遮光和渍水对小麦产量和品质的影响及其生理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球气候变化加剧,全球变暗、持续性降雨等极端气候增加。黄淮海麦区和长江中下游麦区(30~42°N)是我国主要的小麦产区,气象资料表明,过去的五十年内,该区的日照时数在小麦灌浆期下降2.98~3.67 hrs;而连续降雨大于5天次数达到了的每年0.92次(国家气象局气象中心资料室)。为阐明全球变暗造成的弱光或持续降雨带来的弱光和渍水双重胁迫对小麦生长发育以及籽粒产量和品质的形成的影响,我们分别在2006~2008和2008~2009年进行了以下两个试验,为对该区小麦的高产优质栽培和抗性品种选育提供理论依据。
     试验一:2006~2008年期间,选用耐弱光性不同的品种扬麦158(耐弱光)和扬麦11(弱光敏感)为材料,从拔节至成熟期对小麦进行遮光处理:分别遮去冠层上部自然光强的8%(S1)、15%(S2)和23%(S3),不遮光为对照(SO),以模拟全球变暗造成的弱光对小麦产量和品质造成的影响;试验二:在2008~2009年期间,选用扬麦158,在0~7 DAA(花后天数,WS1)、8~15 DAA(WS2).16~23 DAA(WS3)和24~31 DAA(WS4)对小麦进行遮光和渍水处理,遮去自然光强的75%,保持土壤表层1~2 cm的水层,以模拟在小麦灌浆期间不定期发生的持续性降雨给小麦产量和品质带来的影响,获得的主要研究结果如下:
     1.拔节至成熟期遮光对小麦产量和品质形成的影响及其生理机制
     适度的遮光对小麦产量形成有促进作用(S1和S2提高了扬麦158产量,S1对扬麦11的产量无显著影响),对于籽粒中淀粉及其组分含量无影响;重度遮光(扬麦158的S3,扬麦11的S2和S3)降低了小麦产量,同时也降低了籽粒中总淀粉及支链淀粉的含量。随着遮光程度的增加,小麦籽粒总蛋白,清蛋白,球蛋白及其谷蛋白含量对遮光强度的增加而增加。适度的遮光降低了扬麦158的降落值,但对于湿面筋含量、面筋指数和沉降值,淀粉的糊化参数和粉质参数都无显著影响,但重度遮光却显著提高了面粉的降落质,降低了面粉峰值粘度、低谷粘度和最终粘度,延长了面团形成时间,稳定时间,但降低了面团弱化度。但是重度遮光下产量的降低远低于光照强度的降低(15%和22%)(扬麦11产量在S2下降低了2.3%,扬麦158和扬麦11在S3下分别降低5.9%和6.7%),小麦在长期的弱光环境中形成了以下的适应和补偿效应来减缓弱光对其造成的伤害:
     (1).植株形态和LAI的改善:随着遮光程度的增加,小麦叶片变大变薄,节问变长,叶面积指数(LAI)增加,提高了小麦群体对光能的截获率,从而部分补偿了光合有效辐射的降低;同时小麦叶片叶绿素含量增加,尤其是叶绿素b的含量,更有利于植物对弱光中占优势的蓝光的利用。
     (2).叶片光合功能的改善:小麦上3叶Pn在适度遮光(S1和S2)下升高;在重度(S3)遮光下两小麦旗叶Pn降低,但下降的47.25%和61.40%被倒二叶和倒三叶补偿。弱光下叶片最大光化学效率(Fv/Fm)和实际光化学效率(ΦPSⅡ)提高,电子传递效率(ETR)增加,非光化学淬灭系数(NPQ)降低,表明弱光条件下天线色素吸收的光能通过热量散射的形式散失的比例减少,而通过叶片光反应中心Ⅱ比率增加,从而也部分补偿了光合有效辐射的降低。
     (3).花前贮藏物质转运率的提高:适度遮光条件下,小麦叶片和茎节内蔗糖含量提高,蔗糖:蔗糖果糖基转移酶(SST)和果聚糖:果聚糖果糖基转移酶(FFT)活性提高,有利于果聚糖的积累,最终向籽粒转运量增加,但对籽粒贡献率下降;而重度遮光条件下花后碳同化降低,花前贮藏干物质得到有效利用,在一定程度上补偿了弱光对小麦产量的影响。
     2.花后遮光和渍水对小麦产量和品质形成的影响及其生理机制
     花后不同时期遮光和渍水都可显著降低小麦产量,籽粒产量的降低主要由于花后光合同化量的降低造成;WS降低了小麦的总淀粉含量,支链淀粉含量和支/直;WS导致淀粉粒平均粒径下降,主要是小粒径淀粉粒体积百分比增加(B型)造成的;单位重量淀粉粒数目和表面积增大;WS使小麦籽粒蛋白质含量降低,清蛋白、球蛋白和麦谷蛋白含量降低,但醇溶蛋白含量增加;WS2对产量、淀粉和蛋白质品质的影响大于WS3,其次大于WS1和WS4。
     WS使旗叶净光合速率(Pn)、实际光化学效率((?)PSⅡ)、最大光化学效率(Fv/Fm)和光化学淬灭系数(qP)降低,非光化学淬灭系数((?)NPQ)升高;小麦旗叶组织及叶绿体内活性氧浓度(H2O2浓度和O2-释放速率)以及膜透性增加(MDA含量增加);旗叶和叶绿体抗氧化酶SOD及叶片CAT活性在WS处理后4天(DAT)升高,在8 DAT却下降;抗坏血酸-谷胱甘肽循环相关酶APX、GR、DHAR和MDHAR活性随胁迫时间延长而增强;WS1移除后,旗叶功能已完全恢复,WS2只有部分恢复;光合参数和抗逆境酶活性的变化与相关编码基因的表达量变化一致。
     WS激活了花前贮藏物质向籽粒中转运,WS处理越早,茎秆中贮藏干物质向籽粒中转运越早,下部茎节中的干物质的转运时期要早于上部茎秆,并具有较高的转运速率。WS降低了蔗糖:蔗糖果糖基转移酶(SST)和果聚糖:果聚糖果糖基转酶(FFT)的活性,但提高了果聚糖外水解酶(FEH)活性;果聚糖的分解早于茎秆可溶性糖含量的降低。WS抑制了小麦籽粒氮素的积累,但是却提高了花前贮存氮素转运对籽粒的转运,表明小麦籽粒中氮素积累对花前贮藏氮素的依赖性增强。WS使小麦各营养器官花前贮存氮素的转运量(RANP)显著升高,导致总转运量的升高,从而提高了其对籽粒氮素的贡献率(CRNP)。但是WS处理下RANP对NAP的补偿只有5%~14%,最终WS籽粒氮素积累量仍显著低于对照。
     综上所述,拔节至成熟期重度的遮光和花后遮光和渍水显著抑制了小麦的光合同化能力,减少了光合产物的积累,最终导致小麦籽粒产量及淀粉和蛋白质积累量显著下降。遮光和花后遮光和渍水改变了淀粉、蛋白质及其组分含量,导致最终籽粒品质与面粉品质发生显著变化。但适度的遮光却对籽粒产量和品质的形成有促进作用。花后0~7天遮光和渍水处理之后小麦叶片功能可以完全恢复,但其他时期处理移除后小麦旗叶功能无法恢复。
The Huang-Huai-Hai (3-H) plain and the downstream plain of the Yangtze River are main wheat production areas in China. As a consequence of increases in aerosols, air pollutants and population density, dimming or shading (decrease in global radiation, i.e. the sum of the direct solar radiation and of the diffuse radiation scattered by the atmosphere) have become major challenges to crop production in many areas of the world. Furthermore, persistent heavy rainfall event occurs frequently in this region due to increasing climatic variability under global climate. To evaluate the long term low radiation or combined stress of shading and waterlogging impact on crop yield and quality formation, two experiment were done during 2006~2009. Experiment 1:Shading tolerant wheat cultivar Yangmai 158 (YM 158) and sensitive cultivar Yangmai 11 (YM 11) were planted in a field experiment. Four treatments were designed from jointing to maturity, as non-shading (S0),8%,15% and 23% less intercept radiation (S1, S2 and S3); Experiment 2:winter wheat was subjected to simultaneous waterlogging and shading stress (WS) at 0-7 days after anthesis (DAA, WS1), 8-15 DAA (WS2),16-23 DAA (WS3) and 24-31 DAA (WS4), respectively, with no waterlogging and shading was set as the control (WS0); wheat canopy living environment, grain yield and quality, and accumulation and redistribution of carbohydrate and nitrogen were elucidated. Here are the main results:
     1 Effect of long term low radiation on wheat yield and quality formation
     Compared with S0, the observed grain yield increased under light shading (S1 and S2 to YM 158 and S1 to YM 11). and lose under heavy shading (S3 to YM 158, S2 and S3 to YM 11). Shading between jointing and maturity showed no effect on amylose content while significantly reduced amylopectin content, which resulted in the significant decrease in total starch content. Heavy shading reduced starch peak viscosity, starch through viscosity and also pasting temperature, prolonged dough development time (DDT) and dough stability time (DST), enhanced falling-number, wet-gluten concentration and SDS-sedimentation volume. However, light shading reduced the falling-number and final viscosity, but had no effect on other quality parameters. Under long-term low radiation conditions, grain protein content and its components increased with increasing in the contents of gliadin, glutinin and GMP (glutenin macropolymer). The initial formation of HMW-GS was predated by shading. The rapid HMW-GS accumulation duration was prolonged by S1. Long-term shading increased falling-number, wet-gluten concentration and SDS-sedimentation volume. In addition, the fluctuations in accumulations quality traits due to shading in Yangmai 158 were less than Yangmai 11. The yield loss of YM 11 was 2.3% and 6.7% in S2 and S3, respectively, and 5.9% in S3 of YM 158, which was much less than the corresponding reduction in radiation. Tree composition effects were found in winter wheat under long term shading to mitigate radiation decrease as below:
     (1). The enhancement of leaf area, internodes length and LAI. The reduction in PAR via shading was accompanied by an increase in the fraction of diffusion light and blue light. Stem was found to be longer, and leaf to be thinner and bigger. Thus, PAR was intercepted much more than the control in shading treatments, which could partially compensate for the reduction in PAR. Furthermore, an enhancement of chlorophyll content was found in the leaves under shading, especially Ch1 b. The increase in Ch1 b content would improve the proportion of the antenna pigments in light-harvesting complexⅡ, and enable the leaves to effectively catch light, especially the blue light fraction.
     (2). The present study found that slight shadings (S1 and S2 for the shading-tolerant cultivar YM 158, and S1 for the intolerant YM 11) even increased Pn of the flag leaf, while Pn of flag leaf was depressed when radiation reduction exceeded 15% for YM 11 or 23% for YM 158. Pn of the penultimate and third leaves increased with increasing shading intensity. Thus, in both YM 158 and in YM 11 under S3, about 61.40% and 47.25% of the reduction in flag leaf Pn was compensated by the increase in Pn of the lower leaves. Here, the PSⅡsystem centre was not essentially damaged, and even became more active in the penultimate and third leaves under shading conditions as exemplified by increased Fv/Fm andΦPSⅡ. The relative quantity of electrons passing through PSⅡin dark-adapted leaves was improved (as indicated by increased ETR). Low NPO in shaded leaves indicated that less light-energy absorbed by the antenna pigments in PSⅡwas dispersed via heat.
     (3). Light shading between jointing and maturity enhanced the sugar stored in vegetative organs during 0-20 DAA (Days after anthesis). and the activity of SST (sucrose: sucrose fructosyltransferase) and FFT (fructan:fructan fruc-tosyltransferase), however. which led to fructans accumulated and then more water soluble carbohydrates (WSC) stored in stem, stored matte Shading had no significant effect on FEH (fructan exohydrolase) activity. Finally, the account of remobilized of post-anthesis stored matter enhanced. Severe shading had the opposite effect on the accumulation of the carbohydrate, and the account of remobilized of post-anthesis reduced while that of pre-anthesis stored enhanced, party compensated the decrease of post-anthesis assimilation. Redistribution amount of nitrogen stored pre-anthesis (RANP) and its account for the final grain protein decreased under low radiation. Grain protein accumulation relied on more from the nitrogen accumulation after anthesis with severer shading.
