湿热有机酸脱酰胺改性小麦面筋蛋白及作用机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦面筋蛋白是小麦淀粉生产的副产品,因水溶性差,限制了其在食品工业中的应用。盐酸脱酰胺是其改性方法中较为有效的方法之一,但存在着水解程度难控制、氨基酸异构化、氯丙醇残留等难以解决的技术问题。本文采用三种有机弱酸在湿热条件下脱酰胺改性小麦面筋蛋白,寻找对小麦面筋蛋白水解度低和明显改善小麦面筋蛋白功能特性的改性条件,研究湿热条件下,有机酸脱酰胺改性小麦面筋蛋白的结构功能变化的内在规律和作用机制,并应用超声技术进一步改善改性小麦面筋蛋白的功能特性,深入探讨湿热酸脱酰胺对小麦面筋蛋白酶解敏感性和酶解产物呈味特征的影响,以及在酸奶和鱼油缓释体系的应用。
     选用含不同羧基的醋酸、琥珀酸、柠檬酸,以盐酸作为参照,在121 oC脱酰胺改性小麦面筋蛋白。改性蛋白脱酰胺程度、蛋白回收率、水解程度变化表明较低浓度的有机酸,能够显著提高小麦面筋蛋白溶解性,增大其蛋白回收率,且其样品水解度均小于1%。研究得到最佳的湿热酸处理条件是湿热处理10min,酸浓度分别为:醋酸0.082 mol/L,琥珀酸0.042 mol/L,柠檬酸0.024 mol/L。SDS-PAGE、拉曼光谱、傅里叶红外光谱、氨基酸分析和功能特性分析表明:有机酸脱酰胺有效地伸展了小麦面筋蛋白的二级、三级结构,显著改善小麦面筋蛋白的功能特性,保持并提高了小麦面筋蛋白营养特性。改性蛋白的溶解性在pH3-10,特别在pH6.0时,比对照显著提高(p <0.05),等电点pI向碱性方向偏移。
     通过研究改性过程中小麦面筋蛋白的静电斥力、分子表面电荷、分子内作用力、分子量分布、蛋白二级结构、热特性和分子形貌的变化趋势,系统地分析了小麦面筋蛋白湿热脱酰胺改性过程中分子聚集行为的变化规律,结果表明:改性过程中,酸脱酰胺产生的分子静电斥力和热效应产生的聚集力相互博弈,麦谷蛋白与醇溶蛋白经历了聚集、解离同时进行的过程。蛋白不断增大静电斥力可能是导致蛋白聚集体粒径、构象突变的主要原因。热处理6min左右是两种作用力的平衡点。疏水键和氢键是改性过程中前6 min湿热最主要的聚集力,6min后共价键作用(二硫键)是分子聚集体的主要作用。
     通过粒度、电泳、傅里叶红外光谱、分子作用力变化分析等手段研究了小麦面筋蛋白透析前后分子结构和作用力的变化,发现透析后改性蛋白溶解性降低的原因是透析过程中,蛋白分子表面电荷减小,引发蛋白分子间的氢键作用,减小了蛋白分子和水的作用。合理的超声处理进一步增加了改性小麦面筋蛋白分子的柔韧性,暴露了包埋的疏水性基团,并使蛋白功能特性得到恢复。本研究得出超声促溶的最优工艺条件是:超声功率100 W,超声时间10 min,超声温度44 oC。在此条件下,小麦面筋蛋白氮溶指数达到77.28%。
     利用胰酶,研究了有机酸和盐酸脱酰胺改性处理对小麦面筋蛋白酶解特性的影响,分析和比较了酶解产物肽分子量分布、游离氨基酸及风味的变化,研究表明有机酸脱酰胺改性提高了小麦面筋蛋白酶解敏感性,提升了小麦面筋蛋白酶解液的风味及营养价值,其酶解产物风味变化与底物脱酰胺程度有密切的关系。
     研究了改性面筋蛋白在酸奶和鱼油释控体系的应用。改性小麦面筋蛋白可替代部分奶粉进行酸奶发酵,缩短了酸奶发酵时间。当替代量为3 %时,缩短8%的发酵时间,质构参数和感官评价结果良好。在鱼油缓释体系中,鱼油-小麦面筋蛋白微粒包埋率较高(为81.8%),超微结构观察显示鱼油小麦面筋蛋白微粒呈球形,囊壁较光滑致密,无裂缝和明显褶皱。包埋后鱼油具有良好的释控特性和贮存稳定性,延缓了鱼油在人体胃液中的释放,近50%鱼油进人小肠,其主要作用机理是通过氢键和疏水作用力,使鱼油填充于蛋白分子网络结构的空隙。
Wheat gluten is a byproduct of the wheat starch industry. The water-solubility of it is strongly limited so that its applications are very narrow in the food-processing. Hydrochloric acid was one of the most effective acid catalyst used frequently for protein deamidation. The disadvantages of deamidation on proteins with it, such as the uncontrollable hydrolysis degree, the production of potentially carcinogenic compounds, and the isomerization of certain amino acids in proteins, have yet to be solved. The aim of the present study was to modify wheat gluten by carboxylic acid deamidation upon hydrothermal treatment. The degree of hydrolysis, functional and conformational properties of deamidated wheat gluten (DWG) were evaluated. Optimal conditions and some intrinsic mechanisms of deamidation on wheat gluten with organic acids upon hydrothermal treatment were studied. Protective effect of DWG after dialysis subjected to ultrasound treatment was also investigated. Moreover, susceptibility of wheat gluten to enzymatic hydrolysis following deamidation and sensory characteristics of the resultant hydrolysates, in together with the applications of DWG on yoghourt and drug controlled delivery system were evaluated.
     Three carboxylic acids (acetic acid, succinic acid and citric acid) were used to deamidate wheat gluten with reference samples investigated of wheat gluten treated with HCl. Deamidation conditions were optimized. Changes in deamidation degree, hydrolysis degree, nitrogen soluble index, the foaming and emulsification properties, the tertiary and secondary conformation and nutritional property of wheat gluten deamidated with carboxylic acids were identified. Carboxylic acids were found to effectively deamidate the amides in wheat gluten proteins into carboxyl groups, which resulted in a significant increase of the nitrogen soluble index of wheat gluten. Deamidation of wheat gluten by carboxylic acids was found to be more efficient than that with HCl and significantly improved functional properties of wheat gluten. Wheat gluten deamidated with carboxylic acid exhibited improved flexible protein molecules, favorable changes in the tertiary and secondary structures and better nutritional characteristics. The solubility of wheat gluten after carboxylic acid deamidation increased in the isoelectric region of untreated wheat gluten (around pH 6.0). The isoelectricpoint of these proteins was shifted to a basic pH and existed in a broad pH regions.
     Changes of aggregation behavior of wheat gluten during carboxylic acid deamidation upon hydrothermal treatment were investigated to test the influences of deamidation on the aggregation extent of wheat gluten. Hydrothermal treatment induced that the size of soluble wheat gluten aggregate progressively increased due to the cross-linking of gliadins and slowly cleaved glutenins. But significant changes in molecular weight distribution, solubility under six denaturing agents’treatment and Zeta potential of wheat gluten aggregates were observed at 6 min heating time and distinct shift of intra-/inter-molecular interactions of wheat gluten aggregates occurred before and after 6 min heating treatment respectively. Moreover, as heating time increased, the island-like aggregates decreased markedly and the striped aggregates increased notably. To explain the aggregation behavior in this case, we postulated that the extent of aggregation of wheat gluten depended on the balance between intra-/inter-molecular electrostatic repulsion, the non-covalent and disulfide bonds formation in the system. Hence, a scheme was drawn, which appeared to be the mechanism responsible for the aggregation of wheat gluten through thermal cross-linking and opening up of the network structure of wheat gluten aggregates by deamidation.
     The reasons for the decreasing of solubility of DWG during dialysis were investigated. Results from DLS, SDS-PAGE, FTIR, morphology and molecular forces change of DWG during dialysis showed the increasing of hydrogen bonds due to the decreasing of protein surface potential increased the interaction of proteins. The effect of sonication factors, including sonication power percentage, process time and temperature, on the soluble nitrogen index (NSI) of succinic acid deamidated wheat gluten (SDWG) after dialysis was investigated. On base of the results of univariate factor analysis upon sonication, response surface analysis was used to optimize the process condition according to the response of NSI of SDWG. The optimal condition of sonication power percentage, treating time and sonication temperature obtained was 100 W, 10 min and 44℃, respectively, where the NSI of sample treated reached 77.28%. Changes of functional properties of the protein in SDWG upon sonication were determined. The percentages of enhancement in the foaming capacity and stability of sample after sonication were 11% and 20%, respectively. And a similar trend of significant growth in emulsifying properties of samples was also observed.
