theoretical Applied Genetics 1997, 95(3):460-467
    [81] Charcosset A, Bonnisseau B Toucebeuf O. Prediction of maize hybrid silage performance using marker data: comparison of several models for specific combining ability. Crop Science 1998.38,1:38-44
    [82] Cheng B F, G.Séguin-Swartz, D.J.Somers Cytogenetic and molecular characterization of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Genome, 2002, 45(1): 110-115
    [83] Cheres MT. Miller Jr, Crane JM, Knapp SJ Genetic distance as a predictor of heterosis and hybrid performance within and between heterotic groups in sunflower. Theoretical and Applied Genetics 2000. 100.6 889-894
    [84] Corbellini M, Perenzin M. Accerbi Met al Genetic diversity in bread wheat, as revealed by coefficient of parentage and molecular markers, and its relationship to hybrid performance. Euphytica. 2002,12312):273-285
    [85] Delourme R et al. Linkage between an isozyme marker and a fertility restorer gene in radish cytoplasmic male sterility of rapeseed(Brassica napus L.). Theor Appl Genet, 1992.85(2/3):222-228
    [86] Delourme R,, Bouchereau A., Hubert N.,et al. Identification of RAPD markers linked to a fertility restorer gene for Ogura radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor Appl Genet, 1994,88:741-748.
    [87] Delourme R.,Fosset N, Horvais R, et al, Characterization of the radish introgression carrying the Rfo restorer gene for the ogu-IRNRA cytoplasmic male sterility in rapeseed (Brassica napus L.).Theor Appl Genet, 1998,97:129-134.
    [88] Diet B W, McVerty F B,Osbom T C. Relationship between heterosis and genentic distance based on restriction fragment length polymorphism rnarker in oilseed(Brassica napus L.).Crop Sci 1996, 36.79-83.
    [89] Diers, B W. Osborn T C. Genetic diversity of oilseed Brassica napus germplasm based on restriction fragment length polyrnorphisrns[J].Theor Appl Genet, 1994, 88:662-668
    [90] Dion Y, et al. RFLP mapping of resistance to the black leg disease causal agent, Leptosphaeria maculans (Desm.)Ces et de Not.in canola(Brassica napus L.).Theor Appl Genet(1995)91:1190-1194.
    [91] Dos-santos JB, Niehuis J, Skroch P, et al. Comparison of RAPD and R, FLP genetic markers in determining genetic similarity among Brassica oleracea L genotype[J] Theor Appl Genet., 1994,87:909-915.
    [92] Dudley J W. Saghai M A. Molecular marker and grouping of parents in maize breeding programs. Crop Science, 1991,31:718-723
    [93] Foisset N, Delourme,R. Lucas.M O. Segregation analysis of isozyme markers ion isolated microspore-derived embryos in Brassica napus L. Plant Breeding, 1993, 110(4):315-3221
    [94] Foisset N, Deloumme R, Barrel P, et al. Molecular tagging of a dwarf BREIZH (Bzh) gene in Brosico nopus[J].Theor Appl Genet.1995,91(5):756-761
    [95] Forster J.Knaak C. Frauen M, et al. Microsatellites for analysing rapeseed genotypes[A]. Wratten N,Salisbury P A. 10th Inter. Rapeseed congress abstract book[C] Canberra-Australia, 1999:175.
    [96] Frei.O M., Stuber CW, Goodrnan.M M. Use of allozymes as genetic markers for predicting performance in maizes single cross hybrids. Crop Science, 1986,26(1):37-42
    [97] Godshalk, E B., M. Lee. lind K R. Relationship of restriction fragment length polymorphisms to single-cross hybrid .performance in maize. Theor. Appl, Genet. 1990, 80, 273-280.
    [98] Gupta, K K.. lind K. R. Khanna, Gene action and heterosis for oil yield and component characters in sunflower. Indian J Genet. Plant Breed. 1982: 42, 265-271.