     2 Effect of post-anthesis combined shading and waterlongging on grain yield and quality formation
     Compared with the control (WSO), WS onset at anytime of grain-filling reduced grain yield and changed grain quality significantly; WS reduced amylopectin content, which resulted in the significant decrease in total starch content. And WS also reduced the mean diameters by valume, number, and surface area, enhanced the radio of B type starch. WS reduced grain protein content with a decrease in albumin, globulin and glutinin contents and increasing in the contents of gliadin. WS2 had more severe effect on the grain yield and starch, protein quality traits than WS3, and followed by WS1 and WS4.
     Depressed flag leaf net photosynthetic rate (Pn) and chlorophyll fluorescence parameters of Fv/Fm,ΦPSⅡand qL, while enhancedΦNPQ were observed in the WS1, WS2 and WS3 leaves. The concentrations of malondialdehyde (MDA) and H2O2, and O2-release rate were increased in the flag leaf and the chloroplasts. The activities of superoxide dismutase (SOD) and catalase (CAT) were stimulated at the 4th day after onset WS (DAT), while were depressed at DAT. The activities of the ascorbate-glutathione cycle enzymes of ascorbate peroxidase (APX), glutathione reductase (GR), dehy-droascorb atereductase (DHAR) and monode hydroascorbate reductase (MDAR) in the flag leaf and the chloroplasts were increased with the prolonged WS stresses. The expression of genes encoding Rubisco activase B (RcaB), major chlorophyll a/b-binding protein (Cab) and antioxidative enzymes-related genes encoding mitochondrial manganese superoxide dismutase (Mn-SOD), chloroplast Cu/Zn superoxide dismutase (Cu/Zn-SOD) and catalase (CAT), and gene encoding a cytosolic glutathione reductase (GR) were well coincided with the activities of these enzymes. The function of flag leaf was fully recovered in WS1, while were only partially recovered in WS2 after WS removed.
     Reserve stored in stem was activated to remobilize to grains to alleviate the depression in photosynthate accumulation caused by WS. And the earlier WS onset, the more stored reeves was remobilized from stems to grains. The remobilization of stored reserves was activated earlier in the lower internodes than the upper internodes, and had a higher remobilization rate in the lower internodes than upper internodes. Before a significant drop in the total stem WSC, fructans was hydrolyzed and fructose and source began to accumulate. With the prolonged WS stress, fructose, source, glucose together with fructans reduced, caused significant drop in stem WSC. The acceleration of fructans loss was together with an enhancement of the activity of FEH, however an inhibited activity of SST and FFT. The gain from the enhanced remobilization still could not balance the loss of photosynthesi under WS, and the finial grain weight and starch accumulation were lower than control.
     Redistribution amount of nitrogen stored pre-anthesis (RANP) and its account for the final grain protein enhaced by WS. Redistribution amount of nitrogen stored pre-anthesis (RANP) in the vegetative organs increased under WS and resulted in a enhancement of total RANP. However, only 5%~14% of reduction in NAP was compensated by the the increase in RENP of the vegetative organs, thus, the final grain protein was still lower under WS than control.
     In conclusion, heavy shading between jointing and maturity, combined shading and waterlogging during grain filling reduced wheat photosynthetic capacity and then carbon assimilation. The reductions in amount of photosynthetic assimilates after anthesis and amount of pre-anthesis stored photosynthetic assimilates and nitrogen in vegetative organs which transferred to grain after anthesis were involved in the depressed grain yield, and accumulations of protein and starch in wheat under low radiation and waterlogging. The starch and protein content were affected, and then resulted in significant changes in qualities of grain and flour. But slight low radiation could enhance wheat production. The flag leaf function could recover after the remove of WS1, but can not after the remove of WS2 and WS3.
引文
1. Stanhill G., Cohen S., Global dimming:a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meteorology,2001.107(4):255-278.
    2. Cohen S., Liepert B., Stanhill G., Global dimming comes of age. Eos Trans. AGU,2004.85(38).
    3. Grimenes A., Thue-Hansen V., The reduction of global radiation in south-eastern Norway during the last 50 years. Theoretical and Applied Climatology,2006.85(1):37-40.
    4. Cutforth H.W., Judiesch D., Long-term changes to incoming solar energy on the Canadian Prairie. Agricultural and Forest Meteorology,2007.145(3-4):167-175.
    5. Ramanathan V., Feng Y., Air pollution, greenhouse gases and climate change:global and regional perspectives. Atmospheric Environment,2009.43(1):37-50.
    6. Liepert B., Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys. Res. Lett.,2002.29(10):1421.
    7. Gilgen H., Wild M., Ohmura A., Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. Journal of Climate,1998.11(8):2042-2061.
    8. Alpert P., Kishcha P., Kaufman Y.J., Schwarzbard R., Global dimming or local dimming?:Effect of urbanization on sunlight availability. Geophys. Res. Lett.,2005.32.
    9. Alpert, P., Kishcha P., Quantification of the effect of urbanization on solar dimming. Geophys. Res. Lett.,2008.35(L08801):doi:10.1029/2007GL033012.
    10. Chen H.Z., Shi G.Y., Zhang X.Y., Arimoto R., Zhao J.Q., Xu L., Wang B., Chen Z.H., Analysis of 40 years of solar radiation data from China,1961-2000. Geophys. Res. Lett..2005.32.
    11. Qian, Y., Wang W., Leung L.R., Kaiser D.P., Variability of solar radiation under cloud-free skies in China:The role of aerosols. Geophys. Res. Lett.,2007.34.
    12. IPCC, Climate Change 2007:Contribution of working group Ⅰ to the fourth assessment report of the intergovernmental panel on climate Change.2007. Cabridge:Cabridge University Press.
    13. Tang Y., Gan J., Zhao L., Gao K., On the climatology of persistent heavy rainfall events in China. Advances in Atmospheric Sciences,2006.23(5):678-692.
    14.中国农业年鉴编辑委员会,中国农业年鉴(2007).2007.北京:中国农业出版社.177,180.
    15. Li P.M., Cai R.G., Gao H.Y., Peng T., Wang Z.L., Partitioning of excitation energy in two wheat cultivars with different grain protein contents grown under three nitrogen applications in the field. Physiologia Plantarum,2007.129(4):822-829.
    16. Li W., Agro-ecological farming systems in China.2001:Unesco.
    17. Fang S., Xu X., Lu S., Tang L., Growth dynamics and biomass production in short-rotation poplar plantations:6-year results for three clones at four spacings. Biomass and Bioenergy,1999.17(5): 415-425.
    18.方升佐,王明庥,黄敏仁,潘惠新,江苏杨树资源培育与产业化.林业科技开发,2004.18(1):3-5.
    19. Broadhead J.S., Black C.R., Ong C.K., Tree leafing phenology and crop productivity in semi-arid agroforestry systems in Kenya, Agroforestry Systems,2003.58(2):137-148.
    20. Corlett J.E., Black C.R., Ong C.K., Monteith J.L., Above- and below-ground interactions in a leucaena/millet alley cropping system. Ⅱ. Light interception and dry matter production. Agricultural and Forest Meteorology,1992.60(1-2):73-91.
    21. Reynolds P.E., J.A. Simpson, N.V. Thevathasan, A.M. Gordon, Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada Ecological Engineering,2007.29(4):362-371.
    22.金之庆,石春林,葛道阔.高炜,长江下游平原小麦生长季气候变化特点及小麦发展方向.江苏农业科学,2001.17(4):193-199.
    23. Estrada-Campuzano, G., DJ. Miralles, G.A. Slafer, Yield determination in triticale as affected by-radiation in different development phases. European Journal of Agronomy,2008.28(4):597-605.
    24. Islam, M.T., F. Kubota. F.H. Mollah, W. Agata, Effect of shading on the growth and yield of Mungbean (Vigna radiata [L.] Wilczek). Agronomy and Crop Science,1993.171(4):274-278.
    25. Murray, D.B., R. Nichols, Light, shade and growth in some tropical plants. In:Bainbridge R, Evans GC. Rackham O (Eds.), Light as an Ecological Factor. British Ecological Society SymposiumNo.6. Oxford ed.1966, Blackwell, Oxford.249-263.
    26. Rodrigo, V.H.L., C.M. Stirling. Z. Teklehaimanot, A. Nugawela, Intercropping with banana to improve fractional interception and radiation-use efficiency of immature rubber plantations. Field Crops Research,2001.69(3):237-249.
    27. Evans. L.T., Crop evolution, Adaption and Yield. Cambridge University Press. Cambridge ed, ed. C. Cambridge University Press.1993.146-152.
    28. Samarajeewa, K.B.D.P., N. Kojima, J.I. Sakagami, W.A. Chandanie. The effect of different timing of top dressing of nitrogen application under low light Intensity on the yield of rice (Oryza saliva L.). Journal of Agronomy and Crop Science,2005.191(2):99-105.
    29. Wang, N., D.B. Fisher. Monitoring phloem unloading and post-phloem transport by microperfusion of attached wheat grains. Plant Physiology,1994.104(1):7.
    30. Jedel, P.E., L.A. Hunt, Shading and thinning effects on multi- and standard-floret winter wheat. Crop Science,1990.30(1):128-133.
    31.牟会荣,姜.东,戴廷波,荆.奇,曹卫星,遮荫对小麦旗叶光合及叶绿素荧光特性的影响.中国农业科学,2008.41(2):599-606.
    32. Li, H., D. Jiang, B. Wollenweber. T. Dai, W. Cao, Effects of shading on morphology, physiology and grain yield of winter wheat European Journal of Agronomy,2010.33(4):267-275.
    33.曹旸,蔡士宾,朱伟,国内外麦类作物耐湿性研究进展.麦类作物学报,1996.6:48-49.
    34.李金才,董琦,余松烈,不同生育期根际土壤淹水对小麦品种光合作用和产量的影响.2001,作物学报.27(4):434-441.
    35.周苏玫,王晨阳,贺德先,土壤渍水对冬小麦根系生长及营养代谢的影响.作物学报,2001.7(5):674-679.
    36. Tan, W., J. Liu, T. Dai, Q. Jing, W. Cao, D. Jiang, Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica,2008. 46(1):21-27.
    37.姜东,谢祝捷,曹卫星,花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004.30(2):175-182.
    38.范雪梅,姜东,戴廷波,荆奇,曹卫星,花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响.中国农业科学.2005.38(6):1132-1141.
    39.于振文,小麦产量与品质生理及栽培技术.2006,北京:中国农业出版社.
    40. Gebbing, T., H. Schnyder, Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. PLANT PHYSIOLOGY,1999.121(3):871-878.
    41. McCaig, T.N., J.M. Calrke, Seasonal changes in nonstructural carbohydrate levels of wheat and oats grown in semiarid environment. Crop Science,1982.22:963-970.
    42. Bell, G.E., T.K. Danneberger, M.J. McMahon, Spectral irradiance available for turfgrass growth in sun and shade. Crop Science,2000.40(1):189-195.
    43. Greenwald, R., M.H. Bergin, J. Xu, D. Cohan, G. Hoogenboom, W.L. Chameides. The influence of aerosols on crop production:A study using the CERES crop model.2006.89(2-3):390-413.
    44. Jiang, H., X.H. Wang. Q.Y. Deng, L.P. Yuan, D.Q. Xu, Comparison of some photosynthetic characters between two hybrid rice combinations differing in yield potential. Photosynthetica,2002. 40(1):133-137.
    45. Zhang, C.J., H.J. Chu, G.X. Chen, D.W. Shi, M. Zuo, J. Wang, C.G. Lu, P. Wang, L. Chen. Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. Journal of Plant Research, 2007.120(2):209-217.
    46. Wang. Z., Y. Yin, M. He, Y. Zhang, S. Lu, Q. Li, S. Shi, Allocation of photosynthates and grain growth of two wheat cultivars with different potential grain growth in response to pre-and post-anthesis shading. Journal of Agronomy and Crop Science,2003.189(5):280-285.
    47. Mitchell, R., C. Gibbard, V. Mitchell, D. Lawlor, Effects of shading in different developmental phases on biomass and grain yield of winter wheat at ambient and elevated CO2. Plant, Cell & Environment,2006.19(5):615-621.
    48. Acreche, M.M., G. Briceno-Felix, J.A.M. Sanchez, G.A. Slafer, Grain number determination in an old and a modern Mediterranean wheat as affected by pre-anthesis shading. Crop and Pasture Science,2009.60(3):271-279.
    49. Mu, H., D. Jiang, B. Wollenweber. T. Dai, Q. Jing, W. Cao, Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat. Journal of Agronomy and Crop Science,2010.196(1):38-47.