     Investigation on applications of DWG on yoghourt and controlled delivery system showed that the ferment time of yoghourt decreased after the addition of DWG, and it was with a good textile and sensory evaluation at the DWG addition percentage of 3% for total casein amount. For the application in the field of fish oil (FO) controlled delivery system, the most efficient condition was obtained at 50.4 mg/ml for SDWG and 3:3 (w/w) for FO/SDWG ratio, with an EE of 81.8%. In this condition, confocal microscopy showed FO well encapsulated in SDWG microspheres. SEM showed sunken pores and fractures inside microspheres after FO was extracted, confirming the presence of FO in microspheres. FTIR and electrophoresis showed during microspheres formation dramatically elevated SWDG aggregation resulted in intermolecular-crosslinking and enhanced interactions (hydrogen bonds and hydrophobic interactions) between SDWG and FO. In the evaluations of in vitro experiments in simulated gastric fluid and oxidation stability during storage, results indicated that SDWG matrix protected it from both oxygen and gastric fluid, resulting in improved storage stability and release property.
引文
[1] Yeshajahu P. Chapter 5 Proteins: General. In: Functional Properties of Food Components (Second Edition) [M]. Academic Press,Inc. 1985
    [2] Srinivasan Damodaran. Chapter 4: Functional Properties.In: Food Proteins Properties and Charaeterization[M]. Edited by Shuryo Naki and H.Wayne Modler VCH Publishers,Inc.1996
    [3] Gupta R B, Macritchie F. Variation at glutenin subunit and gliadin loci,Glu-l,Glu-3 and Gli-1 of common wheats II.biochemical basis of the alleliceffects on dough properties[J]. Journal of Cereal Science, 1994, 19:19-29
    [4] Agyarea K K, Addob K, Xiong Y L. Emulsifying and foaming properties of transglutaminase-treated wheat gluten hydrolysate as influenced by pH,temperature and salt[J]. Food Hydrocolloids, 2009, 23:72-81.
    [5]Hayakawa S., Nakai S. Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins [J]. Journal of Food Science, 1985, 50:486-491.
    [6]Damodaran,S. Protein stabilization of emulsions and foams[J]. Journal of Food Science,2005,70(3):54-66.
    [7]Lens J P, Mulder W J, Kolster P. Modification of wheat gluten for nonfood applications[J]. Cereal Foods World, 1999, 44:5-15.
    [8]朱克庆.小麦淀粉和谷肮粉生产技术[J].中国食物与营养, 1996, 11:23-24.
    [9]Magnuson, K.M. Use and functionality of vital wheat gluten[J]. Cereal Food World, 1985, (30):179-181
    [10]Aristippos G.. Modification of physical and barrier properties of edible wheat gluten-based films[J]. Cereal Chemistry, 1993, 70:426-429.
    [11]Bietz, J. A. Properties and nonfood protential of gluten[J]. Cereal Foods World ,1996(41):76-79.
    [12]Babiker,E.F. Improvement of the functional properties of wheat gluten by digestion or acid hydrolysis followed by microbial Transglutaminase treatment[J]. Journal of Agriculture Food Chemistry, 1996, 4:37-46.
    [13]Mimoumi,B. Combined acid dremaidation and enzymic hydrolysis for Improvement of the functional properties of wheat gluten[J]. Crereal Science, 1994, 21:153-157.
    [14]陆恒.面筋蛋白质的营养价值及其利用[J].粮食与饲料工业, 1989, 2:57-59.
    [15]MacRitchie F. Properties of wheat proteins in relation to functionality[J].Advances in food and nutrition research, 1992, 36:6-7
    [16]Osborne T B. The proteins of the wheat kernal-Carnegie 1nst [C].Washington, 1907, 84:119-120.
    [17]Kassarda D D,Tao H P,Evans P K etc.Sequence of protein from a single step of a 2-D gel pattern: N-terminal sequence of a major wheat LMW glutenin subunit[J]. Journal of Experimental Botany, 1988, 39:899-906.
    [18]Shewry P R,Hedgcoth B J,Tatham A S.The high molecular weight subunits of wheat barley and rye genetica molecular biology chemistry and role in wheat gluten structure and functionality[J]. Plant Molecule Cell Biology, 1989, 6:163-219.
    [19]Willians H V,George E T,Donald D K.C-terminal and internal sequences of a low molecular weight (LMW-s)types of glutenin subunit[J]. Cereal Chemisty, 1995, 72:356-359.
    [20]Luo C,Griffin W B,Branlard G el at. Comparison of low-and high-molecular-weight wheat glutenin allele effects on flour quality[J]. Theory Apply Genetic, 2001, 102:1088-1098.
    [21]Payne P I, Holt L M, Worland A J, Law C N. Structure and genetical studies on the high-molecular-weight subunits of wheat glutenin telocentric mapping of the subunit genes on the long arms of the homoelolgous group 1 chromosomes[J]. Theory Apply Genetic, 1982:63: 129-138.
    [22]忻骅.小麦高分子量谷蛋白基因的结构分析[J].植物学报, 1992, 34(10):729-735.
    [23]Buomocore F,Bertini L,Ronchi C,et al. Expression and functional analysis of Mr 58000 peptides derived from the repetitive domain of high molecular weight glutenin subunit 1Dx5[J]. Journal of Cereal Science, 1998, 27:209-215
    [24]Shewry P R,Hedgcoth B J,Tatham A S.The high molecular weight subunits of wheat barley and rye genetica molecular biology chemistry and role in wheat gluten structure and functionality[J].Plant Molecule Cell Biology, 1989, 6:163-219.
    [25]Tatham A S,Miflin B J,Shewry P R.The beta-turn conformation in wheat gluten proteins:relationship to gluten elasticity[J]. Cereal Chemistry, 1985, 62:405-411.
    [26]Tatham A S,Drake A F,Shewry P R,Conformational studies of synthetic peptides corresponding to the repetitive regions of the high molecular weight (HMW) glutenin subunits of wheat[J]. Journal of Cereal Science, 1990, 11:189-200.
    [27]Orth R A,Bushuk W1 A comparative study of the proteins of wheats of diverse baking qualities[J]. Cereal Chemistry, 1972, 49:268–275.
    [28]Ng P K W, Shuwk B U.Gluten of marquis wheat as a reference for estimating molecular weights of glutenin subunits by sodium dodecylsulfate polyacrylamide gel eletrophoresis[J]. Cereal Chemistry, 1987, 64:324-326.
    [29]Payne P I,Nightingale MA,et al1 The relationship between HMW-glutenin subunit composition and bread-making quality of British-grown wheat varieties[J]. Journal of Science of Food and Agriculture, 1987, 40:51-65.
    [30]Hanada A S,Mcdonald C E,Sibbitt L D. Relationship of protein fraction of spring wheat flour to baking quality[J]. Cereal Chemistry, 1982, 59:296-301.
    [31]赵会贤,薛秀庄等.小麦谷蛋白Glu-1和Glu-3位点基因等位变异对面粉揉面特性的影响[J].作物学报, 1997, 23(6): 646-654.
    [32]赵惠贤,胡胜武,吉万全等.聚合体的大小分布与面粉加工品质的关系研究[J].中国农业科学, 2001, 16(2):475-479.
    [33]Lawrence G J,Shepherd K W.Inheritance of glutenin protein subunits of wheat[J]. Theory Apply Genetic, 1981, 60:333~337.
    [34]Lawrence G J,Shepherd K W.Variation in glutenin protein subunits of wheat[J]. Australian Journal of Biology Science, 1980, 33:221~233.
    [35]Payne P I,Nightingale M A,Krattinger A F,et al. The relationship between HMW Glutenin Subunit composition andthe bread-making quality of British-grown wheat varieties[J]. Journal of Science of Food and Agriculture, 1987, 40:51-65.
    [36]Bean,S.R..Evaluation of novel precast SDS-PAGE gels for separation of sorghum proteins[J]. Cereal Chemistry, 2003, 80(5):500-506
    [37]Okta T W,Chessbrough V,Reeves C D.Evolution and heterogeneity of the alpha/beta-type and gamma-type gliadin DNA sequences[J]. Biochemistry, 1985, 260:8203-8213.
    [38]Ornebro J,Wahlgren M,Eliasson A C,et al.Adsorption ofα-,β-,γ- andω-gliadins on to hydrophobic surfaces [J].Journalof Cereal Science, 1999, 30:105-114.
    [39] Kasarda D D,Adalsteins A E,Laird N F.γ-Gliadins withα-type structure coded onchromosome 6B of the wheat (Triticum aestivumL) Cultivar Chinese Spring [A].In: Proceedings of the 3rd Workshop on Gluten Proteins[C].1987.
    [40]Qi P F,Wei Y M,YueY W, et al. Biochemical and molecular charac-terization of gliadins[J]. Molecular Biology, 2006, 40:713-723.
    [41]Harberd N P,Bartels D,Thompson R D.Analysis of the gliadin multigeneloci in bread wheat using nullisomic 2-trasomiclines [J]. Molecular Genetics and Genomics, 1985, 198:234-242.
    [42]Shewry P R,Tatham A S,Forde J.The classification and nomenclature of wheat gluten protein: assessment [J]. Journal of Cereal Science, 1986, (4):97-106.