    [99] Hageman RH. Zieserl JF.Leng ER, Levels of nitrate reduetase activity in inbred lines and F1 hybrids in maize. Nature. 1963.197:263-265
    [100] Hiroshi Kato. Heterosis of biomass among rice ecospecies and isozyme polymorphism and RFLP Breeding Science, 1994.44:271-277
    [101] Hu J, Quiros C F. ldentification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Rep 1991,10,505-511
    [102] Hu J, Li G. Struss D, et al. SCAR and KAPD markers associated with 18-carbon fatty acids in rapeseed, Brassiea napus Plant Breeding, 118:145-148 (1999).
    [103] Hu J, Quiros C, Arus P. Mapping of a gene determining linolenic concentration in rapeseed with DNA-based markers[J]. Theor Appl Genet, 1995,90:258-262.
    [104] Hunter RB. Kannenberg LW. lsozyme characterization of corn (Zea mays) inbreds and relationship to single cross. Can.J Genet.Cytol.1971.8 649-655
    [105] Jean M.. Brown G G. Landry B S. Genetic mapping of nuclear fertility restorer genes for the "Polima" cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers[J]. Theor Appl Genet, 1997,95(3): 321-328.
    [106] Jean M., Brown G G, Landry B S. Targeted mapping approaches to identify DNA markers linked to the Rfpl restorer gene for the
    
    "Polima" CMS of canola (Bnusica napus L.)[J].Theor Appl Genet,l998,97(3) : 431-438.
    [107] Joshi.SP, Bhave.SG, Chowdari,KV, Apte.GS Use of DNA markers in prediction of hybrid performance and heterosis for a three-line hybrid system in rice. Biochemical Genetics. 2001. 39,no.5-6,. 179-200
    [108] Jourdren C.P. Barret P, Horvais R.et al. Identification of RAPD markers linked to linolenic acid in rapeseed[J]. Euphytica,1996, 90:351-357.
    [109] Jourdren C.Barret P, Horvais R, et al. Identification of RAPD markers linked to the loci controlling erucic level in rapeseed[J]. Molecular Breeding. 1996, 2:61-67.
    [110] Knaak. C., W. Ecke, Genetic diversity and hybrid performance inter Oilseed rape (Brassica nap-L.).Proc. 9th Int .Rapeseed Congress. GCIRC Cambridge. 1995,110-112.
    [111] Kole C. P.H. Williams ; S.R. Rimmer et al. Linkage mapping of genes controlling resistance to white rust (Albugo Candida) in Brassica rapa (syn. campesms) and comparative mapping to Brassica napus and Arabidopsis thaliana Genome.2002, 45( 1 ): 22-27
    [112] Kole C., Kole P. Vogelzang R. et al.. Genetic linkage map of a Brassica rape recombinant inbred population. [J] The Journal of Heredity, 1997. 88(6) :553-556
    [113] Lambard V, Baril CP, Dubreuil P. et al. Genetic relationships and finger printing of rapeseed cultivars by AFLP: consequence for varietal registration. Crop Science,2000. 40:1417-1425
    [114] Lanza. L L.B, C.L.de Souza.M.M.Ottboni.et al Genetic distant oflines and prediction of maize single-cross performance using RAPD markers. Theor Appl. Genet 1997,94: 1023-1030
    [115] Lee, M., E. B. Godshalk. K. R. Lamkey, and W. W. Wodmar. Association of restriction fragment length polymorphisms among maize inbreds with agronomic of their crosses. Crop.Sci 1989,29. 1067-1071
    [116] Lefort-Buson. Heterosis and genetic distance in rapeseed(B.napusL)use of different indicators of genetic dilergeuce in a 7×7diallel. Agronomic. 1986. 6(9) :839-844
    [117] Li. G. Quiros C.F. Sequence-related amplified polymorphism(SRAP), a new marker system based on simple PCR reaction: its application to mapping and gene tagging in Brassica.