    50. Burkey, K.O., R. Wells, Response of Soybean Photosynthesis and Chloroplast Membrane Function to Canopy Development and Mutual Shading.1991.245-252.
    51. Hikosaka, K., Effects of leaf age.nitrogen nutrition and photon flux density on the organization of the photosynthetic apparatus in leaves of a vine (Iponioeatricolor Cav.)grown horizontally to avoid mutual shading of leaves. Plant Springer-Verlag,1996.198:144-150.
    52. Dai, Y., Z. Shen, Y. Liu, L. Wang, D. Hannaway, H. Lu, Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany,2009.65(2-3):177-182.
    53. Evans, J.R., H. Poorter, Photosynthetic acclimation of plants to growth irradiance:the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant. Cell & Environment,2001.24(8):755-767.
    54. Zhang, H., M.R. Sharifi, P.S. Nobel, Photosynthetic characteristics of sun versus shade plants of Encelia farinosa as affected by photosynthetic photon flux density, intercellular CO2 concentration, leaf water potential, and leaf temperature. Australian Journal of Plant Physiology,1995.22(5): 833-842.
    55. Jiang, Y., R.R. Duncan, R.N. Carrow, Assessment of low light tolerance of seashore paspalum and bermudagrass. Crop Science,2004.44(2):587-594.
    56. Takahashi, T., N. Tsuchihashi, K. Nakaseko, Grain Filling Mechanisms in Spring Wheat. Jpn. J. Crop Sci.1996.65(2):277-281.
    57. Li, F., P. Meng, D. Fu, B. Wang, Light distribution, photosynthetic rate and yield in a Paulownia-wheat intercropping system in China Agroforestry Systems,2008.74(2):163-172.
    58. Demotes-Mainard, S., M.-H. Jeuffroy, Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat. Field Crops Research,2004.87(2-3):221-233.
    59. Zelitch, I., The close relationship between net photosynthesis and crop yield. BioScience,1982. 32(10):796-802.
    60. Boardman, N.K., Comparative Photosynthesis of Sun and Shade Plants. Annual Review of Plant Physiology,1977.28(1):355.
    61. Bjorkman, O., B. Denmig-Adams, eds. Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. Ecophysiology of photosynthesis, ed. E.D. Schulze and M.M.E. Caldwell.1994, Springer:Berlin.17-47.
    62. Pugnaire, F.I., F. Valladares, eds. Responses of plants to heterogeneous light environments. Functional plant ecology, ed. R.W. Pearcy.2007, CRC,2 edition.213-246.
    63. Spitters, C.J.T., H.A.J.M. Toussaint, J. Goudriaan, Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part 1. Components of incoming radiation. Agricultural and Forest Meteorology,1986.38(1-3):217-229.
    64. Gu, L., J.D. Fuentes, H.H. Shugart, R.M. Staebler, T.A. Black, Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness:Results from two North American deciduous forests. J. Geophys. Res.,1999.104(D24):31,421-31,434.
    65. Sinclair, T.R., T. Shiraiwa, G.L. Hammer, Variation in crop radiation-use efficiency with increased diffuse radiation. Crop Science,1992.32(5):1281-1284.
    66. Rochette, P., R.L. Desjardins, E. Pattey, R. Lessard, Instantaneous measurement of radiation and water use efficiencies of a maize crop. Agronomy Journal,1996.88(4):627-635.
    67. Gu, L., D. Baldocchi, S.B. Verma. T.A. Black, T. Vesala, E.M. Falge, P.R. Dowty, Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res.,2002.107(D6).
    68. Grant, R.H., G.M. Heisler, W. Gao, Photosynthetically-active radiation:sky radiance distributions under clear and overcast conditions. Agricultural and Forest Meteorology,1996.82(1-4):267-292.
    69. Healey, K.D., G.L. Hammer, K.G. Rickert, M.P. Bange. Radiation use efficiency increases when the diffuse component of incident radiation is enhanced under shade. Australian journal of agricultural research,1998.49(4):665-672.
    70. Cohan, D.S., J. Xu, R. Greenwald, M.H. Bergin, W.L. Chameides, Impact of atmospheric aerosol light scattering and absorption on terrestrial net primary productivity. Global Biogeochem. Cycles, 2002.16.
    71. Bainbridge, R., G.C. Evans, O. Rackham, eds. Radiation meteorology in relation to field work. Light as an ecological factor, ed. M.J. Blackwell.1966, Blackwell Scientific Publ.,:Oxford and Edinburgh.17-39.
    72. Margaret Ahmad, A.R. Cashmore, The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana The Plant Journal,1997. 11(3):421-427.
    73. Casal, J.J., R.A. Sanchez, Impaired stem-growth responses to blue-light irradiance in light-grown transgenic tobacco seedlings overexpressing Avena phytochrome A. Physiologia Plantarum,1994. 91(2):268-272.
    74. Lopez-Figueroa. F., W. Rudiger, Stinulation of nitrate net uptake and reduction by red and blue light and reversion by far-red light in the green Alga Ulva Rigia. Journal of Phycology,1991.27(3): 389-394.
    75. Kenneth, Eskins, Light-quality effects on Arabidopsis development. Red, blue and far-red regulation of flowering and morphology. Physiologia Plantarum,1992.86(3):439-444.
    76. Volkenburgh, E., R.E. Cleland, M. Watanabe, Light-stimulated cell expansion in bean (Phaseolus vulgaris L.) leaves. Planta,1990.182(1):77-80.
    77. Furuya, M., M. Kanno, H. Okamoto. S. Fukuda, M. Wada, Control of mitosis by phytochrome and a blue-light receptor in fern spores. Plant Physiol,1997.113(3):677-683.
    78. Zandomeni, K., P. Schopfer, Reorientation of microtubules at the outer epidermal wall of maize coleoptiles by phytochrome, blue-light photoreceptor. and auxin. Protoplasma,1993.173(3): 103-112.
    79. Munzner, P., J. Voigt, Blue light regulation of cell division in chlamydomonas reinhardtii. PLANT PHYSIOLOGY,1992.99(4):1370-1375.
    80. Bauer, P.J., E.J. Sadler, J.R. Frederick, Intermittent shade on gas exchange of cotton leaves in the humid. Southeastern USA Agron,1997.89:163-166.
    81. Zhao, D., D. Oosterhuis, Influence of shade on mineral nutrient status of field-grown cotton. Plant Nutrient,1998.21:1681-1692.
    82. Cohen, S., S. Moreshet, L.L. Guillou, Response of citrus trees to modified radiation regime in semrarid conditions. Journal of Experiment Botany,1997.48:35-44.
    83.周兴元,曹福亮.遮荫对假俭草抗氧化酶系统及光合作用的影响.
    84. Philip, A., Fay. K. Alan, Knapp, Responses to short-term reductions in light in soybean leaves: effects of leaf position and drought stress. International Journal of Plant Sciences,1998.159: 805-811.
    85. Smethurst, C.F., T. Garnett, S. Shabala, Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant and Soil,2005.270(1): 31-45.
    86. Brisson, N., B. Rebiere, D. Zimmer, P. Renault, Response of the root system of a winter wheat crop to waterlogging. Plant and Soil,2002.243(1):43-55.
    87. Musgrave, M.E., Waterlogging Effects on Yield and Photosynthesis in Eight Winter Wheat Cultivars. Crop science,1994.34(5):1314-1318.
    88. Irving, L.J., Y.-B. Sheng, D. Woolley, C. Matthew, Physiological effects of waterlogging on two lucerne varieties grown under glasshouse conditions. Journal of Agronomy and Crop Science,2007. 193(5):345-356.
    89.叶勇,卢昌义.余叔文,木榄和秋茄对水渍的生长与生理反应的比较研究.生态学报,2001.12(10):16-19.
    90.吕军,渍水对冬小麦生长的危害及其生理效应.植物生理学报,1994.20(3):221-226.
    91. Maxwell, K., G.N. Johnson, Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany,2000.51(345):659.
    92.许大全,张玉忠.张荣铣,植物光合作用的光抑制.植物生理学通讯,1992.28(4):237-243.
    93.赵丽英,邓西平,山仑,不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究.中国生态农业学报,2007.15(1):63-66.
    94.杨广东,朱祝军,计玉妹,不同光强和缺镁胁迫对黄瓜叶片叶绿素荧光特性和活性氧产生的影响.植物营养与肥料学报,2002.8(1):115-118.
    95.赵会杰,邹琦,于振文,叶绿素荧光分析技术及其在植物光合机理研究中的应用.河南农业大学学报,2000.
    96. Muller, P., X.P. Li, K.K. Niyogi, Non-photochemical quenching. A response to excess light energy. PLANT PHYSIOLOGY,2001.125(4):1558.
    97. Li, H., D. Jiang, B. Wollenweber, T. Dai, W. Cao, Effects of shading on morphology, physiology and grain yield of winter wheat. European Journal of Agronomy,2010.
    98. Guo, H.X., W.Q. Liu, Y.C. Shi, Effects of different nitrogen forms on photosynthetic rate and the chlorophyll fluorescence induction kinetics of flue-cured tobacco. Photosynthetica,2006.44(1): 140-142.
    99. Mittler, R., Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002.7(9): 405-410.
    100.田敏.饶龙兵,植物细胞中的活性氧及其生理作用.植物生理学通讯,2005.41(2).
    101. Foyer, C.H., P. Descourvieres, K.J. Kunert, Protection against oxygen radicals:an important defence mechanism studied in transgenic plants. Plant, Cell and Environment, 1994.17(5): 507-523.
    102. Asada, K., The water water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology,1999. Vol.50,1999("").
    103. Lei, Z., S. Mingyu, W. Xiao, L. Chao, Q. Chunxiang, C. Liang, H. Hao, L. Xiaoqing, H. Fashui, Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biological Trace Element Research,2008.121(1):69-79.
    104. Hideg, E., A. Takatsy, C.P. Sar,I. Vass, K. Hideg, Utilizing new adamantyl spin traps in studying UV-B-induced oxidative damage of photosystem Ⅱ. Journal of Photochemistry and Photobiology B: Biology,1999.48(2-3):174-179.
    105. Ahmed, S., Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Science,2002. Vol.163(No.1).
    106. KHR, L., W. C, L. H, Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions. Plant Science,2004. Vol.167(No.2).
    107.郭晓荣,曹坤芳.许再富.热带雨林不同生态习性树种幼苗光合作用和抗氧化酶对生长光环境的反应.应用生态学报,2004(03).
    108.马德华,庞金安,弱光对黄瓜幼苗光合及膜脂过氧化作用的影响.河南农业大学学报.1998.32(1):67-72.
    109.王晨阳,马元喜,周苏玫,土壤水分逆境对冬小麦根系某些形态解剖结构及超微结构的影响.作物学报,1996.22(6):712-719.
    110.许长成,邹琦,大豆叶片旱促衰老及其膜脂过氧化作用的关系.作物学报,1993.3:360-363.
    111. Ehdaie. B., G.A. Alloush, J.G. Waines, Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Research,2008.106(1):34-43.
    112. Ehdaie. B., G.A. Alloush. M.A. Madore, J.G. Waines, Genotypic variation for stem reserves and mobilization in wheat:Ⅱ. postanthesis changes in internode water-soluble carbohydrates. Crop Sci, 2006.46(5):2093-2103.
    113. Jorge, A., Cruz-Aguado, R. Rodes, I.P. Perez, M. Dorado, Morphological characteristics and yield components associated with accumulation and loss of dry mass in the internodes of wheat. Field Crops Research,2000.66(2):129-139.
    114. Austin, R., J. Edrich. M. Ford, R. Blackwell. The fate of the dry matter, carbohydrates and 14C lost from the leaves and stems of wheat during grain filling. Annals of Botany,1977.41(6):1309.
    115. Davidson, D., P. Chevalier, Storage and remobilization of water-soluble carbohydrates in stems of spring wheat. Crop Science,1992.32(1):186.
    116. Borrell, A., L. Incoll, M. Dalling, The influence of the Rhtl and Rht2 alleles on the deposition and use of stem reserves in wheat Annals of Botany,1993.71(4):317.
    117. Madore, S., J. Waines, Contribution of internode reserves to grain yield in a tall and semidwarf spring wheat Journal of Genetics & Breeding,1996.50(1).
    118. Bidinger, F., R.B. Musgrave, R.A. Fischer, Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley. Nature,1977.270(5636):431-433.
    119. Bell, C.J., L.D. Incoll, The redistribution of assimilate in field-grown winter wheat. Journal of Experimental Botany,1990.41(8):949-960.