    [43]Peter R,Nigel G. Cereal seed storage proteins: structures,properties and role in grain utilization [J]. Journal of Experimental Bortany, 2002, 53(370):947-958.
    [44]周青文.麦胚乳贮藏蛋白组分遗传研究进展[J].麦类作物学报, 2000, 20(2):78-83.
    [45]Woychick J H,Boundy J A,Dimler R A. Starch gel electrophoresis of wheat gluten proteins with concentrate durea[J]. Archives of Biochemistry and Biophysics, 1961, 94:477-482.
    [46]Wieser H,Moudl A,Seilmeier W,et al. High-performance liquid chromatography of gliadins from different wheat varieties: Amino acid composition and N-terminal amino acid sequence of components [J]. Zeitschrif fu¨rLebensmittel-UntersuchungundForschung, 1987, 185:371-378.
    [47]Kasarda D D,Autran J C,Lew E J L,et al. N-terminal amino acid sequences ofω-gliadins andω-secaline: implications for the evolution of prolamin genes [J]. Bichimicaet Biophysica Acta, 1983, 747:138-150.
    [48]Lonkhuijsen H J, Schrender C. Influence of specific gliadins on the bread making quality of wheat [J].Cereal Chemistry, 1992,69:174-177.
    [49]Weegels P L,Marseille J P,Bosveld P,et al. Large-scale separation of gliadins and their bread-making quality [J].Journal of Cereal Science, 1994, 20:253-264.
    [50]Tatham A S,Shewry P R.The S-poor proclaims of wheat, barley and rye[J].Journal of Cereal Science, 1995, 22:1-16.
    [51]Wellner N K,Belton P S,Tatham A S. Fourier transform-IR spectroscopic study of hydration-induced structure changes in the solid state of x-gliadins [J]. Biochemical Journal,1996, 319:741-747.
    [52]Popineau Y,Pineau F. Changes of conformation and surface hydrophobicity of gliadins [J]. Lebensmittel-Wis-senschaftund Technologie, 1988, 21:113-117.
    [53]Ornebro J,Wahlgren M,Eliasson A C,et al. Adsorption ofα-,β-,γ- andω-gliadins on tohydrophobic surfaces[J]. Journal of Cereal Science, 1999, 30:105-114.
    [54] Kurowska E, Bushuk W. Solubility of flour and gluten protein in a solvent of acetic acid, urea, and cetyltrimethylammonium Bromide, and its relationship to dough strength. Cereal Chemistry, 1988, 65(2):156-158
    [55] Blochet J E. Isolation, purification and structural studies of wheat lipid binding proteins, Biological and medical sciences, 1991.57(2):145-153.
    [56]Danno G, Kanazawa K, Natake M. Extraction of wheat flour proteins with sodium dodecyl sulfate and their molecular weight distribution. Agricultural and Biological Chemistry,1974,38(10) :1947-1953
    [57] Danno G. Extraction of unreduced glutenin from wheat flour with sodium dodecyl sulfate. Cereal Chemisty, 1981, 58(4):311-313.
    [58]Danno G, Hoseney R C. Effects of dough mixing and rheologically active compounds on relative viscosity of wheat proteins. Cereal Chemisty, 1982, 59(3):196-198
    [59]Bietz J A. Analysis of wheat gluten proteins by high-performance liquid chromatography. Bakers Digest, 1984, 58(1): 15-17, 20, 21, 32.
    [60]Dachkevitch T, Autran J C. Prediction of baking quality of bread wheats in breeding programs by size. Cereal Chemistry, 1989, 66(6):448-456
    [61]Shogren MD, Finney K F, Hoseney RС. Functional (breadmaking) and biochemical properties of wheat flour components. Cereal Chemistry, 1969, 45(3):235-261.
    [62]Fu B X, Sapirstein H D. Procedure for isolating monomeric proteins and polymeric glutenin of wheat flour. Cereal Chemistry, 1996, 73(1):143-152.
    [63] Lura R, Schirch V. Role of peptide conformation in the rate and mechanism of deamidation of asparaginyl residues [J]. Biochemistry, 1988, 27: 7671-7677.
    [64] Dana W A, Mallik V P, Brandon T S. Isoaspartate in peptides and proteins: formation,significance,and analysis [J]. Journal of Pharmaceutical and Biomedical Analysis. 2000 (21):1129-1136.
    [65] Catak S,Monard G,Aviyente V,Ruiz-Lopez M F. Deamidation of asparagine residues: direct hydrolysis versus succinimide-mediated deamidation mechanisms [J]. Journal of Physics and Chemistry: A, 2009, 113, 1111-1120
    [66]Robinson A B, Rudd C. Deamidation of glutaminyl and asparaginyl residues in peptides and proteins [J]. Current Topics in Cellular Regulation, 1974, 8, 247-295.
    [67]Gupta R, Srivastava O P. Deamidation affects structural and functional properties of humanαa-Crystallin and its oligomerization withαB-Crystallin [J]. Journal of Biology and Chemistry,2004, 279, 44258-44269.
    [68]Robinson N E, Robinson A B. Prediction of protein deamidation rates from primary and three-dimensional structure [J]. Proceedings of the National Academy of Sciences, 2001, 98, 12409-12413.
    [69]Weintraub S J, Manson S R. Asparagine deamidation: A regulatory hourglass [J]. Mechanisms of Ageing and Development, 2004, 125, 255-257
    [70]Robinson N E, Robinson A B. Deamidation of human proteins [J]. Proceedings of the National Academy of Sciences, 2001, 98: 944-949.
    [71]Capasso S, Mazzarella L, Sica F, Zagari A, Salvadori S. Kinetics and mechanism of succinimide ring formation in the deamidation process of asparagine residues [J]. Journal of the Chemical Society, Perkin Transactions,1993, 2: 679-682.
    [72] Robinson N E, Robinson A B.Prediction of primary structure deamidation rates of asparaginyl and glutaminyl peptides through steric and catalytic effects [J]. Journal of Peptide Research, 2004, 63: 437-448.
    [73] Robinson N E, Robinson Z W, Robinson B R, Robinson A L, Robinson M R, Robinson A B. Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides [J]. Journal of Peptide Research, 2004, 63: 426–436.
    [74] Robinson N E, Robinson A B. Molecular Clocks: Deamidation of Asparaginyl and Glutaminyl Residues in Peptides and Proteins [J]Althouse Press: Cave Junction,OR,2004.
    [75]Han K K,Richard C, Biserte G. Current developments in chemical cleavage of proteins [J]. International Journal of Biochemistry, 1983, 15 (7): 875-884.
    [76]Wright H T, Robinson A B. Cryptic amidase active sites catalyze deamidation in proteins,in From Cyclotrons to Cytochromes [M],Kaplan,N. 0. And Robinson,A. B.,Eds.,Academic Press, New York, 1982, 727.
    [77]Geiger T,Clark S. deamidation,isomerization,and racemization at asparaginyl and aspartyl residues in peptides [J]. Journal of Biological Chemistry, 1987, 262, 785-794.
    [78]Robinson N E, Robinson A B. Prediction of primary structure deamidation rates of asparaginyl and glutaminyl peptides through steric and catalytic effects [J]. Journal of Peptide Research, 2004: 63, 437-448.
    [79]Tyler-Cross R, Schirch V. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides [J]. Journal of Biological Chemistry, 1991, 266: 22549-22556.
    [80]Patel K, Borchardt R T. Chemical pathways of peptide degradation. II. Kinetics ofdeamidation of an asparaginyl residue in model hexapeptide [J]. Pharmaceutical Research, 1990,25: 7703-711.
    [81]Geiger T, Clarke S. Deamidation isomerization,and racemization of asparaginyl and aspartyl residues in peptides: succinimide-linked reactions that contribute to protein degradation [J]. Journal of Biological Chemistry, 1987, 262:785-794.
    [82]Jencks W P. Catalysis in Chemistry and Enzymology [M]. McGraw-Hill, New York, 1969, 523-530.
    [83]Voorter C E M, Haard-Hoekman W A,van den Oetelaar P J M,Bloemendal H,Jong W. W. Spontaneous peptide bond,cleavage in aging a-crystallin through a succinimide intermediate [J]. Journal of Biological Chemistry, 1988, 263: 19020-19023.
    [84]Blodgett J K,Loudon G M, Collins K D. Specific cleavage of peptides containing an aspartic acid (Phydroxamic acid) residue [J]. Journal of the American Chemical Society, 1985, 107: 4305-4313.
    [85]Geiger T. Clarke S. Deamidation. isomerization,and racemization of asparaginyl and aspartyl residues in peptides: succinimide-linked reactions that contribute to protein degradation [J]. Journal of Biological Chemistry, 1987, 262: 785-794.
    [86]Tyler-Cross R, Schirch V. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptide [J]. Journal of Biological Chemistry, 1991, 33(260): 22549-22556.