    [118] Lionneton E. S. Ravera L. Sanchez. Development of an AFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard (Brassica juncea) Genome 2002. 45(6) : 1203-1215
    [119] Liu XZ, Z.B. Peng. J H. Fu, LC. Li & C L. Huang. Heterotic grouping of 15 maize inbreds with RAPD markers. Science Agricultural Sinica. 1997 30(3) : 44-51
    [120] Liu ZQ, Pei Y, Pu ZJ. Relationship between hybrid performance and genetic diversity based on RAPD markers in wheat, Thticum aestivum L. Plant Breeding. Vol.118,No.2,1999 119-123
    [121] Lombard V. Delourme R.. A consensus linkage map for rapeseed (Brassica napus L.) construction and integration of three individual maps from DH population[J]. There Appl Genet, 2001,103(4) :491-507.
    [122] MacDaniel RG Sarkissian.I V. Heterosis: Complementation by mitochondria. Science. 1966 152: 1640-1642
    [123] Mail R.J., Scarth R.. Fristensky B. Discrimination among cultivars of rapeseed (Brassica napus L.) using DNA polymorphism amplified from arbitrary primers[J] Theor Appl Genet . 1994,87:697-704
    [124] Manjarrez Sandoval P, Carter TE Jret al Heterosis in soybean and its prediction by genetic similarity measures Crop Science. 1997. 37(5) : 1443-1452
    [125] Maroof MA Saghai. et al. Correlation between molecular marker distance and hybrid performance in U S southern long grain rice Crop Sci. 1997. 37:145-150
    [126] Marshall P. Marchand M C, Lisiezko Z. et al. A simple method to estimate the percentage of hybridity in canola (Brassica napus) F, hybrids[J] Theor Appl Genet , 1994, 89:853-858
    [127] Martin B. Fried. Rich U H, Melchinger A E Genetic similarities among winter wheat cultivars determined on the basis of RFLPs. AFLPs and SSRs and their use for predicting progeny variance Crop Sci, 1999, 39:228-237.
    [128] Martin J M, Talbert L E, Lanning S P et al. Hybrid performance in wheat related to parental diversity Crop Sci. .1995. 35: 104-108
    [129] Melchinger. A.E., M Lee, K.R. Lamkey, et al. Genetic diversity for restriction fragment length polymorphisms and heterosis for two diallel sets of maize inbreds. Theor Appl. Genet, 1990,80: 488-496
    [130] Melchinger A E. Lamkey K R. Woodman W1. Genetic diversity for restriction fragment length Polymorphysim and relationship genetic effects estimated from generation in four sets of maize inbreds Crop Sci 1990. 30: 1033-1040
    [131] Melchinger. A.E., J Boppenmaier BS Dhillom et al. Genetic diversity for RFLPs in European maize inbreds: Ⅱ Relation to performance of hybrids with versus between heterotic groups for forage traits Theor. Appl. Genet 1992 84:672-681
    [132] Moll. R.H, WS Salhuans, H.F Robinson. Heterosis and genetic diversity in variety crossed of maize. Crop Sci 19622: 197-198
    [133] Monkolporn.O. Pang E C K. Kadkol G P. Molecular markers linked to shatter resistance genes in Brassica campesms L.(syn rapa L.) [A] Wratten N.Salisbury P A.10th Inter. Rapeseed congress abstract book[C] Canberra-Australia, 1999:363.
    [134] Moser, H. & M. Lee RFLP variation and genealogical distance, multi-variance distance, heterosis, and genetic variance in oats Theor Appl Genet. 1994, 87: 947-956.
    [135] Milndges H, W Kohler, W. Friedt Identification of rapeseed cultivars(B napus) by starch gel electrophoresis of enzymes Euphytica. 1990,45:179-187
    [136] Negi M.S. Devic M, Delseny M et al.. Identification of AFLP fragments linked to seed coat color in Brassica juncea and conversion to a SCAR marker for rapid selection[J] Theor Appl Genet 2000, 101(1/2) : 146-152.