    120. Blum, A., Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica,1998. 100(1):77-83.
    121. Wardlaw, I.F., J. Willenbrink, Carbohydrate storage and mobilisation by the culm of wheat between heading and grain maturity:the relation to sucrose synthase and sucrose-phosphate synthase. Australian Journal of Plant Physiology,1994.21(3):255-272.
    122. Yukawa. T., M. Kobayashi, Y. Watanabe, S. Yamamoto, Studies on fructan accumulation in wheat (Triticum aestivum L.). Jpn J Crop Sci,1991.60:385-391.
    123. Blacklow, W.M., B. Darbyshire, P. Pheloung. Fructans polymerized and depolymerized in the internodes of winter-wheat as grain-filling progressed. Plant Science Letters,1984.36(3):213-218.
    124. Dey, P., R. Dixon, Biochemistry of storage carbohydrates in green plants.1985:Academic Pr.
    125.Hendry, G., Evolutionary origins and natural functions of fructans-a climatological, biogeographic and mechanistic appraisal. New Phytologist,1993.123(1):3-14.
    126. Housley, T.L., Role of fructans redistributed from vegetative tissues in grain filling of wheat and barley, in Developments in Crop Science, G. Anil Kumar and K. Narinder, Editors.2000, Elsevier. 207-221.
    127. Frehner, M., F. Keller, A. Wiemken. Localization of fructan metabolism in the vacuoles isolated from protoplasts of Jerusalem artichoke tubers (Helianthus-tuberosus L) Journal of Plant Physiology,1984.116(3):197-208.
    128. Pollock, C., Sucrose accumulation and the initiation of fructan biosynthesis in Lolium temulentum L. New Phytologist,1984.96(4):527-534.
    129. Hincha, D.K., D.P. Livingston Iii, R. Premakumar, E. Zuther, N. Obel, C. Cacela, A.G. Heyer, Fructans from oat and rye:composition and effects on membrane stability during drying. Biochimica et Biophysica Acta (BBA)-Biomembranes,2007.1768(6):1611-1619.
    130. Schroeven, L., W. Lammens, A.V. Laere, W.V.d. Ende, Transforming wheat vacuolar invertase into a high affinity sucrose:sucrose 1-fructosyltransferase. New phytologist,2008.180(4):822-831.
    131. Pollock, C.J., A.J. Cairns, Fructan metabolism in grasses and cereals. Annual Review of Plant Physiology and Plant Molecular Biology,1991.42(1):77-101.
    132. Yang, J., J. Zhang, Z. Wang, Q. Zhu, L. Liu, Activities of fructan-and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta,2004.220(2): 331-343.
    133. Kuehbauch, W., U. Thome, Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulations. Journal of Plant Physiology,1989.134(2):243-250.
    134.Livingston, D., D. Hincha, A. Heyer, The relationship of fructan to abiotic stress tolerance in plants. Cellular and Molecular Life Sciences,2009.66:2007-2023.
    135. Edelman, J., T. Jefford, The mechanisim of fructosan metabolism in higher plants as exemplified in helianthus tuberosus. New Phytologist,1968.67(3):517-531.
    136. Cairns, A.J., A. Winters, C.J. Pollock, Fructan biosynthesis in excised leaves of Lolium temulentum L. III. A comparison of the in vitro properties of fructosyl transferase activities with the characteristics of in vivo fructan accumulation. New phytologist,1989.112(3):343-352.
    137. Portes. M.T., R.d.C.s.L. Figueiredo-Ribeiro, M.A.M.d. Carvalho, Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea. Journal of Plant Physiology,2008.165(15):1572-1581.
    138. Simpson, R.J., G.D. Bonnett, Fructan exohydrolase from grasses. New Phytologist,1993.123(3): 453-469.
    139. Willenbrink, J., G.D. Bonnett, S. Willenbrink,I.F. Wardlaw, Changes of enzyme activities associated with the mobilization of carbohydrate reserves (fructans) from the stem of wheat during kernel filling. New Phytologist,1998.139(3):471-478.
    140.王志敏,王树安,苏宝林,小麦穗粒数的调节11.开花前遮光对穗碳水化合物代谢和内源激素水平的影响.华北农学报.1997.12(4):42-47.
    141. Kiniry, J.R., Effect of shading on use of non-structural carbohydrate of wheat during grain filling stage. Agronomy Journal,1993.85:844-848.
    142.贺明荣,王振林,高淑萍,不同小麦品种千粒重对灌浆期弱光的适应性分析.作物学报,2001.27(5):640-644.
    143.曹卫星,郭文善,王龙俊,姜东,小麦品质生理生态及调优技术.2005,北京:中国农业出版社.
    144.方先文,姜东,戴廷波,曹卫星,不同品质类型小麦籽粒蛋白质、淀粉积累过程的基因型差异.麦类作物学报,2002.22(2):42-45.
    145.王月福,于振文,李尚霞,余松烈,小麦籽粒灌浆过程中有关淀粉合成酶的活性及其效应.作物学报,2003.29(1):75-81.
    146.张吉旺,董树亭,王空军,胡昌浩,刘鹏,大田遮阴对夏玉米淀粉合成关键酶活性的影响.作物学报,2008.34(8):1470-1474.
    147.李天,R. Ohsugi, T. Yamagishi, H. Sasaki,灌浆结实期弱光对水稻籽粒淀粉积累及相关酶活性的影响.中国水稻科学,2005.19(6):545-550.
    148.牟会荣,姜东,戴廷波,张传辉,荆奇,曹卫星,遮光对小麦籽粒淀粉品质和花前贮存非结构碳水化合物转运的影响.应用生态学报,2009.20(4):805-810.
    149. Buleon, A., P. Colonna, V. Planchot, S. Ball, Starch granules:structure and biosynthesis. International Journal of Biological Macromolecules,1998.23:85-112.
    150. Tester, R.F., J. Karkalas, X. Qi, Starch-composition, fine structure and architecture. Journal of Cereal Science,2004.39(2004):151-165.
    151. Bechtel, D.B., I. Zayas, L. Kaleikau, Y. Pomeranz, Size distribution of wheat starch granules during endosperm development. Cereal Chemistry,1990.67(1):59-63.
    152. Peng, M., M. Gao, E.A. Aal, P. Hucl, R.N. Chibbar, Separation and characterization of A- and B-type starch granules in wheat endosperm. Cereal Chemistry,1999.76(3):375-379.
    153. Meredith, P., Large and Small Starch Granules in Wheat-Are They Really Different? Starch,1981. 33(2):40-44.
    154. Morrison, W.R., H. Gadan, The amylose and lipid contents of starch granules in developing wheat endosperm. Journal of Cereal Science,1987.5(3):263-275.
    155. Verwimp, T., G.E. Vandeputte, K. Marrant, J.A. Delcour, Isolation and characterisation of rye starch. Journal of Cereal Science,2004.39(1):85-90.
    156. Yoo, S.H., J. Jane, Structural and physical characteristics of waxy and other wheat starches* 1. Carbohydrate Polymers,2002.49(3):297-305.
    157. Hurkman, W.J., K.F. McCue, S.B. Altenbach. A. Korn. C.K. Tanaka, K.M. Kothari, E.L. Johnson, D.B. Bechtel, J.D. Wilson, O.D. Anderson, Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science,2003.164(5): 873-881.
    158. Jenner, C., Starch synthesis in the kernel of wheat under high temperature conditions. Functional Plant Biology,1994.21(6):791-806.
    159. Panozzo, J.F., H.A. Eagles, Cultivar and environmental effects on quality characters in wheat. Ⅰ. Starch. Australian Journal of Agricultural Research,1998.49(5):757-766.
    160.张传辉,小麦籽粒淀粉粒粒度分布特征及形成的生理机制研究.南京农业大学博士论文. 2010.
    161. Judel, G.K., K. Mengel. Effect of shading on nonstructural carbohydrates and their turnover in culms and leaves during the grain filling period of spring wheat Crop Science,1982.22(5): 958-962.
    162. Masoni, A., L. Ercoli, M. Mariotti, Ⅰ. Arduini, Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. European Journal of Agronomy,2007.26(3):179-186.
    163. Peeters, K.M.U., A. Laere, Amino acid metabolism associated with N(?)\mobilization from the flag leaf of wheat (Triticum aestivum L.) during grain development. Plant, Cell & Environment,1994. 17(2):131-141.
    164.荆奇,戴廷波.姜东,不同生态条件下不同基因型干物质和氮素积累与分配特征.南京农业大学学报,2004.24(1):1-5.
    165. Judel, G.K., K. Mengel. Effect of Shading on Nonstructural Carbohydrates and their Turnover in Culms and Leaves during the Grain Filling Period of Spring Wheat. Crop Sci,1982.22(5): 958-962.
    166.任万军.杨文钰,徐精文,樊高琼,马周华,弱光对水稻籽粒生长及品质的影响.作物学报,2003(05).
    167.方保停,张胜全.王敏,张英华,王志敏,节水栽培冬小麦光合器官遮光对籽粒蛋白质形成的影响.麦类作物学报.2008.28(2):266-270.
    168.牟会荣,姜东,戴廷波.曹卫星,遮光对小麦植株氮素转运及品质的影响.应用生态学报,2010.21(7):1718-1724.
    169.魏凤珍,李金才,尹钧,孕穗期渍水逆境对冬小麦氮素营养及产量的影响.中国农学通报,2006.22(9):127-]29.
    170. Aguirre, A., O.J. Rubiolo, P.D. Ribotta, J.S. Lujan, G.T. Perez, A.E. Leon, Effects of incident radiation and nitrogen availability on the quality parameters of triticale grains in Argentina Experimental Agriculture,2006.42(3):311-322.
    171.李永庚,于振文.梁晓芳,赵俊哗,邱希宾,小麦产量和品质对灌浆期不同阶段低光照强度的响应.植物生态学报,2005.29(5):807-813.
    172. Jenner, C.F.. Grain-filling in wheat plants shaded for brief periods after anthesis. Australian Journal of Plant Physiology,1979.6(6):629-641.
    173. Issarakraisila, M., Q. Ma, D.W. Turner, Photosynthetic and growth responses of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) to waterlogging and water deficit. Scientia horticulturae,2007.111(2):107-113.
    174.姚大年,刘广田,朱金宝.梁荣奇,基因型和环境对小麦品种淀粉性状和面粉粘度参数的影响.粮食与饲料工业,1999.6:1-4.
    175.张艳,不同品质类型小麦品种品质形成的特点及其对光照的反应.2003,山东农业大学.
    1. Stanhill G, Cohen S, Global dimming:a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meteorology,2001.107(4):255-278.
    2. Alpert P, Kishcha P, Kaufman YJ. Schwarzbard R, Global dimming or local dimming?:Effect of urbanization on sunlight availability. Geophys. Res. Lett.,2005.32:L17802.
    3. Stanhill G, Cohen S, Solar radiation changes in Japan during the 20th century:evidence from sunshine duration measurements. Journal of the Meteorological Society of Japan,2008.86(1): 57-67.
    4. Ramanathan V, Feng Y. Air pollution, greenhouse gases and climate change:global and regional perspectives. Atmospheric Environment,2009.43(1):37-50.
    5. Li F, Meng P, Fu D, Wang B, Light distribution, photosynthetic rate and yield in a Paulownia-wheat intercropping system in China Agroforestry Systems,2008.74(2):163-172.
    6. Mu H, Jiang D, Wollenweber B, Dai T, Jing Q, Cao W, Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat Journal of Agronomy and Crop Science,2010.196(1):38-47.
    7. Qian Y, Wang W, Leung LR, Kaiser DP, Variability of solar radiation under cloud-free skies in China:The role of aerosols. Geophys. Res. Lett.,2007.34:doi:10.1029/2006GL028800.
    8. 金之庆、石春林,葛道阔,高炜,长江下游平原小麦生长季气候变化特点及小麦发展方向.江苏农业科学,2001.17(4):193-199.
    9. Estrada-Campuzano G, Miralles DJ, Slafer GA, Yield determination in triticale as affected by radiation in different development phases. European Journal of Agronomy,2008.28(4):597-605.
    10. Murray DB, Nichols R, Light, shade and growth in some tropical plants. In:Bainbridge R, Evans GC. Rackham O (Eds.). Light as an Ecological Factor. British Ecological Society SymposiumNo.6. Oxford ed.1966, Blackwell. Oxford.249-263.
    11. Wang N, Fisher DB, Monitoring phloem unloading and post-phloem transport by microperfusion of attached wheat grains. PLANT PHYSIOLOGY,1994.104(1):7.