    [87] Li X,Cournoyer J J,Lin C,O’Connor P B. Use of 18O labels to monitor deamidation during protein and peptide sample processing [J]. Journal of the American Society for Mass Spectrometry, 2008, 19:855–864
    [88] Santos C V, Tomasula P M, Kurantz M J. Deamidation kinetics of CO2 precipitated casein compared with commercial caseinates [J]. 1999, 64: 400-404
    [89] Chou P Y, Fasman G D. Empirical predictions of protein conformation [M]. Advanced Enzymoly,1978, 47: 251-276.
    [90] Argos P, Palau J. Amino acid distribution in protein secondary structures [J]. International journal of peptide and protein research, 1982, 19: 380-393.
    [91] Richardson J S, Richardson D C. Amino acid preference for specific locations at the end of ahelices [J]. Science, 1988, 240: 1648-1652.
    [92] Chothia C. Principles that determine the structure of proteins [J]. Annual Review of Biochemistry, 1984, 53: 562-572.
    [93]Kosky A A,Interdependence of asparagine deamidation with primary and alpha-helical secondary structure in model peptides [D]. University of Colorado health sciences center, PhD dissertation, 2006.
    [94] Chazin WJ, Kossiakoff A A. The role of secondary and tertiary structures in intramolecular deamidation of proteins. Deamidation and Isoaspartate Formation in protein [M]. CRC Press, 1995.
    [95] Kossiakoff A A. Tertiary structure is a principal determinant to protein deamidaton [J]. Science. 1988, 240(4849):191–194.
    [96]莫重文.蛋白质化学与工业学[M], 2007,化学工业出版社
    [97] Matsudomi N, Kato A, Kobayashi K. Conformation and surface properties of deamidated gluten. Agricultural Biology and Chemistry, 46(6):1583-1586.
    [98] Mataudomi N, Tanaka A, Kato A, Kobayashi K. Functional properties of deamidated gluten obtained by treating with chymotrypsin at alkali pH [J]. Journal of Agricultural and Biological Chemistry. 1986, 50, 1989-1994.
    [99] Hamada J S, Marshall W E. Preparation and functional properties of enzymatically deamidated soy proteins [J]. Journal of Food Science. 1989, 54, 598-601, 635.
    [100] Zhang J, Lee T C. et a.l Thermal Deamidation of Proteins in a Restricted Water Environment [J]. Journal of Agricultural and Food Chemistry, 1993, 41, 1840-1843.
    [101]Izzo HV,Lincoln MD, Ho C-T. Effect of temperature, feed moisture, and pH on protein deamidation in an extruded wheat flour [J]. Journal of Agricultural and Food Chemistry, 1993, 41: 199-207.
    [102]Matsudomi N. Conformation changes and functional properties of acid-modified soy protein [J]. Agricultural Biology and Chemistry, 1985.49:1251-1256.
    [103]Matsudomi Netal. Conoformation and surface Properties of deamidated gluten [J]. Agricultural Biology and Chemistry, 1982.46:1583-1586.
    [104] Ma C Y;Khanzada G. Functional Properties of deamidated oat Protein isolates [J]. Journal of Food Science, 1987, 52:1583-1587.
    [105] Chan W-M, Ma C-Y. Acid modification of Proteins from soymilk residue (okara) [J].Food Research International, 1999, 32:119-127.
    [106] Batt CA . Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin[J]. Journal of Food Science, 1987, 52:1583-1587.
    [107] McDonald C E, Pence J W. Wheat gliadin in foams for food products [J]. Food Technology, 1961, 15:141.
    [108]Woodar J C, Short D D. Preparation and Properties of Acid-Solubilized gluten conforamtion [J]. Journal of Nutrition, 1973, 103-569.
    [109]Mirmoghtadaie L,Kadivar M,Shahedi M. Effects of succinylation and deamidation on functional properties of oat protein isolate [J]. Food Chemistry, 2009, 114:127–131.
    [110]李红梅.玉米蛋白脱酰胺改性的研究[J].粮食与饲料工业,2007, 4:19-22.
    [111]孔祥珍,周惠明.小麦面筋蛋白脱酰胺改性的研究[J].食品科学, 2003, 24(12):47-49.
    [112]潘思轶.大豆蛋白的分子修饰及特性研究[D],中国武汉,华中农业大学,2005年3月.
    [113]刘天一,迟玉杰.大豆分离蛋白的磷酸化改性及功能性质的研究[J],食品发酵与工业,2004, 30(06): 118-121; 124.
    [114]史新慧,王兰.植物蛋白的改性[J].郑州粮食学院学报, 1996,17(4):61-65.
    [115] Wright,H. T. Nonenzymatic Deamidation of Asparaginyl and Glutaminyl residuea in Proteins. Critic Review on Biochemistry and Molecular Biology, 1991, 26: 1-51.
    [116]吴向明,雕鸿荪,沈蓓英.大豆蛋白脱酰胺改性的研究[J].中国油脂. 1996,21(5):13-16.
    [117]卢寅泉,肖红媚,郑宗坤.花生蛋白加工功能性改善的研究[J].食品科学, 1995, 16(6):9-13.
    [118] Riha W E, Izzo H V, Zhang J, Ho C T. Nonenzymatic deamidation of food proteins [J]. Critical Review on Food Science and Nutrition, 1996, 36(3): 225~255.
    [119]李丹,崔凯.食物蛋白质的改性技术[J].食品与发酵工业. 2000. (5):35-39
    [120] Motoki M,Seguro K, Nio N,Takinami K. Glutamine-specificd eamidationo fαs1-caseinb yt ransglutaminase[J]. Agricultural Biology and Chemistry, 1986, 50: 3025-3030.
    [121] Kato A,Tanaka A,Matsudomi N,et al. Deamidation of food proteins by protease in alkaline pH [J]. Journal of Agricultural and Biological Chemistry, 1987,35(2): 224-227.
    [122]Shih F F. Deamidation during treatment of soy protein with protease[J]. Journal of Food Science, 1990, 55(1): 127-132.
    [123] Kato A,Atsushi T. Effects of deamidation with chymotrypsin at pH 10 on the functional properties of proteins [J]. Journal of Agricultural and Biological Chemistry, 1987, 35:285-288.
    [124] Kato A,Lee Y,Kobayashi K. Deamidation and functional properties of food proteins by the treatment with immobilized chymotrypsin at alkaline pH [J].Journal of Food Science, 1989, 54(5):1,345-1347.
    [125] Hamada;Marshell. Effect of deamidation of PGase on the functionality of soybean portein [J]. Journal of Agricultural and Biological Chemistry, 1988, 38:334-340.
    [126]Casbell N F, Whitake D. Effect of limited Proteolysis on the functionality of soy protein [J]. Food Research Intenrational, 1990, 33:204-208.
    [127] Robinson A B, Rudd C. Deamidation of glutaminyl and asparaginyl residues in peptides and proteins[J]. Current Topics in Cellular Regulation, 1974, 8:247.
    [128]Paulson AT,Tung MA. Solubility,hydrophobicity and net charge of succinylated canola protein isolate [J]. Journal of Food Science, 1987, 52(6): 1557-1561.
    [129] Kato A,Komatsu K,et al. Relationship between surface functional properties and flexibility of detected by the protease susceptibility [J]. Journal of Agricultural and Food Chemistry, 1985, 33(5):931-934.
    [130] Manning M C, Patel K, Borchardt RT. Stability of protein pharmaceutical [J]. Pharmaceutical Research, 1989, 6: 903-918.
    [131] Ellman G l. Tissue Sulfhydryl Groups [ J]. Archive Biochemistry Bio-physics, 1959, 82(5): 70-77.
    [132]易翠平,姚惠源.酸法脱酰胺对大米蛋白分子间作用力和二级结构的影响[J].中国粮油学报, 2007, 22(3):1-4.
    [133]Chiu H. Wu S, Nakai W D,et a.l Preparation and properties of acid-solubilized gluten[J]. Journal of Agricultural and Food Chemistry, 1976, 24(3): 504-510.
    [134]Matsudomi N. Kunihiko A,Kobayashi K. Conformation and surface properties of deamidated gluten [J]. Agricultural Biology and Chemistry , 1982, 46 (6):1583-1586.
    [135]Ponnuswamy P. K. [M]: International Journal of Biochemistic Macromolecule, 1982, 4:186-190.
    [136]Matsudomi N,Sasaki T,Tanaka A,Kobayashi K.,Kato A. Polymerization of deamidated peptide fragments obtained with the mild acid hydrolysis of ovalbumin [J]. Journal of Agricultural and Food Chemistry, 1985, 33(4): 738-742.
    [137]Berti C,Roncoroni L,Falini ML,Caramanico R,Dolfini E,Bardella MT,Elli L,Terrani C, Forlani F. Celiac-related properties of chemically and enzymatically modified gluten proteins. Journal of Agricultural and Food Chemistry, 2007, 55: 2482-2488.
    [138]Schlichtherle-Cerny H. Amado R. Analysis of taste-active compounds in an enzymatic hydrolysate of deamidated wheat gluten [J] Journal of Agricultural and Food Chemistry,2002, (50): 1515-1522.