    [137] Nei M. Mathematical model for studying genetic variation terms of restriction endonucleases. Proc Nat Amd USA.1979, 6:5269-5273
    [138] Nloban M, Nair.Bhagwat A. Genome mapmg, molecular markers and marker-assisted selection in plants Mol Breed.1 997,3: 87-103
    [139] Parentoni SN, Magalhaes JV, Pacheco CAP.et al .Heterotic groups based on yield-specific combining ability data and phylogenetic relationship determined by RAPD markers for 28 tropical maize open pollinated varieties. Euphytica ,2001 .121. 2:197-208
    [140] Perenzin M., Corbellini M.. Accerbi M.et al Bread wheat: F1 hybrid performance and parental diversity estimates using molecular markers. Euphytica, 1998. 100(1-3) :273-279
    [141] Plieske J. Struss D, Robbenlen G Inheritance of resistance derived from the B-genome of Brassica against Phoma lingam in rapeseed and the development of molecular markers[J]. Theor Appl Genet. 1998,97 (5/6) : 929-936.
    [142] Plieske J. Struss D.STS markers linked to phoma resistance genes of the Brassica B-genome revealed sequence homology between Brassica nigra and Brassica napus[J].Theor Appl Genet, 2001 . 1 02(5) .483-488
    [143] Prabhu K.V. Somers D J. Rakow G, et al.. Molecular markers linked to white rust resistance in mustard Brassica junced[J] Theor Appl Genet.. 1998,97:865-870.
    
    
    [144] Rabbani, MA, Iwabuchi A, Murakami Y,el al. Genetic diversity in mustard (Brassica juncea L.) germplasm from Pakistan as determined by RAPDs[J] Euphytica, 1998, 103:235-242.
    [145] Rajcan J, Kasha K J, Kott L S, et al.. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L. )[J]. Euphytica., 1999, 105 : 173-181.
    [146] Saghai Maroof MA, Yang GP, Zhang QiFa. Correlation between molecular marker distance and hybrid performance in U.S southern long grain rice Crop Science Vo).37,No.1,1997 145-150
    [147] Sant, VJ, Sarode, ND, Mhase. LB. Potential of DNA markers in detecting divergence and in analysing heterosis in Indian elite chickpea cultivars. Theoretical Applied Genetics 1999. 98, 8:1217-1225
    [148] Schwartz D. Genetic studies on mutant enzymes in maize: Synthesis of hybrid enzymes by heterozygotes Pro Nat Acad Sci USA. 1960. 46 1210-1215
    [149] Sebastian R.L.E, Howell C, King GJ, et al An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations[J] TheorAppI Genet 2000, 100 (1) : 75-81
    [150] Sharma R R.A. Aggarwal ; R. Kumar et al. Construction of an RAPD linkage map and localization of QTLs for oleic acid level using recombinant inbreds in mustard (Brassica juncea)Genome.2002, 45(3) : 467-472
    [151] Shieh. G.J F,S. Thseng. Genetic diversity of Tainan-white maize inbred lines and prediction of single cross hybrid performances using RAPD markers Euphytica. 2002, 124:307-313
    [152] Simonsen V. Heneen, W K. Genetic variation within and among diefferent cultivars and Landrace of Brassica campestrts L and B.oleracea L based on isozymes Theor Apple. Genet 1995, 91(2) : 346-352
    [153] Smith J.S.C Diversity of united states hybrid maize germplasm Isozymic and chromatograpluc evidence Crop Science 1988 28:63-69
    [154] Smith O.S.. J.S.C. Smith, S.L. Bowen Similarities among a group of elite maize inbreds as measured by pedigree. F1 gam yield. heterosis. and RFLPs Theor AppI Genet, 1990 833-840
    [155] Sneath.P H, RS Sokal Numerical taxonomy-the principle and practice of numerical classification San Fracisco;W H Freeman 1973
    [156] Somers D.J.: G. Rakow; VK Prabhu; K.R Friesen Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus Genome 2001, 44 (6) : 1077-1082
    [157] Somers D.J, Friesen K R D, Rakow G Identification of molecular marker associated with linoleic acid desaturation in Brassica napus[J]Theor Appl Genet 1998, 96:897-900.