    12. Wang Z, Yin Y, He M, Zhang Y, Lu S, Li Q, Shi S, Allocation of photosynthates and grain growth of two wheat cultivars with different potential grain growth in response to pre-and post-anthesis shading. Journal of Agronomy and Crop Science,2003.189(5):280-285.
    13. Burkey KO, Wells R, Response of Soybean Photosynthesis and Chloroplast Membrane Function to Canopy Development and Mutual Shading.1991.245-252.
    14. Sinclair TR. Shiraiwa T, Hammer GL, Variation in crop radiation-use efficiency with increased diffuse radiation. Crop Science,1992.32(5):1281-1284.
    15. Rochette P, Desjardins RL, Pattey E, Lessard R, Instantaneous measurement of radiation and water use efficiencies of a maize crop. Agronomy Journal,1996.88(4):627-635.
    16. Gu L, Fuentes JD, Shugart HH, Staebler RM, Black TA, Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness:Results from two North American deciduous forests. J. Geophys. Res.,1999.104(D24):31,421-31,434.
    17. Gu L, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR, Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res.,2002.107(D6).
    18. Bainbridge R, Evans GC, Rackham O, eds. Radiation meteorology in relation to field work. Light as an ecological factor, ed. Blackwell MJ.1966, Blackwell Scientific Publ.,:Oxford and Edinburgh. 17-39.
    19. Margaret Ahmad, Cashmore AR, The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana The Plant Journal,1997. 11(3):421-427.
    20. Casal JJ, Sanchez RA, Impaired stem-growth responses to blue-light irradiance in light-grown transgenic tobacco seedlings overexpressing Avena phytochrome A. Physiologia Plantarum,1994. 91(2):268-272.
    21. Zelitch 1, The close relationship between net photosynthesis and crop yield. BioScience,1982. 32(10):796-802.
    22. Boardman NK. Comparative Photosynthesis of Sun and Shade Plants. Annual Review of Plant Physiology,1977.28(1):355.
    23. Bjorkman O, Denmig-Adams B, eds. Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. Ecophysiology of photosynthesis, ed. Schulze ED and Caldwell MME.1994. Springer: Berlin.17-47.
    24. Simmons SR, Growth, development and physiology, in Wheat and Wheat Improvement, Heyne EG, Editor.1987, ASA/CSSA/SSSA:Madison, WI.77-113.
    25. McCaig TN, Calrke JM, Seasonal changes in nonstructural carbohydrate levels of wheat and oats grown in semiarid environment Crop Science,1982.22:963-970.
    26. Blum A, Sinmena B, Mayer J, Golan G, Shpiler L, Stem reserve mobilisation supports wheat-grain filling under heat stress. Functional Plant Biology,1994.21(6):771-781.
    27. Ehdaie B. Alloush GA, Waines JG, Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Research,2008.106(1):34-43.
    28. Ruuska SA, Rebetzke GJ, Van HAF, Richards RA, Fettell NA, Tabe L, Jenkins CLD, Genotypic variation in water-soluble carbohydrate accumulation in wheat Functional Plant Biology,2006. 33(9):799-809.
    29.张吉旺,董树亭,王空军,胡昌浩,刘鹏.大田遮阴对夏玉米淀粉合成关键酶活性的影响.作物学报,2008.34(8):1470-1474.
    30.李天,Ohsugi R, Yamagishi T, Sasaki H,灌浆结实期弱光对水稻籽粒淀粉积累及相关酶活性的影响.中国水稻科学,2005.19(6):545-550.
    31.方保停,张胜全,王敏,张英华,王志敏,节水栽培冬小麦光合器官遮光对籽粒蛋白质形成的影响.麦类作物学报,2008.28(2):266-270.
    32. Kiniry JR, Effect of shading on use of non-structural carbohydrate of wheat during grain filling stage. Agronomy Journal,1993.85:844-848.
    33. Judel GK, Mengel K, Effect of shading on nonstructural carbohydrates and their turnover in culms and leaves during the grain filling period of spring wheat. Crop Science,1982.22(5):958-962.
    34.牟会荣,姜东.戴廷波,曹卫星,遮光对小麦植株氮素转运及品质的影响.应用生态学报,2010.21(7):1718-1724.
    35. Aguirre A, Rubiolo OJ, Ribotta PD, Lujan JS, Perez GT, Leon AE, Effects of incident radiation and nitrogen availability on the quality parameters of triticale grains in Argentina. Experimental Agriculture,2006.42(3):311-322.
    36. Graybosch RA, Peterson CJ. Enviromental modification of hard winter wheat flour protein composition. Journal of Cereal Science,1995.22:45-51.
    37. Jenner CF, Grain-filling in wheat plants shaded for brief periods after anthesis. Australian Journal of Plant Physiology,1979.6(6):629-641.
    38.潘洁,姜东,曹卫星,孙传范,小麦穗籽粒数、单粒重及单粒蛋白质含量的小穗位和粒位效应.作物学报.2005(04):431-437.
    39.李永庚.于振文,梁晓芳,赵俊晔,邱希宾.小麦产量和品质对灌浆期不同阶段低光照强度的响应.植物生态学报.2005.29(5):807-813.
    40. Garrity DP, Sullivan CY, Watts DG, Rapidly determining sorghum canopy photosynthetic rates with a mobile field chamber. Agronomy Journal,1984.76(1):163-165.
    41. Dong ST, Hu CH. Gao RQ, Rates of apparent photosynthesis, respiration and dry matter accumulation in maize canopies. Biologia Plantarum,1993.35(2):273-277.
    42. Arnon DI, Copper enzymes in isolated chloroplasts polyphenoloxidase in Bera vulgaris. PLANT PHYSIOLOGY,1949.24:1-15.
    43.白宝璋,汤学军,植物生理学测试技术.1993.中国科学技术出版社:北京.156-157.
    44. Tan W, Liu J, Dai T, Jing Q, Cao W, Jiang D, Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica,2008.46(1): 21-27.
    45. Chance B, Maehly AC, Assay of catalase and peroxidase, in Methods in Enzymology.Colowick SP and Kaplan NO. Editors.1955. Academic Press:New York.764-775.
    46. Du Z, Bramlage WJ, Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. Journal of Agricultural and Food Chemistry,2002.40(9):1566-1570.
    47. Fales FW, The assimilation and degradation of carbohydrates by yeast cells. J Biol Chem,1951. 193(1):113-24.
    48.姜东,于振文,李永庚,余松烈,孔兰静,高产小麦营养器官临时贮存物质积运及其对粒重的贡献.作物学报,2003.29(1):31-36.
    49. Cairns AJ, Winters A, Pollock CJ, Fructan biosynthesis in excised leaves of Lolium temulentum L. III. A comparison of the in vitro properties of fructosyl transferase activities with the characteristics of in vivo fructan accumulation. New phytologist,1989.112(3):343-352.
    50. Housley TL, Daughtry CST, Fructan content and fructosyltransferase activity during wheat seed growth Plant Physilogy,1987.83(1):4-7.
    51. Weegels PL, Hamer RJ, Schofield JD, Functional properties of wheat glutenin. Journal of Cereal Science,1996.23(1):1-17.
    52.孙辉,姚大年,李宝云,刘广田,张树榛,普通小麦谷蛋白大聚合体的含量与烘焙品质相关关系.中国粮油学报,1998.13(6):13-16.
    53. Clarke J, Campbell C, Cutforth H, DePauw R, Winkleman G, Nitrogen and phosphorus uptake, translocation, and utilization efficiency of wheat in relation to environment and cultivar yield and protein levels. Canadian Journal of Plant Science,1990.70(4):965-977.
    54. Osborne TB, Mendel LB, Ferry WtcoEL, Wakeman AJ, Nutrive properties of proteins of the maine kernel. Journal of Biological Chemistry,1914.18(1):1-16.
    55.李硕碧,翔高,单明珠,李必运,eds.小麦赢分子量谷蛋白亚塞与加工品质.2001,中国农业出版社:北京.
    56. Yue H, Jiang D, Dai T, Qin X, Jing Q, Cao W, Effect of nitrogen application rate on content of glutenin macropolymer and high molecular weight glutenin subunits in grains of two winter wheat cultivars. Journal of Cereal Science,2007.45(3):248-256.
    57. Kuhbauch W, Thome U. Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulations. Journal of Plant Physiology,1989.134:243-250.
    58. Portes MT. Figueiredo-Ribeiro RdCsL, Carvalho MAMd, Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea. Journal of Plant Physiology,2008.165(15):1572-1581.
    59. Valluru R, Lammens W, Claupein W, Van den Ende W, Freezing tolerance by vesicle-mediated fructan transport. Trends in Plant Science,2008.13(8):409-414.
    60. Jedel PE, Hunt LA, Shading and thinning effects on multi- and standard-floret winter wheat. Crop Science,1990.30(1):128-133.
    61. Arisnabarreta S, Miralles DJ, Radiation effects on potential number of grains per spike and biomass partitioning in two- and six-rowed near isogenic barley lines. Field Crops Research,2008.107(3): 203-210.
    62. Demotes-Mainard S, Jeuffroy M-H, Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat Field Crops Research,2004.87(2-3):221-233.
    63. Rahman S. Genetic manipulation of starch properties in wheat in Australia Cereal Chem.,1994.19: 517-518.
    64. Crosbie GB, Ross AS, Moro T, Chiu PC, Starch and protein quality requirements of Japanese alkaline noodles (Ramen). Cereal Chemistry,1999.76(3):328-334.
    65. Park S-H, Wilson JD, Seabourn BW, Starch granule size distribution of hard red winter and hard red spring wheat:Its effects on mixing and breadmaking quality. Journal of Cereal Science,2009.
    66. Ross AS, Quail KJ, Crosbie GB, Physicochemical properties of Australian flours influencing the texture of yellow alkaline noodles. Cereal Chemistry,1997.74(6):814-820.
    67. Demotes-Mainarda S, Jeuffroy M-H, Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat Field Crops Research,2004.87(2-3):221-233.
    68. Zhang P, He Z, Chen D. Zhang Y, Larroque OR, Xia X, Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread. Journal of Cereal Science,2007.46(1):1-10.
    69.杜金哲,胡尚连.李文雄,刘锦红、不同品质类型春小麦HMW-GS形成时间和积累强度及与品质的关系.作物学报,2003.29(1):111-118.
    70.赵惠贤,段惠,梁亮,郭蔼光,不同品质类型小麦谷蛋白聚合体含量及亚基组成的初步研究.西北植物学报,2003.23(5):755-758.
    71. Guo HX, Liu WQ, Shi YC, Effects of different nitrogen forms on photosynthetic rate and the chlorophyll fluorescence induction kinetics of flue-cured tobacco. Photosynthetica,2006.44(1):140-142.
    1.IPCC, Climate Change 2007:Contribution of working group Ⅰ to the fourth assessment report of the intergovernmental panel on climate Change.2007, Cabridge:Cabridge University Press.
    2. Tang Y, Gan J, Zhao L, Gao K, On the climatology of persistent heavy rainfall events in China Advances in atmospheric sciences,2006.23(5):678-692.
    3. 金之庆.石春林.葛道阔,高炜,长江下游平原小麦生长季气候变化特点及小麦发展方向.江苏农业科学,2001.17(4):193-199.
    4. Peri PL, McNeil DL, Moot DJ, Varella AC, Lucas RJ, Net photosynthetic rate of cocksfoot leaves under continuous and fluctuating shade conditions in the field. Grass and Forage Science,2002. 57(2):157-170.
    5. Slafer GA, Calderini DF, Miralles DJ. Dreccer MF, Preanthesis shading effects on the number of grains of three bread wheat cultivars of different potential number of grains. Field Crops Research, 1994.26:31-39.
    6. Burkey KO, Wells R, Effects of natural shade on soybean thylakoid membrane composition. Photosynthesis research,1996.50(2):149-158.
    7. Huang Q, Liu H, Chen R, Effects of shade on photosynthetic characteristics in Chieh-qua. Acta Horticulturae,2004.659(2):799-804.
    8. Demotes-Mainarda S, Jeuffroy M-H, Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat. Field Crops Research,2004.87(2-3):221-233.
    9. Islam MT, Kubota F, Mollah FH, Agata W, Effect of shading on the growth and yield of Mungbean (Vigna radiata [L.] Wilczek). Agronomy and Crop Science,1993.171(4):274-278.