    
    [1] Matsudomi N, Kato A, Kobayashi K. Conformation and surface properties of deamidated gluten [J]. Agricultural Biology and Chemistry, 1982, 46(6):1583-1586.
    [2] Mataudomi N, Tanaka A, Kato A, Kobayashi K. Functional properties of deamidated gluten obtained by treating with chymotrypsin at alkali pH [J]. Journal of Agricultural and Biological Chemistry. 1986, 50, 1989-1994.
    [3] Hamada J S, Marshall W E. Preparation and functional properties of enzymatically deamidated soy proteins [J]. Journal of Food Science. 1989, 54, 598-601, 635.
    [4] Zhang J, Lee T C. et a.l Thermal Deamidation of Proteins in a Restricted Water Environment [J]. Journal of Agricultural and Food Chemistry, 1993, 41, 1840-1843.
    [5] Izzo HV,Lincoln MD, Ho C-T. Effect of temperature, feed moisture, and pH on protein deamidation in an extruded wheat flour [J]. Journal of Agricultural and Food Chemistry, 1993, 41: 199-207.
    [6] Matsudomi N. Conformation changes and functional properties of acid-modified soy protein [J]. Agricultural Biology and Chemistry, 1985.49:1251-1256.
    [7] Matsudomi Netal. Conoformation and surface Properties of deamidated gluten [J].gricultural Biology and Chemistry, 1982.46:1583-1586.
    [8] Ma C Y;Khanzada G. Functional Properties of deamidated oat Protein isolates [J]. Journal of Food Science, 1987, 52:1583-1587.
    [9] Chan W-M, Ma C-Y. Acid modification of Proteins from soymilk residue (okara) [J].Food Research International, 1999, 32:119-127.
    [10] Matsudomi N,Sasaki T,Tanaka A,Kobayashi K.,Kato A. Polymerization of deamidated peptide fragments obtained with the mild acid hydrolysis of ovalbumin [J]. Journal of Agricultural and Food Chemistry, 1985, 33(4): 738-742.
    [11]Berti C,Roncoroni L,Falini ML,Caramanico R,Dolfini E,Bardella MT,Elli L,Terrani C, Forlani F. Celiac-related properties of chemically and enzymatically modified gluten proteins. Journal of Agricultural and Food Chemistry, 2007, 55: 2482-2488.
    [12] Schlichtherle-Cerny H. Amado R. Analysis of taste-active compounds in an enzymatic hydrolysate of deamidated wheat gluten [J] Journal of Agricultural and Food Chemistry, 2002, (50): 1515-1522.
    [13]杨慧芬,李明元,沈文.食品卫生理化检验标准手册[M].北京:中国标准出版社. 1998: 149-173.
    [14] Kato A,Tanaka A,Matsudomi N,et al. Deamidation of food proteins by protease in alkaline pH [J]. Journal of Agricultural and Biological Chemistry, 1987,35(2): 224-227.
    [15] Adler-Nissen, J. (1979). Determination of degree of hydrolysis of food protein hydrolysates by trinitrobenzenosulfonic acid [J]. Journal of Agricultural and Biological Chemistry, 27, 1256-1262.
    [16] Mirmoghtadaie L, Kadivar M, Shahedi M, Effects of succinylation and deamidation on functional properties of oat protein isolates [J]. Food Chemistry, 2009, 114:127-131.
    [17] Aranyi C, Hawrylewiczl E J. Preparation and isolation of acid-catalyzed hydrolysates from wheat gluten [J]. Journal of Agricultural and Biological Chemistry, 1972, 20(3), 670-675.
    [18] Shih FF, Modification of food proteins by non-enzymatic methods [M]. Ch. 7 in Biochemistry of Food Proteins, ed, by Hudson B J F, Elsevier Applied Science, London pp. 235-248 (1992).
    [19] Wright H T, Urry DW, Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Critic Review on Biochemistry and Molecular Biology, 1991, 26: 41-52.
    [20] Shih FF, Kalmar A D, SDS-catalyzed deamidation of oilseed proteins. Journal of Agricultural and Biological Chemistry, 1987, 35: 671-675.
    [1] Robinson A B, Rudd C. Deamidation of glutaminyl and asparaginyl residues in peptides and proteins[J]. Current Topics in Cellular Regulation, 1974, 8:247-255.
    [2] Paulson AT,Tung MA. Solubility,hydrophobicity and net charge of succinylated canola protein isolate [J]. Journal of Food Science, 1987, 52(6): 1557-1561.
    [3] Kato A,Komatsu K,et al. Relationship between surface functional properties and flexibility of detected by the protease susceptibility [J]. Journal of Agricultural and Food Chemistry, 1985, 33(5):931-934.
    [4] Manning, M. C.;Patel,K.;Borchardt,R. T. Stability of protein pharmaceutical [J]. Pharmaceutical Research, 1989, 6: 903-918.
    [5] Ellman G l. Tissue Sulfhydryl Groups [ J]. Archive Biochemistry Bio-physics, 1959, 82(5): 70-77.
    [6]易翠平,姚惠源.酸法脱酰胺对大米蛋白分子间作用力和二级结构的影响[J].中国粮油学报, 2007, 22(3):1-4.
    [7] Chiu H. Wu S, Nakai W D,et a.l Preparation and properties of acid-solubilized gluten[J]. Journal of Agricultural and Food Chemistry, 1976, 24(3): 504-510.
    [8] Matsudomi N, Kato A, Kobayashi K. Conformation and surface properties of deamidated gluten. Agricultural Biology and Chemistry, 46(6):1583-1586.
    [9] Berkwith AC, Wall JS, Dimler RJ. Amide groups as interaction sites in wheat gluten proteins[J]. Archives in Biochemistry Biophysics. 1963, 103: 319-330.
    [10] Krull LH, Wall JS, Zobel H, et al. Synthetic polypeptides containing side-chain amide groups[J]. Biochemistry. 1996, 5: 1521-1527.
    [11] Bietz J A, Lookhart G L. Properties and non-food potential of gluten[J]. Cereal Chemistry, 1996, 41(5): 376-382.
    [12] Lens J P, Mulder W J, Kolster P. Modification of wheat gluten for nonfood applications[J]. Cereal Foods World, 1999, 44: 5-9.
    [13]Berti C,Roncoroni L,Falini ML,Caramanico R,Dolfini E,Bardella MT,Elli L,Terrani C, Forlani F. Celiac-related properties of chemically and enzymatically modified gluten proteins. Journal of Agricultural and Food Chemistry, 2007, 55: 2482-2488.
    [14] Pearce K N, Kinsella J E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique[J]. Journal of Agricultural and Food Chemistry, 1978, 26: 716-723.
    [15] Bernardi Don L.S., Pilosof A.M.R., Bartholomal G.B. Enzymatic modification of soy protein concentrates by fungal and bacterial proteases[J]. Journal of the American Oil Chemists Society. 1991, 68: 102-105.
    [16] Alizadeh-Pasdar N, Li-Chan E C. Comparison of protein surface hydrophobicity measured at various pH values using thee different fluorescent probes[J]. Journal of Agriculture and Food Chemistry. 2000, 48(2): 328-334.
    [17] Molina Ortiz S E, A?ón M C. Analysis of products, mechanism of reaction, and some functional properties of soy protein hydrolysates[J]. Journal of American Oil Chemist’s Socety. 2000, 77(12): 1293-1301.
    [18] Rao A, Shallo H E, Ericson A P. Characterization of soy protein concentrate produced by membrane ultrafiltration [J]. Journal of Food Science. 2002, 67(4):1412-1418.
    [19] Laemmli L I K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature. 1970, 227:680-685.
    [20] Tang C H, Ma CY. Heat-induced modifications in the functional and structural propertiesof vicilin-rich protein isolate from kidney (Phaseolus vulgaris L.) bean [J]. Food Chemistry. 2009,115(3):859-866.
    [21] Wang J S, Zhao M M, Yang X Q. Improvement on functional properties of wheat gluten by enzymatic hydrolysis and ultrafiltration [J]. Journal of Cereal Science, 2006, 44:93-100.
    [22] Bildlingmeyer B A, Cohen S A, Tarvin T L, et al. A new, rapid, high sensitivity analysis of amino acid in food type samples[J]. Journal of Assoiation Official Analatical Chemistry. 1987, 70(2):241-247.
    [23] Mirmoghtadaie L, Kadivar M, Shahedi M, Effects of succinylation and deamidation on functional properties of oat protein isolates [J]. Food Chemistry, 2009, 114:127-131.
    [24] Wager J R, Gueguen J. (1999). Surface functional properties of native, acid-treated, and reduced soy glycinin: 1. foaming properties [J]. Journal of Agriculture and Food chemistry, 47 (6), 2173-2180.
    [25] Hamada JS, Modification of food proteins by enzymatic methods [M]. In Biochemistry of Food Proteins, ed. by Hudson B J F, Elsevier Applied Science, New York, London pp. 249-270 (1992).