    [158] Srivastava H K. Heterosis and mter-genomic complementation mitochondria, chloroplasm, and nucleus in Frankel (ed) Heterosis. reappraisal of theory and practice. Springer Berlin Heidelber. New York, 1983, 260-286
    [159] Stuber C W. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers Genetics, 1992. 132:823-839
    [160] Tanhuanpaa PK. Vilkki J P, Vikki H J Mapping of a QTL for oleic acid concentration in spring turnip rape (B. Rapa ssp oleifera)[J] Theor AppI Genet 1996. 92(8) :952-956
    [161] Tanhuanpaa PK.Association of a RAPD marker with linoleic acid concentration in the seed oil of rapeseed Genome 1995. 38(2) 414-416
    [162] Tanhuanpaa PK, Vikki J P, Vikki H J. Identification of RAPD markers for palmitic acid concentration in the seed oil of spring turnip rape[J] Theor Appl Genet 1995. 91(3) : 477-480
    [163] Thormann C E, Romero J, Mantel J.et al . Mapping loci controlling the concentration of erucic and linolenic acids in seed oil of Brassica napus L[J] Theor App) Genet., 1996,93:282-286
    [164] Toroser D et al. RFLP mapping of quantitative trait loci controlling seed aliphatic glucosinolate content in oilseed rape[J] Theor Appl Genet. 1995,91(5) : 802-808.
    [165] Vallejos.C.E. Enzyme activing staining. In Isozymes in plant genetic and breeding. Steven D. Tanksley. Thomas. J Elsevier Science Publishers. B V Amesterdan, The Netherland, 1983, 469-516
    [166] Voorrips R.E, Jongerius M C.Kanne H J Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers[J] Theor AppI Genet. 1997. 94:75-82
    [167] Walsh, J.A, Sharpe AG, Jenner C E, et al. Characterization of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of Turbol[J] Theor Appl Genet 1999,99(7/8) :1149-1154
    [168] Wang X.W, Fang Z Y. Huang S W, et al An extended random primer amplified region (EPRAR) marker linked to a dominant male sterility gene in cabbage (Brassica oleracea var. Capitata)[J]. Euphytica. 2000. 1 12:267-273
    [169] Westman AL, Kresovich S .Simple sequence repeat(SSR)-based marker variation in Brassica mgra genebank accessions and weed populations[J] Euphytica.,1999,109:85-92.
    [170] Wu M S. Dai J R Use of AFLP marker to predict the hybrid yield and yield heterosis in maize Acta Botamca Sinica. 2000. 42(6) :600-604
    [171] Wu M S. Wang S C. Daigrm RAPD Markers Studies in Predicting the Heterosis of seed Yield in Maize(Zea mays L ) Acta Cenetica Sinica, 1999. 26(5) : 578-584
    [172] Xiao J, U J Yuan Tanksley S D. Genetic diversity and its relationship to hybrid perform and heterosis in rice revealed by PCR-based markers Theor Appl Genet 1996. 92. 637-643
    [173] Xiao J H Dominance is the major genetic basis of heterosis in rice as released by QTL analysis using molecular markers Genetics, 1995. 140:745-754
    [174] Yang J S, N H Cheng, Y P Gao Molecular basis of heterosis in hybrid rice and hybrid maize revealed by mRNA amplification IRRI. 1996,21(1) :12-13
    [175] YU S B, Li J X, Xu CG et al Importance of epistasis as the gene a basis of heterosis in an elite rice hybrid. Proc.Natl.Acad.Sci USA, 1997,94:9226-9231
    [176] Zhang Q F, Zhou Z Q, Yang C P. Molecular marker heterozygosity and hybrid performance in indica and japonica rice TheorAppI Genetics 1996, 93:1218-1224.
    [177] Zhang Q F. Gao Y J, Yang S H et al A diallel analysis of heterosis elite hybrid rice based on RFLPs and microsatellites TheorAppI Genetics. 1994, 89:185-192.
    [178] Zhao M F, Li X H, Yang J B, et al. Relationship between molecular marker heterozygosity and hybrid performance in intra-and inter-subspecific crosses of rice Plant Breeding 1999, 118(2) : 139-144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700