    10. Kinily JR. Effect of shading on use of non-structural carbohydrate of wheat during grain filling stage. Agronomy Journal,1993.85:844-848.
    11. Wang Z, Yin Y, He M, Zhang Y, Lu S. Li Q, Shi S, Allocation of photosynthates and grain growth of two wheat cultivars with different potential grain growth in response to pre- and post-anthesis shading. Crop Science,2003.189(5):280-285.
    12.贺明荣,王振林,高淑萍,不同小麦品种千粒重对灌浆期弱光的适应性分析.作物学报,2001.27(5):640-644.
    13. Waddingtion DV, Carrow RN, Shearman RC, eds. Shade and turfgrass culture. Turfgrass, ed. Dudeck AE and Peacock CH.1992, American Society of Agronomy:Madison, Wisconsin, USA. 269-284.
    14. Zhang H, Sharifi MR, Nobel PS, Photosynthetic characteristics of sun versus shad plants of Encelia farinose as affected by photosynthetic photon flux density, Intercellular CO 2 concentration, leaf water potential,and leaf temperature. Australian Journal of Plant Physiology,1995.22: 833-841.
    15. Hikosaka K, Effects of leaf age.nitrogen nutrition and photon flux density on the organization of the photosynthetic apparatus in leaves of a vine (lponioeatricolor Cav.)grown horizontally to avoid mutual shading of leaves. Plant Springer-Verlag,1996.198:144-150.
    16. Evans JR, Poorter H, Photosynthetic acclimation of plants to growth irradiance:the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment,2001.24(8):755-767.
    17. Smethurst CF, Garnett T, Shabala S, Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant and soil,2005.270(1):31-45.
    18. Brisson N, Rebiere B, Zimmer D, Renault P, Response of the root system of a winter wheat crop to waterlogging. Plant and soil,2002.243(1):43-55.
    19. Musgrave ME, Waterlogging Effects on Yield and Photosynthesis in Eight Winter Wheat Cultivars. Crop science,1994.34(5):1314-1318.
    20. Irving LJ, Sheng Y-B, Woolley D, Matthew C, Physiological effects of waterlogging on two lucerne varieties grown under glasshouse conditions. Journal of agronomy and crop science,2007.193(5): 345-356.
    21. Tan W, Liu J, Dai T, Jing Q, Cao W, Jiang D, Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica,2008.46(1): 21-27.
    22. Mittler R, Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002.7(9): 405-410.
    23. Hideg E, Takatsy A, Sar CP, Vass I, Hideg K, Utilizing new adamantyl spin traps in studying UV-B-induced oxidative damage of photosystem Ⅱ. Journal of photochemistry and photobiology B: Biology,1999.48(2-3):174-179.
    24. Ahmed S, Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant science,2002.163(1).
    25. KHR L, C W, H L, Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions. Plant science,2004.167(2).
    26.范雪梅,姜东,戴廷波,荆奇,曹卫星,花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响.中国农业科学,2005.38(6):1132-1141.
    27. Feng J, Shi Q, Wang X, Effects of exogenous silicon on photosynthetic capacity and antioxidant enzyme activities in chloroplast of cucumber seedlings under excess manganese. Agricultural Sciences in China,2009.8(1):40-50.
    28. Zheng C, Jiang D. Liu F, Dai T, Jing Q, Cao W, Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Science.2009.176(4):575-582.
    29. Ahmed S. Nawata E, Hosokawa M. Domae Y, Sakuratani T, Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Science,2002. 163(1):117-123.
    30. Huang W, Wu L, Zhan J, Effect of weak light on the peroxidation of membrane-lipid of cherry leaves. Acta Botanica Sinica 2002.44(8):920-924.
    31. Ehdaie B, Alloush GA, Waines JG, Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Research,2008.106(1):34-43.
    32. Ehdaie B, Alloush GA, Madore MA, Waines JG, Genotypic variation for stem reserves and mobilization in wheat:Ⅱ. postanthesis changes in internode water-soluble carbohydrates. Crop Sci, 2006.46(5):2093-2103.
    33. Jorge A, Cruz-Aguado, Rodes R, Perez IP, Dorado M, Morphological characteristics and yield components associated with accumulation and loss of dry mass in the internodes of wheat. Field Crops Research,2000.66(2):129-139.
    34. Li H, Jiang D, Wollenweber B, Dai T, Cao W, Effects of shading on morphology, physiology and grain yield of winter wheat. European Journal of Agronomy,2010.33(4):267-275.
    35. Austin R, Edrich J, Ford M. Blackwell R, The fate of the dry matter, carbohydrates and 14C lost from the leaves and stems of wheat during grain filling. Annals of Botany,1977.41(6):1309.
    36. Davidson D, Chevalier P, Storage and remobilization of water-soluble carbohydrates in stems of spring wheat Crop Science,1992.32(1):186.
    37. Borrell A, Incoll L, Dalling M, The influence of the Rhtl and Rht2 alleles on the deposition and use of stem reserves in wheat Annals of Botany,1993.71(4):317.
    38. Madore S, Waines J, Contribution of internode reserves to grain yield in a tall and semidwarf spring wheat Journal of Genetics & Breeding,1996.50(1).
    39. Bidinger F, Musgrave RB, Fischer RA, Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley. Nature,1977.270(5636):431-433.
    40. Bell CJ, Incoll LD, The redistribution of assimilate in field-grown winter wheat. Journal of Experimental Botany,1990.41(8):949-960.
    41. Blum A, Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica,1998. 100(1):77-83.
    42. Cruz-Aguado JA, Rodes R, Perez IP, Dorado M, Morphological characteristics and yield components associated with accumulation and loss of dry mass in the internodes of wheat. Field Crops Research,2000.66(2):129-139.
    43. Hendry G, Evolutionary origins and natural functions of fructans-a climatological, biogeographic and mechanistic appraisal. New Phytologist,1993.123(1):3-14.
    44. Housley TL, Role of fructans redistributed from vegetative tissues in grain filling of wheat and barley, in Developments in Crop Science, Anil Kumar G and Narinder K, Editors.2000, Elsevier. 207-221.
    45. Yang J, Zhang J, Wang Z, Zhu Q, Liu L, Activities of fructan- and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta,2004.220(2):331-343.
    46. Kuehbauch W, Thome U. Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulations. Journal of Plant Physiology 1989.134(2):243-250.
    47. Livingston D, Hincha D, Heyer A, The relationship of fructan to abiotic stress tolerance in plants. Cellular and Molecular Life Sciences,2009.66:2007-2023.
    48.张吉旺,董树亭,王空军,胡昌浩,刘鹏.大田遮阴对夏玉米淀粉合成关键酶活性的影响.作物学报.2008.34(8):1470-1474.
    49.李天,Ohsugi R, Yamagishi T. Sasaki H,灌浆结实期弱光对水稻籽粒淀粉积累及相关酶活性的影响.中国水稻科学.2005.19(6):545-550.
    50.牟会荣,姜东,戴廷波.张传辉,荆奇.曹卫星;,遮光对小麦籽粒淀粉品质和花前贮存非结构碳水化合物转运的影响.应用生态学报,2009.20(4):805-810.
    51. Wang N, Fisher DB, Monitoring phloem unloading and post-phloem transport by microperfusion of attached wheat grains. Plant Physiology.1994.104(1):7.
    52. Peeters KMU, Laere A, Amino acid metabolism associated with N mobilization from the flag leaf of wheat (Triticum aestivum L.) during grain development. Plant, Cell & Environment,1994.17(2): 131-141.
    53.荆奇,戴廷波,姜东,不同生态条件下不同基因型干物质和氮素积累与分配特征.南京农业大学学报,2004.24(1):1-5.
    54. Judel GK, Mengel K, Effect of Shading on Nonstructural Carbohydrates and their Turnover in Culms and Leaves during the Grain Filling Period of Spring Wheat Crop Sci,1982.22(5): 958-962.
    55.牟会荣,姜东,戴廷波,曹卫星,遮光对小麦植株氮素转运及品质的影响.应用生态学报,2010.21(7):1718-1724.
    56.姜东.谢祝捷,曹卫星,花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004.30(2):175-182.
    57.于振文,小麦产量与品质生理及栽培技术.2006,北京:中国农业出版社.
    58. Jenner CF, Grain-filling in wheat plants shaded for brief periods after anthesis. Australian Journal of Plant Physiology,1979.6(6):629-641.
    59.任万军,杨文钰.徐精文,樊高琼,马周华,弱光对水稻籽粒生长及品质的影响.作物学报,2003(05).
    60. lssarakraisila M, Ma Q, Turner DW, Photosynthetic and growth responses of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) to waterlogging and water deficit. Scientia horticulturae,2007.111(2):107-113.
    61. Zhang X, Jiang D, Zheng C, Dai T. Cao W, Post-anthesis salt and combination of salt and waterlogging affect distributions of sugars. amino acids. Na- and K+ in wheat Journal of agronomy and crop science,2010.
    62. Kubis SE, Lilley KS. Jarvis P, Methods in molecular biology, in Isolation and preparation of chloroplasts from arabidopsis thaliana plants.2008.171-186.
    63. Gelvin S. Schilferoot R. eds. Plant molecular biology manual. Kluwer. In vitro import of proteins into chloroplasts, ed. BD B, S P and Froelich J KK.1994, Dordrecht.
    64. Nakano Y, Asada K, Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol.,1981.22(5):867-880.
    65. Jiang Y, Huang B, Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. Journal of Experimental Botany,2001.52(355):341-349.
    66. Miyake C, Asada K, Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant and Cell Physiology,1992.33(5):541-553.
    67. Sui N, Li M, Liu XY, Wang N, Fang W, Meng QW, Response of xanthophyll cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene. Photosynthetica,2007.45(3):447-454.
    68. Moloi MJ, van der Westhuizen AJ, The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. J Plant Physiol,2006.163(11):1118-25.
    69. Du Z, Bramlage WJ, Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. Journal of Agricultural and Food Chemistry,2002.40(9):1566-1570.
    70.何照范.粮油籽粒品质及其分析技术.1985,农业出版社:北京.
    71. Bechtel DB, Zayas I, Kaleikau L, Pomeranz Y, Size distribution of wheat starch granules during endosperm development. Cereal Chemistry,1990.67(1):59-63.
    72. Li L, Blanco M, Jane J, Physicochemical properties of endosperm and pericarp starches during maize development. Carbohydrate Polymers,2007.67(4):630-639.
    73. Rampino P, Spano G, Pataleo S, Mita G, Napier JA, Di Fonzo N, Shewry PR, Perrotta C, Molecular analysis of a durum wheat 'stay green' mutant:Expression pattern of photosynthesis-related genes. Journal of Cereal Science,2006.43(2):160-168.
    74. Grassini P, Indaco GV, Pereira ML, Hall AJ, Trapani N, Responses to short-term waterlogging during grain filling in sunflower. Field crops research,2007.101(3):352-363.
    75.周苏玫,王晨阳.贺德先,土壤渍水对冬小麦根系生长及营养代谢的影响.作物学报,2001.7(5):674-679.
    76. Peng M, Gao M, Aal EA, Hucl P, Chibbar RN, Separation and characterization of A- and B-type starch granules in wheat endosperm. Cereal Chemistry,1999.76(3):375-379.
    1. Stanhill G, Cohen S, Global dimming:a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meteorology,2001.107(4):255-278.
    2. Cohen S, Liepert B, Stanhill G, Global dimming comes of age. Eos Trans. AGU.2004.85(38).
    3. Grimenes AA, Thue-Hansen V, The reduction of global radiation in south-eastern Norway during the last 50 years. Theoretical and Applied Climatology,2006.85(1):37-40.
    4. Cutforth HW, Judiesch D, Long-term changes to incoming solar energy on the Canadian Prairie. Agricultural and Forest Meteorology,2007.145(3-4):167-175.
    5. Ramanathan V, Feng Y, Air pollution, greenhouse gases and climate change:global and regional perspectives. Atmospheric Environment,2009.43(1):37-50.
    6. Liepert B, Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys. Res. Lett.,2002.29(10):1421.
    7. Gilgen H, Wild M, Ohmura A, Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. Journal of Climate,1998.11(8):2042-2061.
    8. Alpert P, Kishcha P, Kaufman YJ, Schwarzbard R, Global dimming or local dimming?:Effect of urbanization on sunlight availability. Geophys. Res. Lett.,2005.32.
    9. IPCC, Climate Change 2007:Contribution of working group Ⅰ to the fourth assessment report of the intergovernmental panel on climate Change.2007, Cabridge:Cabridge University Press.