    [26] Hou H D, Chang K C. Structural characteristics of purified glycinin from soybeans stored under various conditions [J]. Journal of Agricultural and Food Chemistry, 2004, 52, 3792–3800.
    [27] Wang X S, Tang C H, Li B S, Yang X Q, Li L, Ma C Y. Effects of high-pressure treatment on some physicochemical and functional properties of soy protein isolates [J]. Food Hydrocolloids, 2008, 22, 560-567.
    [28] DuPont F. M., Samoil V., Chan R. Extraction of up to 95% of Wheat (Triticum aestivum) Flour Protein Using Warm Sodium Dodecyl Sulfate (SDS) without Reduction or Sonication [J]. Journal of Agriculture and Food chemistry, 56 (16), 7431–7438.
    [29]Schofield J D, Bottomley RC, Timms M F, Booth M R. (). The effect of heat on wheat gluten and the involvement of sulfhydryl-disulphide interchange reactions [J]. Journal of Cereal Science, 1983, 1, 241-253.
    [30] Colthup N B, Daly L H, Wiberley S E. Introduction to infrared and Raman spectroscopy [M]. San Diego, CA: Academic Press. 1990.
    [31] Wong H W, Choi S M, Phillips D L, Ma C Y. Raman spectroscopic study of deamidated food proteins [J]. Food chemistry, 2009, 113: 363-370.
    [32] Li-Chan E C Y. The applications of Raman spectroscopy in food science [J]. Trends on Food Science and Technology, 1996, 7: 361-370.
    [33]Chen H L, Wang C H, Chang C T, Wang T C. Effects of Taiwanese yam (Dioscorea japonica Thunb var. pseudojaponica Yamamoto) on upper gut function and lipid metabolism in Balb/cmice [J]. Nutrition, 2003, 19:646-651.
    [34] Chou P Y, Fasman G D.β-turn in proteins [J]. Journal of Molecule Biology, 1977, 115: 135-175.
    [35] Robinson A B, Rudd C. Deamidation of glutaminyl and asparaginyl residues in peptides and proteins[J]. Current Topics in Cellular Regulation, 1974, 8: 247.
    [1]. Shewry PR, Popineau Y, Lafiandra D, Belton P. Wheat glutenin subunits and dough elasticity: findings of the EUROWHEAT project. Trends in Food Science & Technology. 2000;11(12):433-441.
    [2]. Shewry PR, Halford NG, Belton PS, Tatham AS. The structure and properties of gluten: an elastic protein from wheat grain. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences. Feb 2002;357(1418):133-142.
    [3]. Hamada JS. DEAMIDATION OF FOOD PROTEINS TO IMPROVE FUNCTIONALITY. Critical Reviews in Food Science and Nutrition. 1994;34(3):283-292.
    [4]. Wang J-s, Wei Z-y, Li L, Bian K, Zhao M-m. Characteristics of enzymatic hydrolysis of thermal-treated wheat gluten. Journal of Cereal Science. 2009;50(2):205-209.
    [5]. Roussel H, Cheftel JC. Mechanisms of gelation of sardine proteins: influence of thermal processing and of various additives on the texture and protein solubility of kamaboko gels. International Journal of Food Science & Technology. 1990;25(3):260-280.
    [6]. Falc?o-Rodrigues MM, Mold?o-Martins M, Beir?o-da-Costa ML. Thermal properties ofgluten proteins of two soft wheat varieties. Food Chemistry. 2005;93(3):459-465.
    [7]. Zhang Y-H, Tang C-H, Wen Q-B, Yang X-Q, Li L, Deng W-L. Thermal aggregation and gelation of kidney bean (Phaseolus vulgaris L.) protein isolate at pH 2.0: Influence of ionic strength. Food Hydrocolloids. 2010;24(4):266-274.
    [8]. Schofield JD, Bottomley RC, Timms MF, Booth MR. The effect of heat on wheat gluten and the involvement of sulphydryl-disulphide interchange reactions. Journal of Cereal Science. 1983;1(4):241-253.
    [9]. Lagrain B, Goderis B, Brijs K, Delcour JA. Molecular Basis of Processing Wheat Gluten toward Biobased Materials. Biomacromolecules. Mar 2010;11(3):533-541.
    [10]. Tatham AS, Hayes L, Shewry PR, Urry DW. Wheat seed proteins exhibit a complex mechanism of protein elasticity. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology. Aug 2001;1548(2):187-193.
    [11]. Lagrain B, Brijs K, Veraverbeke WS, Delcour JA. The impact of heating and cooling on the physico-chemical properties of wheat gluten-water suspensions. Journal of Cereal Science. 2005;42(3):327-333.
    [12]. Bar GK, Meyers GF. The application of atomic force microscopy to the characterization of industrial polymer materials. Mrs Bulletin. Jul 2004;29(7):464-470.
    [13]. Inoue S, Uchihashi T, Yamamoto D, Ando T. Direct observation of surfactant aggregate behavior on a mica surface using high-speed atomic force microscopy. Chemical Communications. 2011;47(17):4974-4976.
    [14]. Jalili N, Laxminarayana K. A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics. Oct 2004;14(8):907-945.
    [15]. Won A, Khan M, Gustin S, et al. Investigating the effects of L- to D-amino acid substitution and deamidation on the activity and membrane interactions of antimicrobial peptide anoplin. Biochimica et Biophysica Acta (BBA) - Biomembranes.In Press, Corrected Proof.
    [16]. Yang HS, Wang YF, Lai SJ, An HJ, Li YF, Chen FS. Application of atomic force microscopy as a nanotechnology tool in food science. Journal of Food Science. May 2007;72(4):R65-R75.
    [17]. Bell LN, Touma DE. Glass transition temperatures determined using a temperature-cycling differential scanning calorimeter. Journal of Food Science. Jul-Aug 1996;61(4):807-&.
    [18]. Roudaut G, Simatos D, Champion D, Contreras-Lopez E, Le Meste M. Molecular mobility around the glass transition temperature: a mini review. Innovative Food Science & Emerging Technologies. 2004;5(2):127-134.
    [19]. German B, Damodaran S, Kinsella JE. Thermal dissociation and association behavior of soy proteins. Journal of Agricultural and Food Chemistry. 1982;30(5):807-811.
    [1] Day L, Augustin M A, Batey I L, Wrigley C W. Wheat gluten uses and industry needs [J]. Trends on Food Sciences and Technology, 2006, 17: 82-90.
    [2] Wong H W, Choi S M, Phillips D L, Ma C Y. Raman spectroscopic study of deamidated food proteins [J]. Food Chemistry, 2009, 113:362-370
    [3] Kaewkaa K, Therakulkaita C, Cadwallader K R. Effect of preparation conditions on composition and sensory aroma characteristics of acid hydrolyzed rice bran protein concentrate[J]. Journal of Cereal Science, 2009, 50:56-60.
    [4]李红梅,候立琪,马兴胜.玉米蛋白去酰胺改性的研究[J],粮食与饲料工业,2007, 4: 19-22.
    [5]孔祥珍,周惠明.小麦面筋蛋白去酰胺改性的研究[J].食品科学.2003, 24(12):47-49.
    [6]易翠平;姚惠源.酸法脱酰胺对大米蛋白分子间作用力和二级结构的影响[J].中国粮油学报, 2007, 22(3): 1-4.
    [7]赵谋明,廖兰等.专利:一种有机酸脱酰胺改性小麦面筋蛋白的方法[P].专利号:CN 101480218B.
    [8] Kato A, Tanaka A, Lee Y, Matsudomi N, Kobayashi K. Effects of deamidation with chymotrypsin at pH 10 on the functional properties of proteins[J]. Journal of Agricultural and Biological Chemistry, 1987, 35: 285-288.
    [9] GB5511-85,食品成分分析手册,宁正祥等主编。
    [10]张冬仙,黄峰.卧式原子力显微镜的研制[J].光学仪器,2001,23(2):14-17 .
    [11] Wang J S, Zhao M M, Yang X Q. Improvement on functional properties of wheat gluten by enzymatic hydrolysis and ultrafiltration [J]. J. Cereal Sci., 2006, 44:93-100.
    [12] Rundel, R. PeakFit: Nonlinear Curve-Fitting Software Technical Guide [M]; Jandel Scientific: New Hampshire, 1991.
    [13]高体玉,李俊,慈云祥.乳腺癌组织中蛋白质二级结构的Fourier变换红外光谱研究[J].分析科学学报. 2000, 16(5): 353-357.
    [14] Shih F F, Kalmar A D. SDS-catalyzed deamidation of oilseed proteins[J]. J Agric Food Chem, 1987, 35: 671-675.
    [15] Booth, M.R., Bottomley, R.C., Ellis, J.R.S., Malloch, G., Schofield, J.D. and Timms, M.F. The effects of heat on gluten physico-chemical properties and baking quality[J]. Annales de Technologie Agricole. 1929: 399-408.