    10. Tang Y, Gan J, Zhao L, Gao K, On the climatology of persistent heavy rainfall events in China. Advances in atmospheric sciences,2006.23(5):678-692.
    11. 金之庆,石春林,葛道阔,高炜,长江下游平原小麦生长季气候变化特点及小麦发展方向.江苏农业科学,2001.17(4):193-199.
    12. Mu H, Jiang D, Wollenweber B, Dai T, Jing Q. Cao W, Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat. Journal of Agronomy and Crop Science,2010.196(1):38-47.
    13. Gill R, Singh B, Kaur N, Productivity and nutrient uptake of newly released wheat varieties at different sowing times under poplar plantation in north-western India. Agroforestry Systems, 2009.76(3):579-590.
    14. 任万军,杨文钰,徐精文.樊高琼,马周华.弱光对水稻籽粒生长及品质的影响.作物学报,2003(05).
    15. Wardlaw IF, Willenbrink J, Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling. New phytologist,2000.148(3): 413-422
    16. Spiertz JHJ, The influence of temperature and light intensity on grain growth in relation to the carbohydrate and nitrogen economy of the wheat plant. Netherlands Journal of Agricultural Science,1997.25:182-197.
    17. Evans LT, Crop evolution, Adaption and Yield. Cambridge University Press. Cambridge ed. ed. Cambridge University Press C.1993.146-152.
    18. Murray DB, Nichols R, Light, shade and growth in some tropical plants. In:Bainbridge R, Evans GC, Rackham O (Eds.), Light as an Ecological Factor. British Ecological Society SymposiumNo.6. Oxford ed.1966, Blackwell, Oxford.249-263.
    19. Rodrigo VHL, Stirling CM, Teklehaimanot Z, Nugawela A, Intercropping with banana to improve fractional interception and radiation-use efficiency of immature rubber plantations. Field Crops Research,2001.69(3):237-249.
    20. Rahman S, Genetic manipulation of starch properties in wheat in Australia. Cereal Chem.,1994. 19:517-518.
    21. Crosbie GB, Ross AS, Moro T, Chiu PC, Starch and protein quality requirements of Japanese alkaline noodles (Ramen). Cereal Chemistry,1999.76(3):328-334.
    22. Park S-H, Wilson JD, Seabourn BW, Starch granule size distribution of hard red winter and hard red spring wheat:Its effects on mixing and breadmaking quality. Journal of Cereal Science, 2009.
    23. Ross AS, Quail KJ, Crosbie GB, Physicochemical properties of Australian flours influencing the texture of yellow alkaline noodles. Cereal Chemistry,1997.74(6):814-820.
    24. 张吉旺,董树亭,王空军,胡昌浩,刘鹏,大田遮阴对夏玉米淀粉合成关键酶活性的影响.作物学报,2008.34(8):1470-1474.
    25. 李天,Ohsugi R, Yamagishi T, Sasaki H,灌浆结实期弱光对水稻籽粒淀粉积累及相关酶活性的影响.中国水稻科学,2005.19(6):545-550.
    26. Alaru M, Laur u, E. J, Influence of nitrogen and weather conditions on the grain quality of winter triticale. Agronomy research,2003.1:3-10.
    27. Grausgmber H, Oberforster M, Werteker M, Stability of quality traits in Austrian-grown winter wheats. Field Crops Research,2000.66:257-267.
    28. Demotes-Mainarda S, Jeuffroy M-H, Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat. Field Crops Research,2004.87(2-3): 221-233.
    29. Zhang Y, He Z, Ye G, Milling quality and protein properties of autumn-sown Chinese wheats evaluated through multi-location trials. Euphytica,2005.143(1):209-222.
    30. Zhang P, He Z, Chen D, Zhang Y, Larroque OR, Xia X, Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread. Journal of Cereal Science,2007.46(1):1-10.
    31. Don C, Lookhart G, Naeem H, MacRitchie F, Hamer RJ, Heat stress and genotype affect the glutenin particles of the glutenin macropolymer-gel fraction. Journal of Cereal Science,2005. 42(1):69-80.
    32. Erekul O, K hn W, Effect of Weather and Soil Conditions on Yield Components and Bread Making Quality of Winter Wheat (Triticum aestivum L.) and Winter Triticale (Triticosecale Wittm.) Varieties in North East Germany. Journal of Agronomy and Crop Science,2006.192(6): 452-464.
    33. Aguirre A, Rubiolo OJ, Ribotta PD, Lujan JS, Perez GT, Leon AE, Effects of incident radiation and nitrogen availability on the quality parameters of triticale grains in Argentina. Experimental Agriculture,2006.42(3):311-322.
    34. Yue H, Jiang D, Dai T, Qin X, Jing Q, Cao W, Effect of nitrogen application rate on content of glutenin macropolymer and high molecular weight glutenin subunits in grains of two winter wheat cultivars. Journal of Cereal Science,2007.45(3):248-256.
    35. Jiang D, Yue H, Wollenweber B, Tan W, Mu H, Bo Y, Dai T, Jing Q, Cao W, Effects of post-anthesis drought and waterlogging on accumulation of high-molecular-weight glutenin subunits and glutenin macropolymers content in wheat grain. Journal of Agronomy and Crop Science,2009.195(2):89-97.
    36. Deng Z, Tian J, Hu R, The accumulation of high molecular weight glutenin subunits (HMW-GS) and their relation to dough rheological quality in Chinese winter wheat. Australian Journal of Agricultural Research,2006.57(1):41-46.
    37. 杜金哲.胡尚连,李文雄,刘锦红,不同品质类型春小麦HMW-GS形成时间和积累强度及与品质的关系.作物学报,2003.29(1):111-118.
    38. 赵惠贤,段惠,梁亮,郭蔼光,不同品质类型小麦谷蛋白聚合体含量及亚基组成的初步研究.西北植物学报,2003.23(5):755-758.
    39. Dupont F, Chan R, Lopez R, Molar fractions of high-molecular-weight glutenin subunits are stable when wheat is grown under various mineral nutrition and temperature regimens. Journal of Cereal Science,2007.45(2):134-139.
    40. Demotes-Mainard S, Jeuffroy M-H, Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat. Field Crops Research,2004.87(2-3):221-233.
    41. Parrott D, Yang L, Shama L. Fischer A, Senescence is accelerated, and several proteases are induced by carbon (?)feast(?) conditions in barley (Hordeum vulgare L.) leaves. Planta,2005. 222(6):989-1000.
    42. Li H, Jiang D, Wollenweber B, Dai T, Cao W, Effects of shading on morphology, physiology and grain yield of winter wheat. European Journal of Agronomy,2010.33(4):267-275.
    43. Weegels PL, Hamer RJ, Schofield JD, Functional properties of wheat glutenin. Journal of Cereal Science,1996.23(1):1-17.
    44. Tronsmo K, F rgestad E, Longva, Schofield J, Magnus E, A study of how size distribution of gluten proteins, surface properties of gluten and dough mixing properties relate to baking properties of wheat flours. Journal of Cereal Science,2002.35(2):201-214.
    45. Don C, Lichtendonk W, Plijter J. Hamer R, Glutenin macropolymer:A gel formed by glutenin particles. Journal of Cereal Science,2003.37(1):1-7.
    46. Don C, Lichtendonk WJ, Plijter JJ, Hamer RJ, Understanding the link between GMP and dough: from glutenin particles in flour towards developed dough. Journal of Cereal Science,2003. 38(2):157-165.
    47. Simmons SR, Growth, development and physiology, in Wheat and Wheat Improvement, Heyne EG, Editor.1987, ASA/CSSA/SSSA:Madison, WI.77-113.
    48. McCaig TN. Calrke JM. Seasonal changes in nonstructural carbohydrate levels of wheat and oats grown in semiarid environment. Crop Science,1982.22:963-970.
    49. Blum A, Sinmena B, Mayer J, Golan G, Shpiler L, Stem reserve mobilisation supports wheat-grain filling under heat stress. Functional Plant Biology,1994.21(6):771-781.
    50. Ehdaie B, Alloush GA, Waines JG, Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Research,2008.106(1): 34-43.
    51. Ehdaie B, Alloush GA, Madore MA, Waines JG, Genotypic variation for stem reserves and mobilization in wheat:Ⅰ. Postanthesis changes in internode dry matter. Crop Science,2006. 46(2):735-746.
    52. Zelitch I, The close relationship between net photosynthesis and crop yield. BioScience,1982. 32(10):796-802.
    53. Trapani N, Hall AJ, Sadras VO, Vilella F, Ontogenetic changes in radiation use efficiency of sunflower (Helianthus annus L.) crops. Field Crops Res.,1992,29:301-316.
    54. Cohen S, Moreshet S, Guillou LL, Simon J-C, Cohen M, Response of citrus trees to modified radiation regime in semi-arid conditions. Journal of Experimental Botany,1997.48(1):35-44.
    55. Bell GE, Danneberger TK, McMahon MJ, Spectral irradiance available for turfgrass growth in sun and shade. Crop Science,2000.40(1):189-195.
    56. Weston E. Thorogood K. Vinti G. Lopez-Juez E, Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants. Planta,2000. 211(6):807-815.
    57. Bach A, Krol A, Effect of light quality on somatic embryogenesis in Hyacinthus orientalis L. 'Delft's blue' Biological Bulletin of Poznan,2001.38(1):103-107.
    58. Eskins K, Jiang CZ, Shibles R, Light-quality and irradiance effects on pigments, light-harvesting proteins and Rubisco activity in a chlorophyll- and lightharvesting-dericient soybean mutant Physiologia Plantarum,1991.83(1):47-53.
    59. Sharkey TD, Raschke K, Effect of Light Quality on Stomatal Opening in Leaves of Xanthium strumarium L. Plant Physiol,1981.68(5):1170.
    60. Talbott LD, Zhu J, Han SW, Zeiger E, Phytochrome and blue light-mediated stomatal opening in the orchid, paphiopedilum. Plant Cell Physiol,2002.43(6):639-46.
    61. Sinclair TR, Shiraiwa T, Hammer GL, Variation in crop radiation-use efficiency with increased diffuse radiation. Crop Science,1992.32(5):1281-1284.
    62. Rochette P, Desjardins RL, Pattey E, Lessard R, Instantaneous measurement of radiation and water use efficiencies of a maize crop. Agronomy Journal,1996.88(4):627-635.
    63. Gu L, Fuentes JD, Shugart HH, Staebler RM, Black TA, Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness:Results from two North American deciduous forests. J. Geophys. Res.,1999.104(D24):31,421-31,434.
    64. Gu L, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR, Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res.,2002.107(D6).
    65. Valladares F, Chico J, Aranda I, Balaguer L, Dizengremel P, Manrique E, Dreyer E, The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees-Structure and Function,2002.16(6):395-403.
    66. Valladares F, Hernandez LG, Dobarro I, Garcia-Perez C, Sanz R, Pugnaire Fl, The ratio of leaf to total photosynthetic area influences shade survival and plastic response to light of green-stemmed leguminous shrub Seedlings. Annals of Botany,2003.91(5):577-584.
    67. Possingham JV, Smith JW, Factors Affecting Chloroplast Replication in Spinach. J. Exp. Bot., 1972.23(4):1050-1059.
    68. Shaver JM, Oldenburg DJ, Bendich AJ, The structure of chloroplast DNA molecules and the effects of light on the amount of chloroplast DNA during development in Medicago truncatula. Plant Physiol,2008.146(3):1064-74.
    69. Kasemir H, Control of chloroplast formation by light. Cell Biology International Reports,1979. 3(3):197-214.
    70. Zhang H, Sharifi MR, Nobel PS, Photosynthetic characteristics of sun versus shad plants of Encelia farinose as affected by photosynthetic photon flux density, Intercellular CO 2 concentration, leaf water potential.and leaf temperature. Australian Journal of Plant Physiology. 1995.22:833-841.
    71. Hikosaka K, Effects of leaf age,nitrogen nutrition and photon flux density on the organization of the photosynthetic apparatus in leaves of a vine (Iponioeatricolor Cav.)grown horizontally to avoid mutual shading of leaves. Plant Springer-Verlag,1996.198:144-150.
    72. Evans JR. Poorter H. Photosynthetic acclimation of plants to growth irradiance:the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment,2001.24(8):755-767.
    73. Nii N, Kuroiwa T, Anatomical changes including chloroplast structure in peach leaves under different light conditions. Journal of Horticultural Science,1988.67(1):37-45.
    74. Anderson JM, The role of chlorophyll-protein complexes in the function and structure of chloroplast thylakoids. Mol. Cell. Biol,1982.46(3):161-172.
    75. van Rensen JJ, Curwiel VB, Multiple functions of photosystem Ⅱ. Indian J Biochem Biophys, 2000.37(6):377-82.
    76. Minagawa J, Takahashi Y, Structure, function and assembly of Photosystem Ⅱ and its light-harvesting proteins. Photosynth Res,2004.82(3):241-63.
    77. Govindjee, A Role for a Light-Harvesting Antenna Complex of Photosystem Ⅱ in Photoprotection. Plant Cell,2002.14(8):1663-1668.
    78. Guo HX, Liu WQ, Shi YC, Effects of different nitrogen forms on photosynthetic rate and the chlorophyll fluorescence induction kinetics of flue-cured tobacco. Photosynthetica,2006.44(1): 140-142.
    79. 白宝璋,汤学军.植物生理学测试技术.1993,中国科学技术出版社:北京.156-157.
    80. Bell CJ, Incoll LD, The redistribution of assimilate in field-grown winter wheat. Journal of Experimental Botany,1990.41(8):949-960.
    81. Bidinger F, Musgrave RB, Fischer RA, Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley. Nature,1977.270(5636):431-433.
    82. Cruz-Aguado JA. Rodes R. Perez IP. Dorado M, Morphological characteristics and yield components associated with accumulation and loss of dry mass in the internodes of wheat. Field Crops Research,2000.66(2):129-139.
    83. TAkAhASHI T, Nakaseko K, Varietal difference in morphology and photosynthetically active radiation distribution in spring wheat canopy. Jpn. J. Crop Sci.,1993.62(4):554-559.
    84. Ruuska SA. Rebetzke GJ, Van HAF, Richards RA, Fettell NA, Tabe L, Jenkins CLD, Genotypic variation in water-soluble carbohydrate accumulation in wheat. Functional Plant Biology,2006. 33(9):799-809.
    85. Winzeler M, Dubois D, Nosberger J, Absence of fructandegradation during fructan accumulation in wheat stems. Journal of Plant Physiology,1990.136:324-329.
    86. Ehdaie B, Alloush G, Waines J, Genotypic variation in linear rate of grain growth and contribution of stem reserves to grain yield in wheat. Field Crops Research,2008.106(1): 34-43.
    87. Blacklow WM, Darbyshire B, Pheloung P, Fructans polymerized and depolymerized in internodes of winter wheat as grain-filling progressed. Plant science letters,1984.36:213-218.
    88. Kuhbauch W. Thome U, Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulations. Journal of Plant Physiology,1989.134:243-250.
    89. Hincha DK, Livingston Iii DP, Premakumar R, Zuther E, Obel N, Cacela C, Heyer AG, Fructans from oat and rye:composition and effects on membrane stability during drying. Biochimica et Biophysica Acta (BBA)-Biomembranes,2007.1768(6):1611-1619.
    90. Schroeven L, Lammens W, Laere AV, Ende WVd, Transforming wheat vacuolar invertase into a high affinity sucrose:sucrose 1-fructosyltransferase. New phytologist,2008.180(4):822-831.
    91. Portes MT, Figueiredo-Ribeiro RdCsL, Carvalho MAMd, Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea. Journal of Plant Physiology,2008.165(15):1572-1581.
    92. Judel GK. Mengel K, Effect of shading on nonstructural carbohydrates and their turnover in culms and leaves during the grain filling period of spring wheat. Crop Science,1982.22(5): 958-962.
    93. Kiniry JR, Effect of shading on use of non-structural carbohydrate of wheat during grain filling stage. Agronomy Journal,1993.85:844-848.
    94. Masoni A, Ercoli L, Mariotti M, Arduini I, Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. European Journal of Agronomy,2007.26(3):179-186.
    95. Mittler R, Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002.7(9): 405-410.
    96. Zheng C, Jiang D, Liu F, Dai T, Jing Q, Cao W, Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Science,2009.176(4):575-582.
    97. Grassini P, Indaco GV, Pereira ML, Hall AJ, Trapani N, Responses to short-term waterlogging during grain filling in sunflower. Field crops research,2007.101(3):352-363.
    98. Wang H, Feng T, Peng X, Yan M, Tang X, Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicology and Environmental Safety,2009.72(5):1354-1362.
    99. Liu F, Jensen CR, Andersen MN, Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development:its implication in altering pod set. Field Crops Research,2004.86(1):1-13.
    100. Liu F, Jensen CR, Andersen MN, Pod set related to photosynthetic rate and endogenous ABA in soybeans subjected to different water regimes and exogenous ABA and BA at early reproductive stages. Annals of Botany,2004.94(3):405-411.
    101. Fay PA, Knapp AK, Stomatal and photosynthetic responses to shade in sorghum, soybean and eastern gamagrass. Physiologia Plantarum,1995.94(4):613-620.
    102. Kramer D, Johnson G, Kiirats O, Edwards G, New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis research,2004. 79(2):209-218.
    103. Tan W, Liu J, Dai T, Jing Q, Cao W, Jiang D, Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica,2008. 46(1):21-27.
    104. Song X-S, Wang Y-J, Mao W-H, Shi K, Zhou Y-H, Nogues S, Yu J-Q, Effects of cucumber mosaic virus infection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves. Physiologia Plantarum,2009.135(3):246-257.
    105. Zhang G, Tanakamaru K, Abe J, Morita S, Influence of waterlogging on some anti-oxidative enzymatic activities of two barley genotypes differing in anoxia tolerance. Acta physiologiae plantarum,2007.29(2):171-176.
    106. Sairam R, Kumutha D, Ezhilmathi K, Chinnusamy V, Meena R, Waterlogging induced oxidative stress and antioxidant enzyme activities in pigeon pea. Biologia Plantarum,2009.53(3): 493-504.
    107. Huang W, Wu L, Zhan J, Effect of weak light on the peroxidation of membrane-lipid of cherry leaves. Acta Botanica Sinica 2002.44(8):920-924.
    108. Ahmed S, Nawata E, Hosokawa M, Domae Y, Sakuratani T. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Science. 2002.163(1):117-123.
    109. 周苏玫.王晨阳.贺德先,土壤渍水对冬小麦根系生长及营养代谢的影响.作物学报,2001.7(5):674-679.
    110. 王晨阳,马元喜,周苏玫,土壤水分逆境对冬小麦根系某些形态解剖结构及超微结构的影响.作物学报,1996.22(6):712-719.
    111. Ehdaie B. Alloush GA, Madore MA, Waines JG, Genotypic variation for stem reserves and mobilization in wheat:Ⅱ. postanthesis changes in internode water-soluble carbohydrates. Crop Sci,2006.46(5):2093-2103.
    112. Wardlaw F, Willenbrink J, Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling New Phytologist,2000.148(3): 413-422.
    113. Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Activities of fructan- and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta,2004.220(2): 331-343.
    114. Bonnett GD, Incoll LD, The potential pre-anthesis and post-anthesis contributions of stem ilnternodes to grain yield in crops of winter barley. Annals of Botany,1992.69(3):219-225.
    115. Wardlaw IF, Willenbrink J, Carbohydrate storage and mobilisation by the culm of wheat between heading and grain maturity:the relation to sucrose synthase and sucrose-phosphate synthase. Australian Journal of Plant Physiology,1994.21(3):255-272.
    116. Yukawa T, Kobayashi M, Watanabe Y, Yamamoto S. Studies on fructan accumulation in wheat (Triticum aestivum L.). Jpn J Crop Sci.1991.60:385-391.
    117. Yukawa T, Watanabe Y, Studies on Fructan accumulation in wheat (Triticum aestivum L).3. Varietal differences in degree of polymerization of fructan and classification by cluster analysis. Japanese Journal of Crop Science,1995.64(4):692-697.
    118. Bonnet GD, Incoll LD, The potential pre-anthesis and post-anthesis contributions of stem Internodes to grain yield in crops of winter barley. Annals of Botany.1992.69(3):219-225.
    119. Spollen WG, Nelson CJ, Response of fructan to water deficit in growing leaves of tall fescue. Plant Physiol,1994.106(1):329-336.
    120. Virgona JM, Barlow EWR, Drought stress induces changes in the nonstructural carbohydrate-composition of wheat stems. Australian Journal of Plant Physiology,1991.18(3): 239-247.
    121. Frehner M. Keller F, Wiemken A, Localization of fructan metabolism in the vacuoles isolated from protoplasts of Jerusalem artichoke tubers (Helianthus-tuberosus L) Journal of Plant Physiology,1984.116(3):197-208.
    122. Pollock C, Sucrose accumulation and the initiation of fructan biosynthesis in Lolium temulentum L. New Phytologist,1984.96(4):527-534.
    123. Wagner W, Wiemken A, Matile P, Regulation of Fructan Metabolism in Leaves of Barley (Hordeum vulgare L. cv Gerbel). Plant Physiol.,1986.81(2):444-447.
    124. Prud'homme M, Gonzalez B, Billard J. Boucaud J, Carbohydrate content, fructan and sucrose enzyme activities in roots, stubble and leaves of ryegrass (Lolium perenne L.) as affected by source/sink modification after cutting. J Plant Physiol,1992.140(3):282-291.
    125. Wang CW, Tillberg JE, Effects of nitrogen deficiency on accumulation of fructan and fructan metabolizing enzyme activities in sink and source leaves of barley (Hordeum vulgare). Physiologia Plantarum,1996.97(2):339-345.
    126. Simpson RJ, Bonnett GD, Fructan exohydrolase from grasses. New Phytologist,1993.123(3): 453-469.
    127. Willenbrink J, Bonnett GD, Willenbrink S, Wardlaw IF, Changes of enzyme activities associated with the mobilization of carbohydrate reserves (fructans) from the stem of wheat during kernel filling. New Phytologist,1998.139(3):471-478.
    128. Schnyder H, The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling-a review. New Phytologist,1993.123(2):233-245.
    129. Van den Ende W, De Roover J, Van Laere A, Effect of nitrogen concentration on fructan and fructan metabolizing enzymes in young chicory plants (Cichorium intybus). Physiologia Plantarum,1999.105(1):2-8.
    130. Peng M. Gao M, Aal EA, Hucl P, Chibbar RN, Separation and characterization of A- and B-type starch granules in wheat endosperm. Cereal Chemistry,1999.76(3):375-379.
    131. Park SH. Chung OK, Seib PA, Effects of Varying Weight Ratios of Large and Small Wheat Starch Granules on Experimental Straight-Dough Bread 1. Cereal chemistry,2005.82(2): 166-172.
    132. Soulaka AB, Morrison WR, The amylose and lipid contents, dimensions, and gelatinisation characteristics of some wheat starches and their A- and B- granule fractions. Journal of the Science of Food and Agriculture,1985.36(8):709-718.
    133. Hurkman WJ, McCue KF, Altenbach SB, Korn A, Tanaka CK, Kothari KM. Johnson EL, Bechtel DB, Wilson JD, Anderson OD, Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science,2003.164(5): 873-881.
    134. 张传辉,小麦籽粒淀粉粒粒度分布特征及形成的生理机制研究.南京农业大学博士论文,2010.
    135. Ahmad N, Hassan FU, Belford RK, Effect of soil compaction in the sub-humid cropping environment in Pakistan on uptake of NPK and grain yield in wheat (Triticum aestivum):1. Compaction. Field Crops Research,2009.110(1):54-60.
    136. Judel GK, Mengel K, Effect of Shading on Nonstructural Carbohydrates and their Turnover in Culms and Leaves during the Grain Filling Period of Spring Wheat. Crop Sci,1982.22(5): 958-962.
    137. 方保停,张胜全,王敏,张英华,王志敏,节水栽培冬小麦光合器官遮光对籽粒蛋白质形成的影响.麦类作物学报,2008.28(2):266-270.
    138. 常江,李金才,渍水对小麦氮磷钾营养效应的研究.土壤学报.1999.36(3):423-427.
    139. 戴廷波,赵辉,荆奇,姜东,曹卫星,灌浆期高温和水分逆境对冬小麦籽粒蛋白质和淀粉含量的影响.生态学报,2006(11).
    140. 范雪梅,姜东,戴廷波,荆奇,曹卫星,花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响.中国农业科学,2005.38(6):1132-1141.
    141. 牟会荣,姜东,戴廷波,曹卫星,遮光对小麦植株氮素转运及品质的影响.应用生态学报,2010.21(7):1718-1724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700