    [16] Adler-Nissen J. Determination of degree of hydrolysis of food protein hydrolysates by trinitrobenzenosulfonic acid[J]. J Agric Food Chem, 1979, 27: 1256-1262.
    [17]黄伟坤.食品检验与分析[M].北京:中国轻工业出版社, 1989: 55-58.
    [18] Wang Q, Wang JF, Geil PH, Padua GW[M]. Biomacromolecules 2004; 5, 1356-1361.
    [19] Zhang YH, Tang CH, Wen QB, Yang XQ, Li L, Deng WL. [J] Food Hydrocolloids 2010; 24, 266-274.
    [20] Roussel, H.; Cheftel, J. C. [J]Intern J Food Sci Techno 1990; 25, 260-280.
    [21] Ikeda S, Morris VJ, Nishinari K. [J] Biomacromolecules 2001; 2, 1331-133.
    [22]严伟,李淑芬,田松江.超声波协助提取技术[M].化工进展, 2002, 21 (9) : 649 - 651.
    [23] Were L, Hettiarachchy NS, Kalapathy U. Modified soy proteins with improvedfoaming and water hydration properties [J]. Journal of Food Science.1997, 62(4):821-823,850
    [24] Xie YR, Hettiarachchy NS. Effect of xanthan gum on enhancing the foaming properties of soy protein isolate [J]. Journal of American Oil Chemist Society.1998, 75(6): 729-732.
    [25] Comas DI, Wagner JR, Toma′s M C. Creaming stability of oil in water (O/W) emulsions: Influence of pH on soybean protein–lecithin interaction[J]. Food Hydrocolloids, 2006, 20: 990-996.
    [26]李迎秋,陈正行.高压脉冲电场对大豆分离蛋白功能性质的影响[J].农业工程学报, 2006, 22(8): 194-198.
    [27]赵国华,陈宗道,王光慈,等.改性对玉米蛋白质功能性质和结构的影响[J].中国粮油学报, 2000, 15(3): 28 31.
    [28]苏国万、罗立新、赵强忠、赵谋明均质压力对大豆分离蛋白乳浊液为定性的影响[J].中国乳品工业Vol.36,No.11 2008.
    [29]沈钟,王果庭.胶体表面化学[M].第二版.化学工业出版社, 1997:383-384.
    [30]沈同,王镜岩.生物化学,第二版,上册[M].北京:高等教育出版社, 1990.140-150.
    [31] Surewicz WK, Mantsch HH. New insight into protein secondary structure from resolution-enhanced infrared spectra [J]. Biochimica et Biophysica Acta. 1988, 952: 115-130.
    [32] Subirade M, Kelly I, Guéguen J, et al. Molecular basis of film formation from a soybean protein: comparison between the conformation of glycinin in aqueous solution and in films[J]. Internaltional Journal of Biologlical Macromolecules, 1998 , 23: 241-249.
    [33]马永强,赵毅,石彦国.大豆多肽水解物中肽分子分布的研究[J].中国粮油学报. 2001, 16(3): 15-17.
    [34] Veraverbeke WS, Larroque OR, Bekes F, Delcour JA. [J]Cereal Chemisty, 2000;77, 582-588.
    [1]钟耕,陈宗道,闵燕萍,等.小麦面筋蛋白及其化学改性研究[J].粮食与饲料工业, 2009, 5: 41-47.
    [2] Wu C H, Nakai S, Powrie W P. Prepation and properties of Acid-Solubilized gluten [J]. Journal of Agricultural and Food Chemistry, 1976, 24 : 504-14.
    [3]史新慧,王兰,邹凤羽,等.小麦面筋蛋白改性的研究[J].郑州粮食学院学报. 2000, 1: 27-28
    [4] Hedvig, Schlich T C, and Renato A. Analysis of taste-active compounds in an enzymatic hydrolysate of deamidated wheat gluten [J]. Journal of Agricultural and Food Chemistry, 2002, 50 : 1515~1522.
    [5] Catherine Aranyi, and E. J. Hawrylewicz. Preparation and isolation of acid-catalyzed hydrolysates from wheat gluten[J]. Journal of Agricultural and Food Chemistry, 1972, 20 (3), 670-675.
    [6]大连轻工业学院,华南理工大学合编.食品分析[M].中国轻工业出版社, 1994 : 234.
    [7] GB/T 12456~1990.食品中总酸的测定方法.
    [8]无锡轻工业学院,天津工业学院合编.食品分析[M].轻工业出版社出版, 1983:131-194.
    [9] Synowiecki J, Al-khateeb N A A Q. The recovery of protein hydrolysate during enzymatic isolation of chitin from shrimp Crangon crangon processing discards[J]. Food Chemistry, 2000, 68 : 147-152.
    [10]王金水,李露,韦志彦,等.挤压处理对小麦面筋蛋白酶解特性的影响[J].农产品加工, 2009, 2 : 16-18.
    [11] Wang J S, Wei Z Y, Li L. Characteristics of enzymatic hydrolysis of thermal-treated wheat gluten [J]. Journal of Cereal Science, 2009, 4 : 1-5.
    [12] Sandra D, MarieH M, Joelle B, et al, Polymerization Kinetics of Wheat Gluten upon Thermosetting: A Mechanistic Model [J]. Journal of Agricultural and Food Chemistry, 2002, 21: 5947-5954.
    [13] Kaewka K, Therakulkait C, Cadwallader K R. Effect of preparation conditions on composition and sensory aroma characteristics of acid hydrolyzed rice bran protein concentrate. Journal of Cereal Science[J], 2009, 2 : 1-5.
    [14] Dattatreya A, Etzel M R, Rankin S A. Kinetics of browning during accelerated storage of sweet whey powder and prediction of its shelf life. International Dairy Journal [J], 2007, 17 : 177-182.
    [15] Adler-Nissen J. A. Review of Food Protein Hydrolysis-General Issues. In Enzymatic Hydrolysis of Food Proteins; Elsevier Applied Science Publishers: New York, 1986, 30-35.
    [16] Kirimura J, Shimizu A, Kimizuka A, Ninomiya T, Katsuya N, The contribution of peptides and amino acids to the taste of foodstuffs. Journal of Agricultural and Food Chemistry, 1969.17, 689-695.
    [17] Schlichtherle CH, Amado R, Analysis of taste-active compounds in an enzymatic hydrolysate of deamidated wheat gluten. Journal of Agricultural and Food Chemistry 2002. 50, 1515- 1522.
    [18] Hanifah NL, Takara K, Masaakiyasuda A. Evaluation of peptide contribution to the intense umami taste of japanese soy sauces [J]. Journal of Food Science, 2006, 71, 277-283.
    [19] Palmer BA, 1985. Monomeric and oligomeric enzymes [M]. In Understanding Enzymes, 2nded; Ellis Horwood: Chichester, U.K., Chapter 5, 88-96.
    [20] Aaslyng MD, Martens M, Poll L, 1998. Chemical and sensory characterization ofhydrolyzed vegetable protein, a savory flavoring [J]. Journal of Agricultural and Food Chemistry 46, 481-489.
    [21] Chan W M, Ma C Y. Acid modifcation of proteins from soymilk residue(okara) [J]. Food Research International[J], 1999, 32 : 119-127.
    [1]. Shewry PR, Popineau Y, Lafiandra D, Belton P. Wheat glutenin subunits and dough elasticity: findings of the EUROWHEAT project. Trends in Food Science & Technology. 2000;11(12):433-441.
    [2]. Shewry PR, Halford NG, Belton PS, Tatham AS. The structure and properties of gluten: an elastic protein from wheat grain. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences. Feb 2002;357(1418):133-142.
    [3]. Hamada JS. DEAMIDATION OF FOOD PROTEINS TO IMPROVE FUNCTIONALITY. Critical Reviews in Food Science and Nutrition. 1994;34(3):283-292.
    [4]. Wang J-s, Wei Z-y, Li L, Bian K, Zhao M-m. Characteristics of enzymatic hydrolysis of thermal-treated wheat gluten. Journal of Cereal Science. 2009;50(2):205-209.
    [5]. Roussel H, Cheftel JC. Mechanisms of gelation of sardine proteins: influence of thermal processing and of various additives on the texture and protein solubility of kamaboko gels. International Journal of Food Science & Technology. 1990;25(3):260-280.
    [6]. Falc?o-Rodrigues MM, Mold?o-Martins M, Beir?o-da-Costa ML. Thermal properties of gluten proteins of two soft wheat varieties. Food Chemistry. 2005;93(3):459-465.
    [7]. Zhang Y-H, Tang C-H, Wen Q-B, Yang X-Q, Li L, Deng W-L. Thermal aggregation and gelation of kidney bean (Phaseolus vulgaris L.) protein isolate at pH 2.0:Influence of ionic strength. Food Hydrocolloids. 2010;24(4):266-274.
    [8]. Schofield JD, Bottomley RC, Timms MF, Booth MR. The effect of heat on wheat gluten and the involvement of sulphydryl-disulphide interchange reactions. Journal of Cereal Science. 1983;1(4):241-253.
    [9]. Lagrain B, Goderis B, Brijs K, Delcour JA. Molecular Basis of Processing Wheat Gluten toward Biobased Materials. Biomacromolecules. Mar 2010;11(3):533-541.
    [10]. Tatham AS, Hayes L, Shewry PR, Urry DW. Wheat seed proteins exhibit a complex mechanism of protein elasticity. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology. Aug 2001;1548(2):187-193.
    [11]. Lagrain B, Brijs K, Veraverbeke WS, Delcour JA. The impact of heating and cooling on the physico-chemical properties of wheat gluten-water suspensions. Journal of Cereal Science. 2005;42(3):327-333.
    [12]. Bar GK, Meyers GF. The application of atomic force microscopy to the characterization of industrial polymer materials. Mrs Bulletin. Jul 2004;29(7):464-470.
    [13]. Inoue S, Uchihashi T, Yamamoto D, Ando T. Direct observation of surfactant aggregate behavior on a mica surface using high-speed atomic force microscopy. Chemical Communications. 2011;47(17):4974-4976.
    [14]. Jalili N, Laxminarayana K. A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics. Oct 2004;14(8):907-945.
    [15]. Won A, Khan M, Gustin S, et al. Investigating the effects of L- to D-amino acid substitution and deamidation on the activity and membrane interactions of antimicrobial peptide anoplin. Biochimica et Biophysica Acta (BBA) - Biomembranes.In Press, Corrected Proof.
    [16]. Yang HS, Wang YF, Lai SJ, An HJ, Li YF, Chen FS. Application of atomic force microscopy as a nanotechnology tool in food science. Journal of Food Science. May 2007;72(4):R65-R75.
    [17]. Bell LN, Touma DE. Glass transition temperatures determined using a temperature-cycling differential scanning calorimeter. Journal of Food Science. Jul-Aug 1996;61(4):807-&.
    [18]. Roudaut G, Simatos D, Champion D, Contreras-Lopez E, Le Meste M. Molecular mobility around the glass transition temperature: a mini review. Innovative Food Science & Emerging Technologies. 2004;5(2):127-134.
    [19]. German B, Damodaran S, Kinsella JE. Thermal dissociation and association behavior of soy proteins. Journal of Agricultural and Food Chemistry. 1982;30(5):807-811.
    [20]. Miwa N, Yokoyama K, Wakabayashi H, Nio N. Effect of deamidation by protein-glutaminase on physicochemical and functional properties of skim milk. International Dairy Journal. 2010;20(6):393-399.
    [21]. Webb MR, Naeem HA, Schmidt KA. Food protein functionality in a liquid system: A comparison of deamidated wheat protein with dairy and soy proteins. Journal of Food Science. Oct 2002;67(8):2896-2902.
    [22]. Day L, Augustin MA, Batey IL, Wrigley CW. Wheat-gluten uses and industry needs. Trends in Food Science & Technology. 2006;17(2):82-90.
    [23]. Innis SM. Dietary omega 3 fatty acids and the developing brain. Brain Research. 2008;1237:35-43.
    [24]. Donadio JV, Grande JP. The role of fish oil/omega-3 fatty acids in the treatment of IgA nephropathy. Seminars in Nephrology. 2004;24(3):225-243.
    [25]. Eckert GP, Franke C, N?ldner M, et al. Plant derived omega-3-fatty acids protect mitochondrial function in the brain. Pharmacological Research. 2010;61(3):234-241.
    [26]. Jordan RG. Prenatal Omega-3 Fatty Acids: Review and Recommendations. Journal of Midwifery & Women's Health.55(6):520-528.
    [27]. Josyula S, Schut HAJ. Dietary omega-3 fatty acids as potential inhibitors of carcinogenesis: effect on DNA adduct formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in mice and rats. Food and Chemical Toxicology. 1999;37(4):287-296.
    [28]. Pisani LF, Lecchi C, Invernizzi G, Sartorelli P, Savoini G, Ceciliani F. In vitro modulatory effect of [omega]-3 polyunsaturated fatty acid (EPA and DHA) on phagocytosis and ROS production of goat neutrophils. Veterinary Immunology and Immunopathology. 2009;131(1-2):79-85.
    [29]. Rose DP, Connolly JM. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacology & Therapeutics. 1999;83(3):217-244.
    [30]. Shinto L, Marracci G, Baldauf-Wagner S, et al. Omega-3 fatty acid supplementation decreases matrix metalloproteinase-9 production in relapsing-remitting multiple sclerosis. Prostaglandins, Leukotrienes and Essential Fatty Acids.80(2-3):131-136.
    [31]. Berti C, Roncoroni L, Falini ML, et al. Celiac-Related Properties of Chemically and Enzymatically Modified Gluten Proteins. Journal of Agricultural and Food Chemistry. 2007;55(6):2482-2488.
    [32]. Severcan M, Haris PI, Severcan F. Using artificially generated spectral data to improve protein secondary structure prediction from Fourier transform infrared spectra of proteins. Analytical Biochemistry. 2004;332(2):238-244.
    [33]. Connick WJ, Boyette CD, McAlpine JR. Formulation of mycoherbicides using a pasta-like process. Biological Control. 1991;1(4):281-287.
    [34]. Rajagopal SN, Sandine WE. Associative Growth and Proteolysis of Streptococcus thermophilus and Lactobacillus bulgaricus in Skim Milk. Journal of Dairy Science. 1990;73(4):894-899.
    [35]. Chung C, Sanguansri L, Augustin MA. In vitro lipolysis of fish oil microcapsules containing protein and resistant starch. Food Chemistry. 2011;124(4):1480-1489.
    [36]. Andreani L, CercenáR, Ramos BGZ, Soldi V. Development and characterization of wheat gluten microspheres for use in a controlled release system. Materials Science and Engineering: C. 2009;29(2):524-531.
    [37]. Cho YH, Shim HK, Park J. Encapsulation of fish oil by an enzymatic gelation process using transglutaminase cross-linked proteins. Journal of Food Science. Nov-Dec 2003;68(9):2717-2723.
    [38]. Reitz HC, Ferrel RE, Olcott HS. Gel-Forming Derivative of Wheat Gluten. Industrial & Engineering Chemistry. 1944;36(12):1149-1151.
    [39]. Wakamatsu K, Takahama U. Changes in peroxidase activity and in peroxidase isozymes in carrot callus. Physiologia Plantarum. 1993;88(1):167-171.
    [40]. Kolanowski W, Ziolkowski M, Wei?brodt J, Kunz B, Laufenberg G. Microencapsulation of fish oil by spray drying--impact on oxidative stability. Part 1. European Food Research and Technology. 2006;222(3):336-342-342.
    [41]. Drusch S, Serfert Y, Van Den Heuvel A, Schwarz K. Physicochemical characterization and oxidative stability of fish oil encapsulated in an amorphous matrix containing trehalose. Food Research International. 2006;39(7):807-815.
    [42]. Blanch EW, Kasarda DD, Hecht L, Nielsen K, Barron LD. New Insight into the Solution Structures of Wheat Gluten Proteins from Raman Optical Activity?. Biochemistry. 2003;42(19):5665-5673.
    [43]. Haris PI, Severcan F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. Journal of Molecular Catalysis B: Enzymatic. 1999;7(1-4):207-221.
    [44]. Forato LA, Bernardes-Filho R, Colnago LA. Protein Structure in KBr Pellets by Infrared Spectroscopy. Analytical Biochemistry. 1998;259(1):136-141.
    [45]. Sadeghi-Jorabchi H, Wilson RH, Belton PS, Edwards-Webb JD, Coxon DT. Quantitative analysis of oils and fats by Fourier transform Raman spectroscopy. Spectrochimica Acta Part A: Molecular Spectroscopy. 1991;47(9-10):1449-1458.
    [46]. Liao L, Liu T-X, Zhao M-M, et al. Functional, nutritional and conformational changes from deamidation of wheat gluten with succinic acid and citric acid. Food Chemistry. 2010;123(1):123-130.
    [47]. Chen LY, Remondetto GE, Subirade M. Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology. 2006;17(5):272-283.
    [48]. Gan C-Y, Cheng L-H, Easa AM. Evaluation of microbial transglutaminase and ribose cross-linked soy protein isolate-based microcapsules containing fish oil. Innovative Food Science & Emerging Technologies. 2008;9(4):563-569.
    [49]. Li Y, McClements DJ. Controlling lipid digestion by encapsulation of protein-stabilized lipid droplets within alginate-chitosan complex coacervates. Food Hydrocolloids. 2011;25(5):1025-1033.
    [50]. Embleton JK, Pouton CW. Structure and function of gastro-intestinal lipases. Advanced Drug Delivery Reviews. 1997;25(1):15-32.
    [51]. Singh H, Ye A, Horne D. Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Progress in Lipid Research. 2009;48(2):92-100.
    [52]. Golding M, Wooster TJ. The influence of emulsion structure and stability on lipid digestion. Current Opinion in Colloid & Interface Science. 2010;15(1-2):90-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700